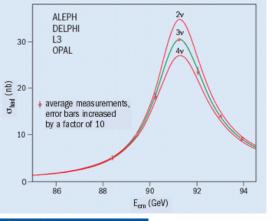

<u>https://indico.pnp.ustc.edu.cn/event/3672/</u> 2025 超级陶粲装置研讨会

Precision test of QED and measurement of Luminosity at STCF

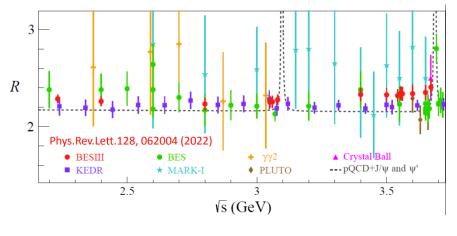

Luminosity precision to SM, R

SM $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ R(s) ratioQEDLuminosity by counting Bhabha $e^+e^- \rightarrow e^+e^-$

LEP: 17 Million Z (4 IP) L = $4.3 \ 10^{31}$ /cm²s (E=46GeV) = $1x10^{32}$ /cm²s (E=100 GeV)

$N_v = 2.9840 \pm 0.0082$

M _z = 91187.5 ± 2.1 MeV	2.3 × 10 ⁻⁵
G _z = 2495.2 ± 2.3 MeV	1‰
$N_v = 2.9840 \pm 0.0082$	
Precision luminosity	3.4x10 ⁻⁴


CERNCOURIER 2 November 2005

R(s) ratio for SM predictions $a_{\mu} = (g_{\mu}-2)/2$ and $\Delta \alpha_{had}(M_Z)$

$$a_{\mu} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, K(s) \frac{R(s)}{s}$$

Ζ,γ

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} \operatorname{Re} \int_{m_\pi^2}^{\infty} \frac{R(s) \mathrm{d}s}{s(s - M_Z^2 - i\epsilon)}$$

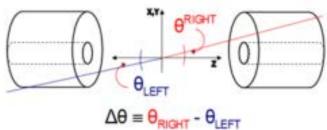
BESII in 2−5 GeV, precision □6% BESIII 2022 3%

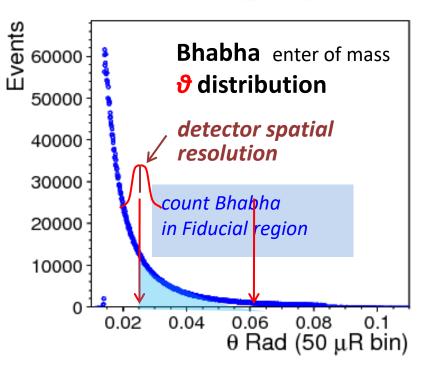
 Z,γ

3 QED precision on Bhabha $e^+e^- \rightarrow e^+e^-(n\gamma)$ Methods used for multiple photon corrections SF: analytical collinear QED Structure Functions 1. YFS exponentiation Small angle 2. 0.054% BHLUMI (LEP) PS: Parton Shower Large angle 0.1% 3. BabaYaga@NLO (Flavor F.) *e*⁺*e*⁻*collision luminosity* Flavor Factories by coybtubg Bhabha events collinear log : $L \equiv \log \frac{s}{m^2}$ C.M. Carloni Calame $\int \mathcal{L} dt = N_{\rm obs} / \sigma_{\rm th}$ ECFA Higgs CERN 2021 Luminosity errors: α^0 LO NLO NNLO h.o. $\begin{array}{c|cccc} \alpha L & \alpha \\ \frac{1}{2}\alpha^2 L^2 & \frac{1}{2}\alpha^2 L & \frac{1}{2}\alpha^2 \\ \frac{1}{2}\alpha^2 L^2 & \sum_{n=3}^{\infty} \frac{\alpha^n}{n!} L^{n-1} & \cdots \end{array}$ Experiment $\frac{\delta \mathcal{L}}{\mathcal{L}} = \frac{\delta \mathcal{L}_{\exp}}{\mathcal{L}_{\exp}} \oplus \frac{\delta \sigma_{\mathrm{th}}}{\sigma_{\mathrm{th}}}$ Theory Red: matched PS, SF + NLOcollinear log : $L \equiv \log \frac{s}{m^2}$ G. Montagna 10 90%Ustron, 2015 10% - 0.5%NLO $L = \log(s/m_e^2) \simeq 15$ 0.5% 0.05\% 0.01% NNLO Large angle @ Flavor $0.01\% \cdots$ h.o. $L = \log(|t|/m_e^2) \simeq 17$. . . Small angle @ LEP $L = \log(|t|/m_e^2) \simeq 20$ Small angle @ $t\overline{t}$ thresh. Typically at flavour factories (on integrated Bhabha σ)

Bhabha event counting to 10-4 SM an order improvement to LEP

Luminosity \mathcal{L} is derived by $e^+e^- \rightarrow e^+e^-(n\gamma)$

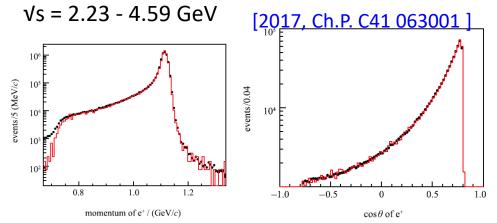

$$\mathcal{L} = rac{1}{arepsilon} rac{N_{
m acc}}{\sigma^{
m vis}} \quad \sigma = rac{16\pilpha^2}{s} \left(rac{1}{ heta_{min}^2} - rac{1}{ heta_{max}^2}
ight)$$

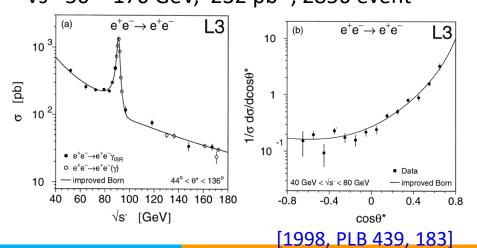

Bhabha detected for

- a pair of back-back electrons,
- precision ϑ of $e, e(\gamma)$ in fiducial region

 $\frac{\delta L/L \sim 2 \,\delta \vartheta/\vartheta_{min}}{\delta L/L = 10^{-4}}$ at $z = \pm 1000 \text{ mm}, \vartheta_{min} = 20 \text{ mRad}$ $\Rightarrow \delta \vartheta = 1 \mu Rad, \text{ or } dr = 1 \mu m$ error due to offset on Z

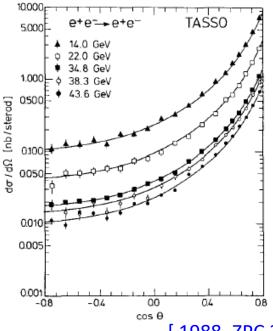
$$\rightarrow$$
 50 μm on Z eq. dr = $\delta z \times \vartheta = 1 \mu m$




Luminosity systematics due to event counting in/out fiducial edge \rightarrow offset on the mean of θ_{min}

Bhabha experimental results $e^+e^- \rightarrow e^+e^-(\gamma)$

BESIII Luminosity (γ)e⁺e⁻, (γ)γγ Systematic error ~0.7%


L3 radiative Bhabha with ISR Systematic error at ~1% level Vs= 50 ~ 170 GeV, 232 pb⁻¹, 2856 event

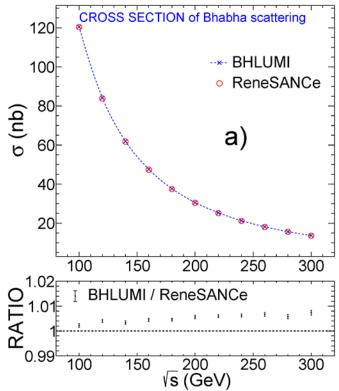
TASSO Bhabha Systematic error **~3%** √s = 12 - 47 GeV

Table 1. Data samples used for the analysis $e^+e^- \rightarrow e^+e^-$

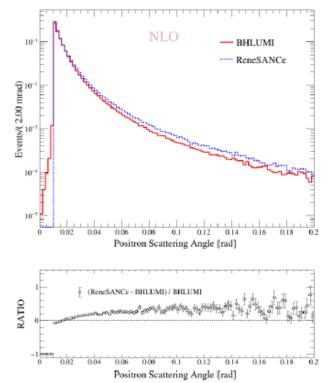
$\langle \sqrt{s} \rangle$ (GeV)	$\int \mathscr{L} dt \ (\mathrm{pb}^{-1})$	NBhabha
14.0	1.7	10730
22.0	2.7	7106
34.8	174.5	166348
38.3	8.9	6035
43.6	37.1	22951

[1988, ZPC 37, 171]

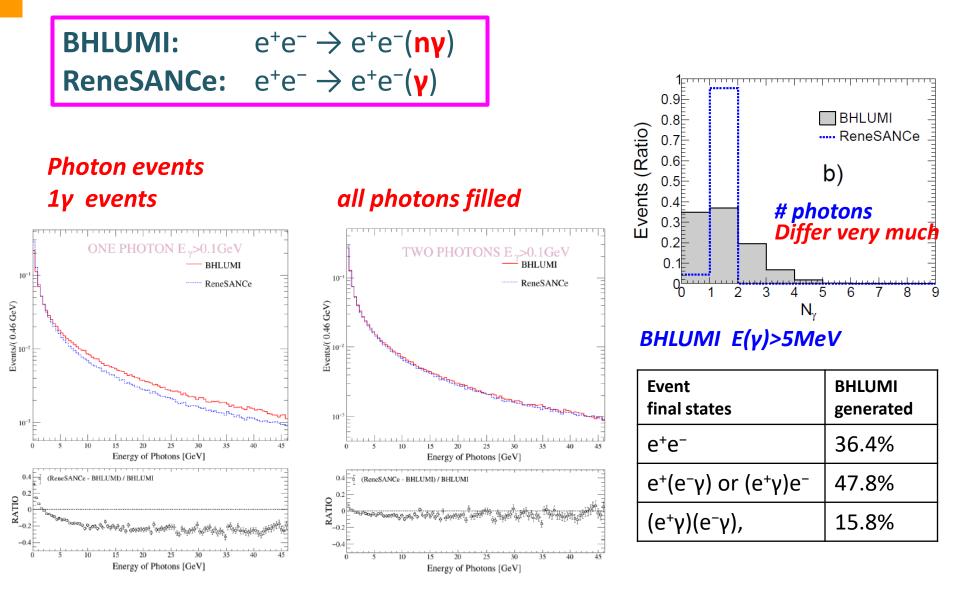
Challenge: QED $\alpha^2 L^2$ shall be measured


Compare $\sqrt{s} = 92.3 \text{ GeV}$ BHLUMI: YFS exponentiation $e^+e^- \rightarrow e^+e^-(n\gamma)$ ReneSANCe: NLO calculation $e^+e^- \rightarrow e^+e^-(\gamma)$ BHLUMI 4.04

2020 systematic 0.037% [PLB 803 (2020) 135319]


ReneSANCe

[CPC 256 (2020) 107455]

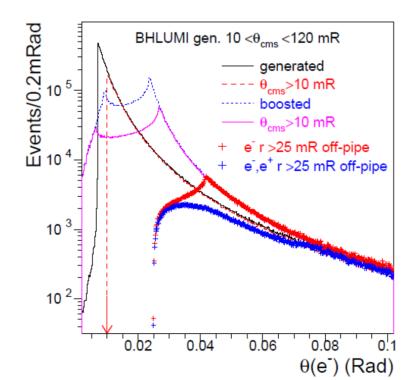


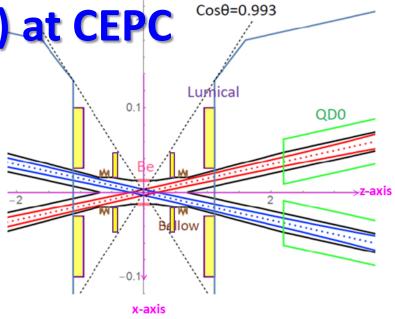
Bhabha Vs= 92.3 GeV e⁺ theta angle, all events

Discrepancy due to Ογ events

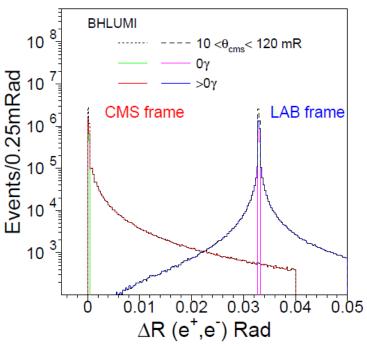
Challenge: QED $\alpha^2 L^2$ shall be measured

Bhabha e⁺e⁻ → e⁺e⁻(nγ) at CEPC


LEP Luminosity template


BHLUMI demo.f cuts

- ACC 0 CMS 10 mRad < $\theta(e^{\pm})$ < 80 mRad
- ACC 1 .and. s'(P2,Q2)/s(P1,Q1) >0.5


Beam crossing, 33 mRad

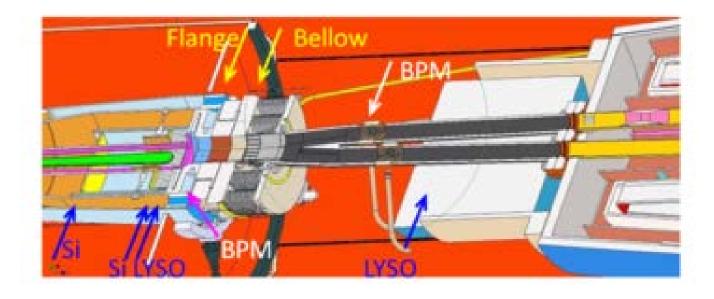
- ➔ Boost in x direct
 - e⁺, e[−] offset by 33 mRad

events with 0 photos Show δ back-back distribution

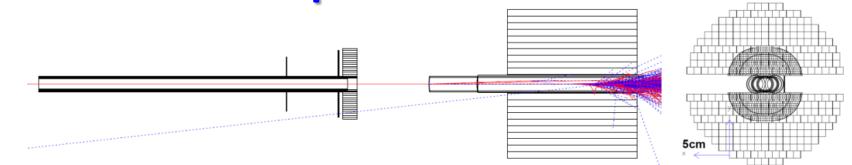
CEPC LumiCal design

- ➤ L=2x10³⁶/cm²s¹ @Z-pole,
- ø 20 mm racetrack,
 beam-crossing 33 mRad
- IP bunch :

 $\sigma_x \sigma_y \sigma_z = 6 \ \mu m, 35 \ nm, 9 \ mm$


• Bunch crossing: 23 ns

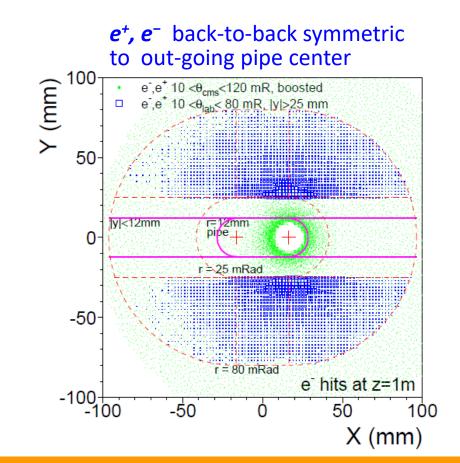
before Flange z = 560~700 mm


Low-mass beampipe window:
 Be 1mm thick

traversing @22 mRad L= 45 mm,

- = 0.13 X₀ (Be), 0.50 X₀ (Al)
- ο **Two Si-wafers** for e^{\pm} impact θ
- O 2X₀ LYSO = 23 mm
- ➢ behind Bellow z= 900~1100 mm
- Flange+Bellow :
 ~60 mm, 4.3 X₀
- 13X₀ LYSO 150 mm

CEPC LumiCal acceptance

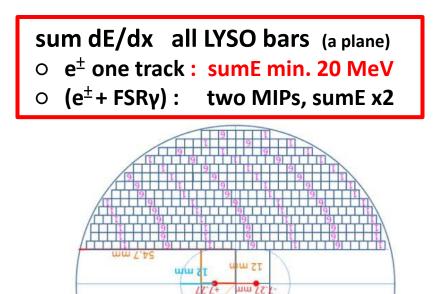

BHLUMI event distribution detecting back-to-back e⁺, e⁻ pair

@|z|=1000mm

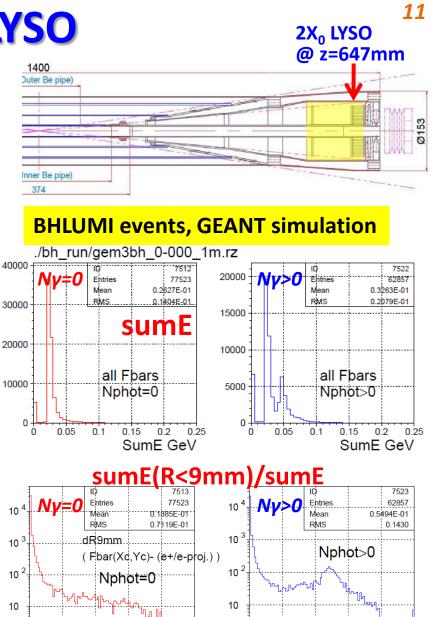
- 1) Θ > 25mRad outside pipe centers
- 2) |y|>25 mm
- 3) Events in shaded area counted for Xsec

LumiCal acceptance at |z|=1000mm

e ⁺ , e ⁻ back-to-back detected		
θ>25 mRad	θ>25mR & y >25mm	
85.4 nb	78.0 nb	



CEPC LumiCal Front 2X₀ LYSO


Bhabha hits on LYSO, |y|>12mm

Incident particles are e[±],(γ)

- GEANT sum dE/dx in each LYSO bars 3x3mm², 23 mm long, 2X₀
- **Deviation to e**^{\pm} **truth** (impact hit >E_b/2) mostly < 0.2mm
- **Hit distributions in a Bar** distributed due to Bhabha θ, w./w.o. photon

WW 61

0.8

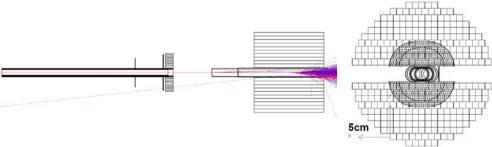
0.4

0.2

0.6

Ein(dR)/SumE GeV

0.8


0.2

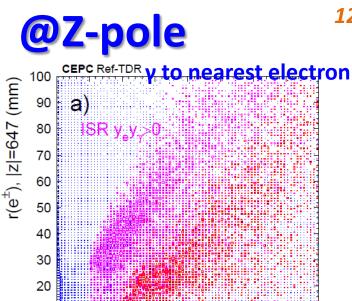
0.4

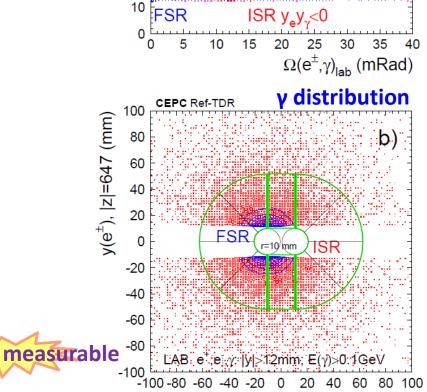
0.6

Ein(dR)/SumE GeV

Photons in $e^+e^- \rightarrow e^+e^-(n\gamma)$

Bhabha events in LumiCal acceptance e^+ , e^- , γ : $|\gamma| > 12$ mm at LYSO front face $\pm z = 647$ mm

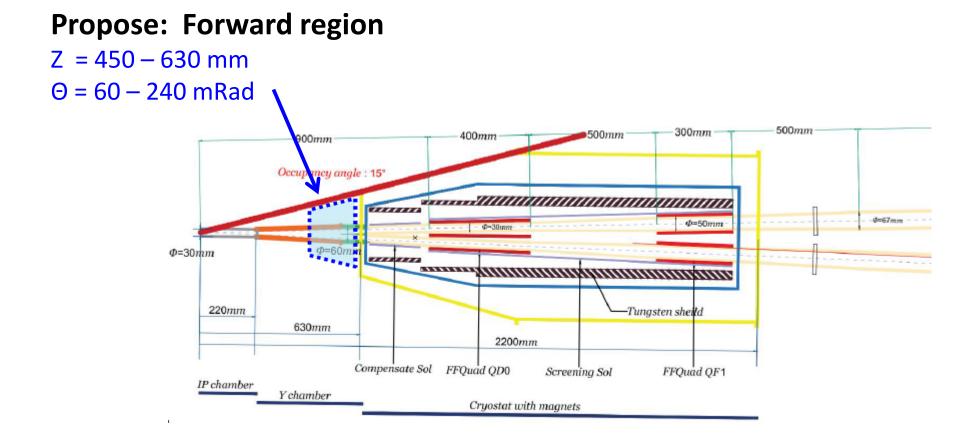

±z Hemispheres	BHLUMI generated	& P2,Q2 y >12mm
e⁺	60.3 %	3.87 %
e [±] γ	39.7 %*	3.16 %


*ISR 20.3%, FSR 19.4%

Detectable Bhabha, e⁺,e⁻,y : |y|>12 mm

±z Hemispheres	P2,Q2 y >12mm	& E(γ)>0.1GeV y(γ) >12mm
e±	55.1 %	14.7 %
e [±] γ	44.9 %	ISR 0.89 % FSR 13.8 % FSR 2.96%*

*FSR $\Omega(e^{\pm},\gamma) > 5$ mRad



 $x(e^{\pm}), |z|=647 \text{ (mm)}$

Forward Calorimeter @ STCF

Small Angle Bhabha 60 – 240 mRad (3.4° - 14°)

• Precision QED Bhabha at Flavor factories to **better than 10**⁻³ • e/γ by Si-det + Crystal \rightarrow NLO, NNLO radiative Bhabha detection

QED Bhabha needs NNLO on hadronics to 10⁻⁴ Detecting Bhabha to better than 10⁻⁴:

- \circ detect e/ γ :
- \circ Si-det on electron θ:
- o monitoring IP:
- o monitoring LumiCal:

identify radiative Bhabha deviation multi. scattering ~50 μRad mean-on-error on Bhabha counting BPM on electron beams to 1 μm survey to beam-pipe centers on flanges Δz of flanges on +,-z side < 50 μm/1.4m