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Chapter 4 rtex Detector

2329 The CEPC vertex detector is a crucial component of the tracking system, designed to
230 provide excellent spatial resolution and ultra-low material budget for precision vertexing
231 and flavor tagging.

2332 Ahigh-granularity low-mass design based on Monolithic Active Pixel Sensor (MAPS)
2333 has be oposed and se he CEPC vertex detecto aseline,)in order to achieve
2.3« an excellent impact parameter resolution while maintainin/g low power consumption and
2335 air cooling compatibility. The MAPS technology allows for sub-5 pm spatial resolution
200 and minimal dead zones, with a target material budget of less than 0.15% radiation length
2237 (X)) per layer, ensuring high traéging pm the calorimeter
233 and timing detector coverage.

2339 The CEPC vertex detector consists of several concentric cylindrical layers surround-
230 1ng the interaction point and is finely segmented in both the longitudinal and transverse
241 directions. This layout is optimized to provide full solid angle coverage and to ensure
2242 efficient reconstruction of secondary and tertiary vertices. \
2343 This chapter is organiseWOIIOWin structure: overall design considerations
244 are outlined in Sec. 4.1, follr(f){);&rixby the design on detector layout along with estimates
245 Of the background rate and radiation dose in this layout. Detailed sensor and readout
246 technologies are presented in Sec. 4.2, Mechanics and cooling design as well as service
27 design are presented in Sec. 4.3. R&D of key technology are presented in Sec. 4.5 to
2 support the baseline design of the CEPC vertex detector. The detailed simulation of
249 expected detector performance and detector alignment strategy are presented in Sec. 4.6.

o ML&J

250 Finally, The summary and future plan are Esented in Sec. 4.7.
» 4.1 Detector overall design ’ )
=2 4.1.1 Vertex detector design specification

2353 The
25« multiple collisi

255 the Higgs boson factory mode and at 90 GeV in the

256 the collision frequency for the Higgs- y is approximat ’1'.7

257 factory mode operatgs at about 4.5\\ MHz during the ingl\la

ﬁ increases to %@ﬂlg@ﬂh}&it&ha—se. These frequencies significantly
259 exceed the 100 kHz collision frequency of the A Large Ion Collider Experim
20 experiment, posing challenges in maintaining low power consumption at higher opgrational

= D

g

261 frequencies - a critical aspect of the vertex detector chip development for this prg Ject To
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4.1 Detector overall design

£

/’
balance power efficiency an a@~ performance, the CEPC vertex detector is designed

with a power consumption limit of betow 40 mW - cm 2 while maintainjng a time sta p/J ?
precision within 100 ns for recorded hits. ) M M %@ @(;( O

i/
Additionally, the '@4
7

tion, targeting levels bepweer

[

equires the vertex detector to achieve higher spatial resolu-
nd to maintain a low material budget of less
than 0.15% X per layer. This capability is essential for studying the pfbﬁiés of the
Higgs particle, particularly its decay channels involving bottom and charm quarks, and

for exploring potential new physics phenomena. The perfo
directly-i i jectives o C.

atortal upper limit O

This choice significantly reduces power comsumption and also offers the potential for
smaller pixel sizes, thereby enhancing spatial resolution.

During extended runs at the Z-pole, the vertex detector will be subjected to significant

Table 4.1: Baseline Requirements and Overall Vertex Detector Design Parameters

Parameter Baseline Requirement / Design
_Opération Period“\\Firstm,years(M@Ly@
umber of Barrel Layers 6 layers
Layer Radii ~11-40 mm
Material Budget per Layer < 0.15% X,
Fluence ~ 2 x 10™Neq/cm? (for first 10 years)
Operation Temperature ~ 5°Cto 30°C
Readout Electronics Fast, low-noise, low-power
Mechanical Support Ultralight structures to minimize mass %@ ML
__Replaceme eplacement/up /
Spatial Resolution ~3-5 um
Power Consumption < 40mW /cm? (air cooling requirement)
Time stamp precision =+ 100 ns
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4.1 Detector overall design

4.1.2 Detector layout

This technology employs wafer s 1tch1ng techniques {0 abncate large-area sensors that

can be integrated directly into a curved geometry. By reducing or eliminating the need for
multiple planar tiles and mechanical support frames, curved sensors significantly lower the
overall material budget. There is a mechanical gap between the two semicircular structures
ranging from 0.2 to 0.5 mm, as shown in Table 4.2. The semicircular structure achieved
through stitching technology requires the entire chip to be bent along the phi direction as
a half arc corresponding to each radius. The position of different layers determines the
arc length of the semicircle, which defines the width of the whole chip. Additionally, to
satisfy the covering pole angle of 8.1°, the length of the whole chip is also determined.
Due to wafer size limitations, stitching technology cannot be effectively applied to the
large-area outer layers. Therefore, we employ conventional double-layer planar CMOS
sensors with a ladder design for the 5th and 6th layers as Figure 4.2 shows. With the outter
radius of the beam pipe in the CEPC-TDR set at 10.7 mm, the radius of the innermost
layer in the vertex detector baseline is designed to be 11.06 mm based on the chip design
of the stitching scheme.

A backup detector layout using 3 layer of double-sided ladders with planar CMOS
sensors are also considered. The backup layout represents a well-established, more con-
ventional option. It serves as alternative fallback solution if the baseline layout with curved
technology encounters unforeseen challenges. However, it introduces additional material
and complexity due to the need for mechanical support, overlaps between ladders, and
potentially thicker support elements.

Detailed parameters for baseline vertex detector layout and backup detector layerout
are provided in Table 4.2. The intrinsic single-point resolution of the chip is derived from

the TaichuPix-3 beam current experiments, with a conservative resolution of 5 pm.

Stitching plan in baseline layout On a 300 mm wafer, the stitching plan is designed
to meet the layout requirements of the four stitching layers in the baseline scheme. To
enhance the design reticle utilization and streamline the process flow, the same chip is used
to fulfill the baseline scheme requirements, and the same mask plate is employed. Due to
the required arc length and the integer number of instances needed per layer, an instance
with a dimensions of 17.277 x 20.000 mm? is used as the Repeated Sensor Unit (RSU)s
(see Section 4.2.2). Three layouts are designed on a wafer, with the A/B/C regions of
different lengths designed based on the required z-axis length. The preliminary stitching
plan of the silicon wafer and the dimensions of each half layer are depicted in Figure 4.3.

Each region is composed of repeated sensor units with different rows and columns, and

72
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