Effects of beam-induced backgrounds in Higgs boson invisible decay

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences Geliang Liu (刘格良)

Jul. 9th, 2025

Samples

Samples without BIB

- /cefs/higgs/zhangkl/Production/2505/E240_qqHinvi/Reco/rec_E240_qqHinvi_00001-00499.root
 Samples with BIB
- /cefs/higgs/zhangcg/cepc/tdr25.5.0/CEPCSW/tupleformixedqqHnn/mixed_rec_E240_qqHinvi_000 01-00499.root
- Issues due to mixing different CEPCSW versions fixed.

Features

Key features

- Negligible effects on charged PFOs.
- More neutral PFOs induced, with an extra energy of ~ 7 GeV.
- Most extra PFOs lie in forward regions.

Preliminary BIB mitigation

Method

- Get rid of neutral PFOs with $|\cos\theta| > 0.98$
- From Weizheng

Missing mass resolution

No BIB

With **BIB**

- Mean value increased.
- Resolution seems to be better? But the same within uncertainties.
- Mean value shifted back to around 125 GeV.
- Resolution improved to the level of the situation without BIB.

Conclusion

> We are confident that BIB effects on invisible decays can be properly treated.

- With a simple cut on cosθ, the missing mass resolution is improved to the same level of no BIB, with negligible effects on signals.
- The same conclusion is expected for BMR.

Further steps

• Check the effects for Z(invisible)H(qq)

Discussions

• For studies involving neutral PFOs, it could be better to require $|\cos\theta| < 0.98$ instead of 0.99.