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In data science, data usually has a much lower dimensionality than its original space

® learning the actual dimension of data is important for pattern recognization



General Idea

Intrinsic Dimension:

Data set lies in a manifold
whose is lower than the
number of coordinates
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Methods — Model and Data

» Three types of model are considered in the article:
K Second order PT: 2D Ising, g=3 Pott model
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» First order PT: g=8 Pott model
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» Using MCMC simulations for thermal equilibrium
configurations



Methods - Estimation

 Two-NN method

' E;}g;‘ggeﬁdistgﬁ'g‘e%_f"st and second nearest- Probability distribution function
« Computesratio = ,/ 4, fits distribution to

derive -
 Handles nonlinear, nonuniform manifolds. f(,u) = lgp=" "

Elena Facco et. al. Scientific Reports (2017)

Assumption: data set is
locally uniform in density




Methods - Intrinsic Dimension Estimation
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» Local feature of configuration space
» Depends on the typical value of distances [scale-dependent quantity]
: Number of points in the data sets
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Consider a 2-dimensional space with density first. The number of points falling into region

is distributed as a Poisson variable with parameter , with being the measure of
A(A))™
P(A contains exactly n points) = P(n,A) = #6_)\“(}1) °
The probability of having no points in is given by: o
P(0,A) = e~ ¢4 "
The probability of first distance ; to fall in an infinitesimally small annulus:
P(dl = CT1,T1+dT1) :P(N(BO,H) - OvN(Cﬁ,Tl-i-d’f’l) > 1) [ ]
:P(N(BO,n) — O)P(N(CT1,T1+d’r’1) = 1) -]

—P(N(Bo,) = 0)(1 = P(N(Cry sy 4ary) = 0)
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The volume of hypersferical shell enclosed between two successive neighbors — 1 and is given by
AVE — wd(?‘ld — ?”Id_ 1)

So as discussed in the last page
P(Av, € [v, v + dv]) = pe "dv.

Set Dbe the ratio 2—, the probability distribution (pdf) of

P(R € [R, R + dR))
_f dvf dvple” T {%e[ﬁ,ﬁ+d§]}

=dR
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Define = 1, then
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P(ry | r1) =P(the second nearest neighbour is at a distance 72 given that the first is at a distance r)
=P(the second nearest neighbour is at a distance 73 | N(B, y) = 0, N(Cry iy dry ) > 1)
=P(N(Cry,r;) =0,N(Cryrotdr,) = 1| N(Bor,) =0, N(Cry ry4dr,) = 1)
=P(N(Cr,r,) =0| N(Bo,r,) = 0, N(Cr, 1y +dry) 2= 1)

« PAN{C,py pptedps) 2 1 | N( By ) = 0, N(Criprptdry) = 1)
~ B_Aﬂ-(rg_rf)2/\ﬂ'?‘2d7‘2

And the joint probability 1, 2

P(ri,r2) = P(re | r1)P(r1) ~ e_’\”%(Z)\fr)errgdrldrg.

After doing a similar integration we get

f([_L) = dl-!‘_d_ll[l,+-oc](l-l’)a
The cumulative distribution (cdf) is obtained by an integration over

Flu) = (1 — w91, 4 o (w)



Methods - Intrinsic Dimension Estimation

can be obtained through the following steps:

1. For each point ¢ of the data set (i = 1,2,..., N;.),
compute its first- and second-nearest neighbor, _ _
r1(i), r2(7), respectively. How to define distance between

configuration points?

2. For each point ¢, compute the ratio u; =

ra(é)/r1(7). For Ising model & Pott model:
3. The empirical cumulate is defined as P°™P(u) = ) H.ammlng distance (How many spins are
i/Ny, while the wvalues of p; are sorted in different)
an ascending order through a permutation, i.e., For BKT model:
(1, pr2, - .pon,.), Where p < pj, for @ < j. « Euclidean distance
4. Finally, the resulting ™
S ={(In(u), —In[1 — P*™P(u)]} are fitted with a o :
straight line passing through the origin. The slope r(6°,67) = Z (1 - S )
of this line is equal to I (see Eq.(2)). k=1

« Advantages
» Overcomes limitations of PCA and Isomap for complex data.
» Directly analyzes raw Monte-Carlo configuration.



Results — 2" Order Phase Transition
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Results — Compared to PCA
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Results — BKT Transition
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Results — 1st Order Phase Transition
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« peakat from two-phase coexistence
(metastability).



