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Motivation — Nonequilibrium evolution

ultra-peripheral collision (semi-)central collision
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Motivation - Early Thermalization Puzzle

Conventional Method Assumptions Real System Reasonable Method

I. \Linearization X { \ M Non-linear v/

close-to-equalibrium  far-from-equalibrium

II. Boltzmann X ) ] \ Correlation V'
\

Da D

no correlation correlation incolved



The definition of correlation in kinetic theory

The definition of pair-correlation in my talk (in kinetic theory)

P’2(¢al ¢b) = P2 (¢a' ¢b) _ P1(¢a)P1(¢b)
/\ Blue: with correlation
/ Grey: without correlation
Blue and Grey:

different P,(¢,, ¢})
same P1(¢a)

P

D If we ignore correlations,
we will lose information about the system.



Map: What we do in the building of nonequilibrium statistical mechanics?

Hamilton Equation/ Hamilton Equation
Schrédinger Equation dq N dp 5%

dt  op’ dt  oq

Schrodinger equation

a 0
A —in 2w
5



Map: What we do in the building of nonequilibrium statistical mechanics?

Hamilton Equation/
Schrodinger Equation Liouville's theorem

The distribution function is constant
along any trajectory in phase space.

Liouville Equation

Liouville equation

OPy OPw) . OPw)
()+Z( ™ . 8}(})})@_):0
i=1 v

Full distribution function



Map: What we do in the building of nonequilibrium statistical mechanics?

Liouville equation
Hamilton Equation/

Schrodinger Equation dtP(N) — C[f , P(N)]

Liouville Equation Full distribution function

BBGKY hierarchy BBGKY hierarchy
(Bogoliubov—Born—Green—Kirkwood—Yvon)

diPay = C[ , Py, Py

Reduced distribution function



Map: What we do in the building of nonequilibrium statistical mechanics?

Hamilton Equation/ )
Schrédinger Equation BBGKY hierarchy

Liouville Equation dtP(n) _ CU‘ , P(n); P(n+1)]

BBGKY hierarchy Reduced distribution function

ignore correlation

v Assume P (¢q, ¢p) — P1(pa)P1(¢p) =0

Boltzmann

Boltzmann Equation

diPey = C[J , Py



Map: What we do in the building of nonequilibrium statistical mechanics?

Hamilton Equation/ Boltzmann Equation
Schrodinger Equation

difi1 < (fsfa — f112)

Liouville Equation
Around equalibrium

BBGKY hierarchy Linear Boltzmann Equation

ignore correlation dtfl X (f3 + f4 R fl o fZ)

Y RTA Boltzmann Equation
i defr X (f1 = feq)/T

around equalibrium ]
Hydrodynamics

linear, RTA, hydro VuTFW = (




Map: What we do in the building of nonequilibrium statistical mechanics?

Hamilton Equation/
Schrodinger Equation

Time-reversal symmetry,
Liouville Equation Cornerstone

BBGKY hierarchy

, , Gap: correlation
ignore correlation

v
| Tractable proxy

|
around equalibrium Gap: nonlinear

linear, RTA, hydro WOrkhorse




Map: What we do in the building of nonequilibrium statistical mechanics?

Hamilton Equation/

Hamilton Equation/
Schrodinger Equation

Schrodinger Equation

Liouville Equation
Liouville Equation

BBGKY hierarchy
BBGKY hierarchy

spectral BBGKY hierarchy

ignore correlation

ignore correlation

v \ 4
Our Work

around equalibrium < around equalibrium

linear, RTA, hydro

linear, RTA, hydro




Spectral BBGKY Hierarchy

BBGKY

Hamilton/Schrédinger Eq. diPy = C[f,P(n),P(n+1)]

Y

Liouville Eq.
louville Eq Spectrum Method

}
w
P(n)(xl’pllu'yxn,pn) _ J
N
N
}

BBGKY hierarchy

Pil..-in(X)j)il (pl) “Pin (pn)

ignore correlation L 4
Spectral BBGKY

Boltzmann dtpil---in — C Plin 4 4 Pirintr




Spectral BBGKY Hierarchy

A & C: Collision Integral

BBGKY W
Hamilton/Schrédinger Eg. dtp(n) = C[f;P(n);P(n+1)] J
s
Liouville Eq . <
' Spectrum Method w
/s
. P(n)(xll P10 X pn) =
BBGKY hierarchy i
N P tn(X)P; (p1) -+ Py, (Pn)
<
ignore correlation 4 \\
Spectral BBGKY w
Boltzmann d Pirin = ¢ Pir~in 4 4 Pil---inHJ




Spectral BBGKY Hierarchy

Ve ~ —~— - - - - - - - - =~
( \ /T BBGKY w _7" Momentum space
| | i A |
| Hamilton/Schrodinger Eq. | 7 L APy = C[f»P(n),P(nﬂ)] J /// : i’ :
| Liouville Eq. yd . < | H :
| e ( Spectrum Method w : =] |
| BBGKY hierarchy | ; ‘(_f‘l.)( P X Pr) | Puy —> j
| N | P tn(X)P; (p1) -+ Py, (Pn) | P ,
< _
| ignore correlation \\\: L \\ : n = é\/_;;T?»f(O,O,O)
| |\\ ( Spectral BBGKY w AN | i
| N N | () = 12\/_T4 (f(ooo) f(lOO)
| Boltzmann | N d,Pirin = ¢ Plain 4 4 Plrine “Ji1 W (2m)3
\\ ____________ // AN A & C: Collision Integral (o) = 16\/§T4f(01 )
(2m)?
ur nasis : THI: (2m)?
Angular  Radial e equilibrium e

¢ . 3\ T4 (0,1,0)
Pt (py) = e Put/A (M) Yy (6, )LL) (Pu_“”) * particle number, W)= "gms T
energy-momentum conservation

* nonlinear behavior
mainly depends on the first few basis.



Spectral BBGKY Hierarchy

7 - - - = = = =~
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* nonlinear behavior
mainly depends on

a7 IIENEREEEL Cost pow = v/ COst before



Spectral BBGKY Hierarchy
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Spectral BBGKY Hierarchy
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Numerical validation

Compare to analytic solution

M, (offset)

My

M;

M,

My

M

M7

My

TImﬂ.X
—10=—8—6—4—2
=0 ==7==5==3 == analytic

My

.f(-n,I,m)

(a) 10t

10°
107t
102
107*
1074
10°°

—107°
—107*
—107%
—1072
—107t

T (offset)

Converge test and Leakage test

|||||||||||||||||||||||||||

T T o T T T s T T o o T o S o o o e (]
CONuNuNuNOONuNOONuNOCNuN’a
St d SN A S NN =G

e

N T T e e el D Ll D D D L s

(Tyz’Tzz ’T:ty’th’Tty ’Ttm)

(c)

M; j(offset)

Z=

(nmaxa Zmax)

(2: 2) HHe (3’2) HEHE (4’ 2)
(2,4) =(3,4)=1(4,4)
Tzz’T:rx’Tyy M(4.4)
(from bottom to top)
orange: convergence test
blue: leakage test
1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1
0 5 10 0 5 10
t t



. . We need:
Hydrodynamization from the full Boltzmann Eq. hydrodynamization

= near equilibrium

People before
hydrodynamization
= equilibrium

Now we can determine
near equilibrium
through linearization



Hydrodynamization from the full Boltzmann Eq.

Mn(t)

5
_ A4mz

d3p

Tz

/-

27)3p0

(f(tap) o feq(tap))

We need:
hydrodynamization
= near equilibrium
People before
hydrodynamization
= equilibrium
Now we can determine
near equilibrium
through linearization



. . We need:
Hydrodynamization from the full Boltzmann Eq. hydrodynamization
= near equilibrium
People before
hydrodynamization

= equilibrium
10—'"""""""'_"""L Now we can determine
wmm=_ NonLinear - near equilibrium
] Early Start Lin. - through linearization

2 Mid Start Lin.
Late Start Lin.

| I e e | L1 1

20

5
_ A4mz

3
Mu(t) = T [ Go85(5p) ~ fua(tp)




. . We need:
Hydrodynamization from the full Boltzmann Eq. hydrodynamization
= near equilibrium
People before
hydrodynamization

= equilibrium
10 I_I L L L I I 1 11 I I 1 1 1 I I-I I 1 I I 1 L NOW we can determme
—~ === NonLinear - near equilibrium
O ] Early Start Lin. - through linearization
— B Mid Start Lin. tor SN
2 Late Start Lin, Un gr isotropic conditions, a
~2_ 9 nonlinear system already enters a
N - . . .
+ ] linear regime before it approaches
= _ thermal equilibrium
: e 0 0
L1 11 L1 1 TH. < T
lin therm
20

5
_ A4mz

3
Mu(t) = T [ Go85(5p) ~ fua(tp)




Hydrodynamization from the full Boltzmann Eq.

fit: y = 1.93 ¢z~

raw data
m— std. deviation

= fit curve

L

fit: y =1.04 ¢ TIo Y

10 15

t/T

We need:
hydrodynamization
= near equilibrium
People before
hydrodynamization
= equilibrium
Now we can determine
near equilibrium
through linearization



. . We need:
Hydrodynamization from the full Boltzmann Eq. hydrodynamization
= near equilibrium
People before
hydrodynamization
= equilibrium
Now we can determine
near equilibrium
through linearization

S “distribution ensemble”

raw data
m— std. deviation

= fit curve

L

fit: y=1.04 ¢ TIo Y

1 1 I 1 1 1 1 I 1 1 1 1
10 15 20

t/T




Hydrodynamization from the full Boltzmann Eq.

(t) =M, (t))

lin

a(M

I“IP"I“"'.-I_-I L

We need:
hydrodynamization
= near equilibrium
People before
hydrodynamization
= equilibrium
Now we can determine
near equilibrium
through linearization



. . We need:
Hydrodynamization from the full Boltzmann Eq. hydrodynamization
= near equilibrium
— T People before
i hydrodynamization
= equilibrium
Now we can determine
near equilibrium
through linearization

(t) =M, (t))

lin

a(M

e (Observables

M =/ (;lwz))g %f(tap)

M-—/ a’p Eif(t,p) i=0,1,---,10
T T (27‘(’)3 7p — Vi 9

look at the blue bands



Hydrodynamization from the full Boltzmann Eq.

(t) =M, (t))

lin

a(M

I“IP"I“"'.-I_-I L

_m_
L N e E E RS EEss sEEs Er

* therm. theory
lin. theory

We need:
hydrodynamization
= near equilibrium
People before
hydrodynamization
= equilibrium
Now we can determine
near equilibrium
through linearization

Observables

d’p 1
MH—/(21)73 Ef( p)

M= /(2)3 () i=0,1,---,10

Different observables share similar
thermalization and linearization times

[o(M)]

Thn ’

lo(Mi)]

therm

lo(M)]

T M) ~ 7-’cherm

lin



(t) =M, (t))

lin

a(M

Hydrodynamization from the full Boltzmann Equation

llllllllllllllllllllll

— My — Mg .
— M, My 1
- Mg Mg E
— M My _
- M4 MH :
I M5 7
_21 -
theory: y = e 37

== = therm. theory

lin. theory

theory: y = e~

O —
[ —
o
—_
ot

=) Both thermalization andilinearization
have slowest

theoretical limits,

upper limit Tlgi(Ms)] = 2 upper limit 7.7

therm

look at the orange lines




Ensemble

-“n

I
o

DN OO ok~




c, Ensemble
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Hydrodynamization from the full Boltzmann equation

Moment M.
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Hydrodynamization from the full Boltzmann equation

Moment M) = / dp [(t,p) (Ep)' (") (0*)* (p°)* T 1= /p prp"f(t, . p)

Teherm. € [1.26,1.31]7

..-m-o..cmm«.........,...

Tin, € [0.70,0.71]7

OIIII5IIII10IIII15IIII
g t/ T Nins Ttherm [T]

I..%.I....I

T 23
Miny Ttherm [T]

Consistent: T7;;,, = 0.5 Tiherm




Summary

* New theoretical tool: Spectral BBGKY Hierarchy(arXiv:25(
* Fill the Gap: Correlation, Nonlinear

* Physical Insight: Decoupling hydrodynamization from thermalization
via nonlinear Boltzmann equation(arXiv:2509.23978)

Tlin ~ Ttherm/ 2
Outlook

* The thermalization time and linearization time in an expanding system
* The correlation contribution to thermalization process

* 49 < 999

 Bose Enhancement, Pauli Blocking



From Framework to Computation:
How We Actually Solve It



B BG KY Bogoliubov, Born, Green, Kirkwood, Yvon
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Spectral BBGKY

Bij =

Spectral BBGKY
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Minimizing Collision Integral Evaluations A, Cijks

i . i 2m)% 1
e Reduction relationship Cioks) = Coi(ks)y = ( \/% TgA.z-(ks)

* Parity symmetry
PY™(0.9)P = (—1)Y/™(0.9) —— Cijns=0, ifli+0;+ 0+ L, is odd
e Rotational invariance
Y;Zm(g” ') = an/:—e [Dﬁﬁzn'(n)] ng’(g,gp) — 0= (D-ijks,i’j’k’s’ — I)Ci"j’k’s"
Y/ (0,0 + Ap) = eimﬁ@nm(e, ©) — Cijre =0, if m; +m; # mp +m,

0.2%
ne{0,1,2},1€{0,1,2,3} 2x48*=1.06x107 — 26244



Integral Form of the Collision Kernel Gernal Cases

8 Fold

3 Fold
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Integral Form of the Collision Kernel

8 Fold

3 Fold

Gernal Cases

C’nalama nplpymp,ni€ima,nafama,nzlsms,nalamy
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Summation Form of the Collision Kernel
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