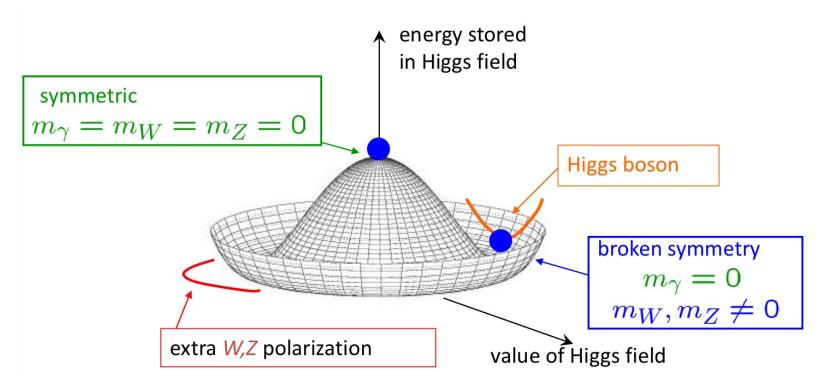
Latest diboson polarization measurements at the LHC

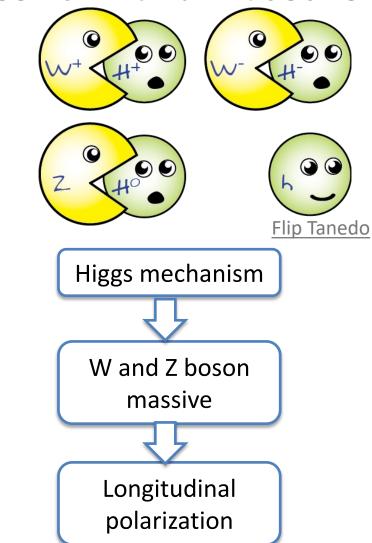
Lailin Xu(徐来林)

University of Sci. & Tech. of China

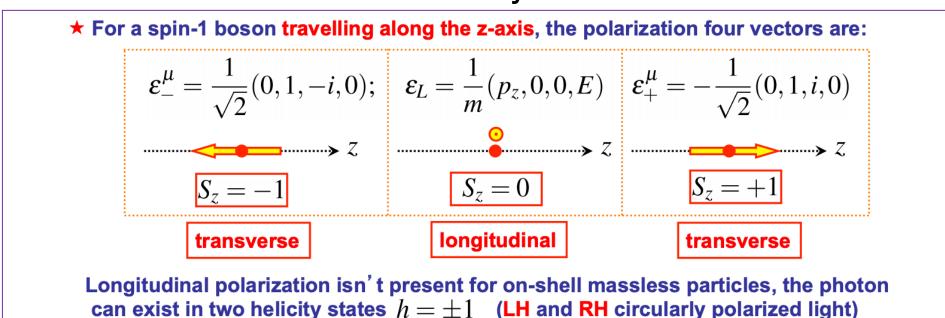
TeV mini-workshop 2025


2025.10.10-12, Qingdao

Introduction


The longitudinally polarization measurement of massive W and Z bosons

is a direct way to probe the EWSB mechanism


Goldstone boson theorem:

"At high energy, longitudinal vector bosons are analogous to goldstone bosons"

Boson polarization

- Helicity: $h = \frac{\vec{S} \cdot \vec{p}}{|\vec{p}|}$ (spin \vec{S} , momentum \vec{p})
 - Transversal (T): left-/right-handed (h = -/+1)
 - Longitudinal (L): spin orthogonal to the momenta (h = 0)
- Polarization vectors in the helicity basis:

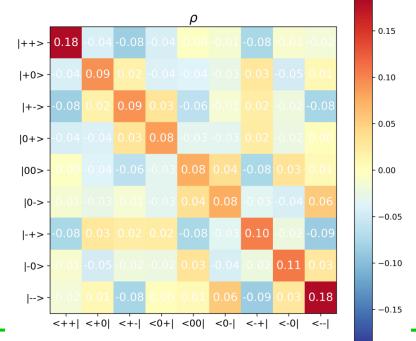
Mark Thomson

Polarization and Spin Density Matrix

• The density matrix of $Z \rightarrow ll$ decay

R. Rahaman, R. Singh, arXiv:2109.09345

$$\Gamma = \frac{1}{4} \begin{pmatrix} 1 + \cos^{2}\theta - 2\eta_{\ell}\cos\theta & \frac{1}{\sqrt{2}}\left(\sin 2\theta - 2\eta_{\ell}\sin\theta\right)e^{i\varphi} & \left(1 - \cos^{2}\theta\right)e^{i2\varphi} \\ \frac{1}{\sqrt{2}}\left(\sin 2\theta - 2\eta_{\ell}\sin\theta\right)e^{-i\varphi} & \left(2\sin^{2}\theta - \frac{1}{\sqrt{2}}\left(\sin 2\theta + 2\eta_{\ell}\sin\theta\right)e^{i\varphi} - \frac{1}{\sqrt{2}}\left(\sin 2\theta + 2\eta_{\ell}\sin\theta\right)e^{i\varphi} \\ \left(1 - \cos^{2}\theta\right)e^{-i2\varphi} & -\frac{1}{\sqrt{2}}\left(\sin 2\theta + 2\eta_{\ell}\sin\theta\right)e^{-i\varphi} & \left(1 + \cos^{2}\theta + 2\eta_{\ell}\sin\theta\right)e^{i\varphi} \end{pmatrix}$$


E. Gabrielli et al, arXiv:2302.00683

The differential cross section is simply given by the SDM

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} = \left(\frac{3}{4\pi}\right)^2 \text{Tr} \left\{ \rho \left(\Gamma_1 \otimes \Gamma_2\right)^T \right\}$$
 SDM for the V decay
$$f_{00} = \rho_{0000} ,$$

$$f_{\text{TT}} = \rho_{++--} + \rho_{--++} + \rho_{----} + \rho_{++++} ,$$

$$f_{0T} = \rho_{00--} + \rho_{00++} ,$$

$$f_{T0} = \rho_{--00} + \rho_{++00} .$$

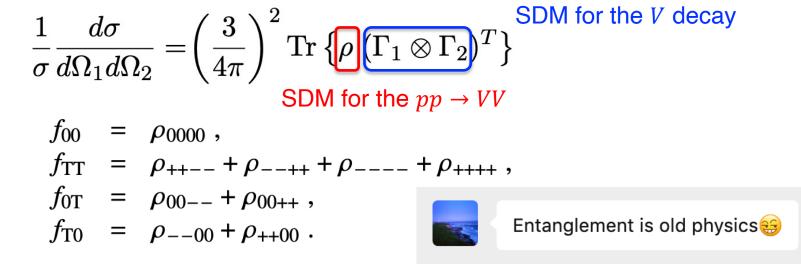
- ❖ Polarization merely contains reduced information of the SDM
- ❖ Ideally we want to measure the full SDM → quantum tomograph

An example of SDM for $qq \rightarrow ZZ$

10/11/25

Polarization and Spin Density Matrix

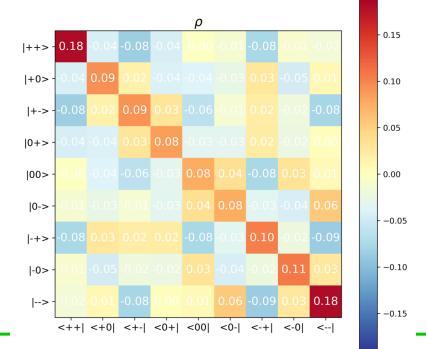
• The density matrix of $Z \rightarrow ll$ decay


$$\Gamma = \frac{1}{4} \begin{pmatrix} \frac{1 + \cos^2 \theta - 2\eta_{\ell} \cos \theta}{1 + \cos^2 \theta - 2\eta_{\ell} \sin \theta} & \frac{1}{\sqrt{2}} (\sin 2\theta - 2\eta_{\ell} \sin \theta) e^{i\varphi} & (1 - \cos^2 \theta) e^{i2\varphi} \\ \frac{1}{\sqrt{2}} (\sin 2\theta - 2\eta_{\ell} \sin \theta) e^{-i\varphi} & 2\sin^2 \theta & f_0 & -\frac{1}{\sqrt{2}} (\sin 2\theta + 2\eta_{\ell} \sin \theta) e^{i\varphi} \\ (1 - \cos^2 \theta) e^{-i2\varphi} & -\frac{1}{\sqrt{2}} (\sin 2\theta + 2\eta_{\ell} \sin \theta) e^{-i\varphi} & 1 + \cos^2 \theta - 2\eta_{\ell} \cos \theta \end{pmatrix}_{f}$$

$$egin{aligned} rac{1}{\sqrt{2}}(\sin 2 heta - 2\eta_\ell\sin heta)e^{iarphi} \ 2\sin^2 heta & f_0 \ -rac{1}{\sqrt{2}}(\sin 2 heta + 2\eta_\ell\sin heta)e^{-iarphi} \end{aligned}$$

$$(1 - \cos^2 \theta) e^{i2\varphi} \\ -\frac{1}{\sqrt{2}} (\sin 2\theta + 2\eta_\ell \sin \theta) e^{i\varphi} \\ \boxed{1 + \cos^2 \theta - 2\eta_\ell \cos \theta} \\ f_R$$

E. Gabrielli et al, arXiv:2302.00683


The differential cross section is simply given by the SDM

- Polarization merely contains reduced information of the SDM
- ❖ Ideally we want to measure the full SDM → quantum tomograph

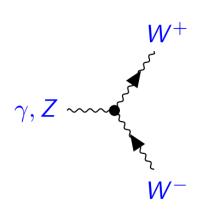
An example of SDM for $qq \rightarrow ZZ$

R. Rahaman, R. Singh, <u>arXiv:2109.09345</u>

Lailin Xu 10/11/25

LEP Measurements

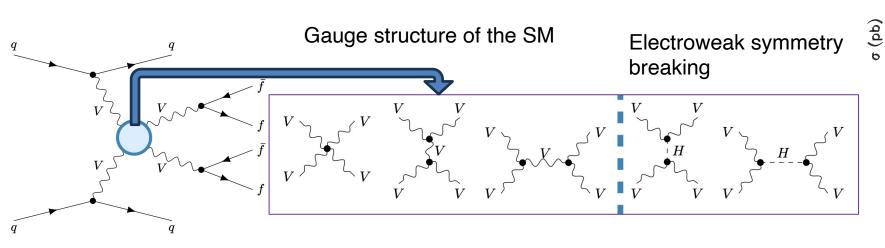
- Only $ee \rightarrow WW \rightarrow lvqq$ process accessible
- Single boson polarization
 - L3, <u>arXiv:hep-ex/0301027</u>
 - OPAL, <u>arXiv:hep-ex/0312047</u>
 - DELPHI, arXiv:0801.1235
- Diboson polarization
 - OPAL, <u>arXiv:hep-ex/0009021</u>
 - DELPHI, <u>arXiv:0908.1023</u>

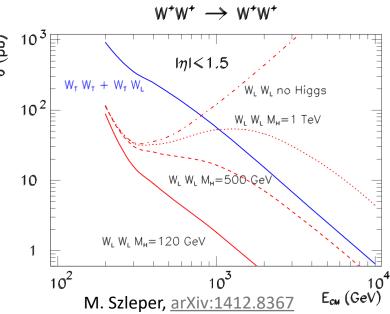

Never reached observation level sensitivity for longitudinal-longitudinal joint-polarization (V_LV_L)

10/11/25 Lailin Xu

Diboson polarization

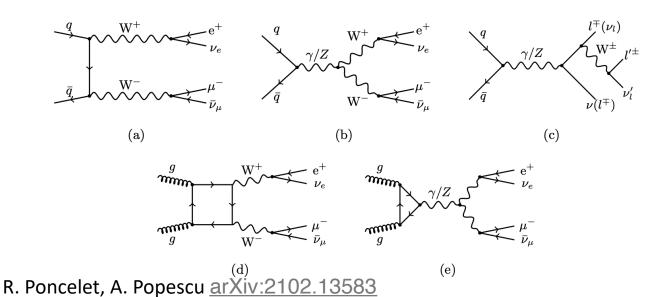
- In diboson events, the polarizations of both bosons are quantum correlated
 - Joint polarization is described by the Spin Density Matrix
 - Closely connected to Quantum Entanglement and Bell non-locality
- Novel sensitivity to BSM


	SM	BSM
$q_{L,R}\bar{q}_{L,R} o V_L V_L(h)$	~ 1	$\sim E^2/M^2$
$q_{L,R}\bar{q}_{L,R} o V_{\pm}V_L(h)$	$\sim m_W/E$	$\sim m_W E/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\pm}$	$\sim m_W^2/E^2$	$\sim E^2/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\mp}$	~ 1	~ 1


High-energy behavior of amplitudes with different diboson helicity configurations

F. Riva et al, <u>arXiv:1712.01310</u>

Polarization in VBS


- VBS: a no-lose theorem program for the LHC
 - We would have either discovered the Higgs boson or New Physics
- A primary goal in VBS is to measure the scattering of $V_L V_L \rightarrow V_L V_L$
 - Strict cancellation required to unitarize the high energy behavior

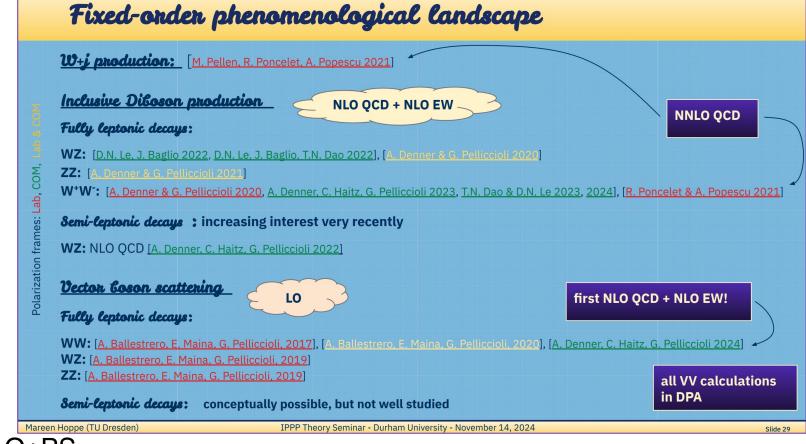
Theoretical challenges

- Two main obstacles for the direct theoretical calculations with polarized boson
 - Weak bosons can be produced off-shell and some adjustment is required to make sense of their polarization state
 - Non-resonant diagrams should be handled properly to keep gauge invariance
- Commonly used approaches
 - Narrow-Width Approximation (NWA)
 - On-shell projection (OSP)

$$\mathcal{M} = \sum_{\lambda=1}^3 \mathcal{M}^{\mathcal{P}}_{\lambda} \; rac{i}{k^2 - M^2 + i \Gamma_w M} \, \mathcal{M}^{\mathcal{D}}_{\lambda} = \sum_{\lambda=1}^3 \mathcal{M}^{\mathcal{F}}_{\lambda} \, ,$$

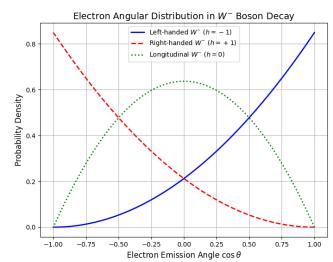
$$\underbrace{|\mathcal{M}|^2}_{\text{coherent sum}} = \underbrace{\sum_{\lambda} |\mathcal{M}^{\mathcal{F}}_{\lambda}|^2}_{\text{incoherent sum}} + \underbrace{\sum_{\lambda \neq \lambda'} \mathcal{M}^{\mathcal{F}}_{\lambda}^* \mathcal{M}^{\mathcal{F}}_{\lambda'}}_{\text{interference terms}}.$$

G. Pelliccioli et al arXiv:1710.09339


Theoretical challenges

Fixed-order calculations

Mareen Hoppe's talk


See also a recent review, <u>arXiv:2509.20232</u>

- MC simulations (ME+PS)
 - PHANTOM: 2→6 processes @ LO+PS
 - MadGraph5: arbitrary processes @ LO+ PS, also with multi-jet merging
 - POWHEG-BOX-RES+PYTHIA: inclusive diboson processes @NLO QCD+PS
 - Sherpa3: arbitrary processes @nLO QCD+PS, multi-jet merging

How to measure the polarization

- Helicity is not Lorentz invariant → reference frame dependent
 - For diboson, the center-of-mass frame of the diboson system is preferred
- Weak bosons are their own polarimeters:
 - The helicity of W and Z bosons is inferred from its decay products
- Polarization fractions extracted from template fits of angular variables or multivariate
 - The polarization fraction is also kinematically dependent

For
$$W^{\pm} \rightarrow l^{\pm}v$$

$$\frac{1}{\frac{d\sigma(X)}{dX}} \frac{d\sigma(\theta, X)}{d\cos\theta \, dX} = \frac{3}{8} (1 \mp \cos\theta)^2 f_L(X) + \frac{3}{8} (1 \pm \cos\theta)^2 f_R(X) + \frac{3}{4} \sin^2\theta \, f_0(X) \,,$$

Polar-angle distributions for
$$Z \rightarrow \ell^+ \ell^-$$
 decay

0.8

0.9

0.0

 $\lambda = +1$ (transverse +)

 $\lambda = -1$ (transverse -)

 $\lambda = 0$ (longitudinal)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

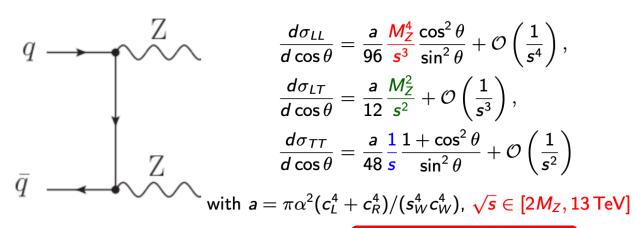
0.75

1.00

cos θ — lepton polar angle in Z rest frame

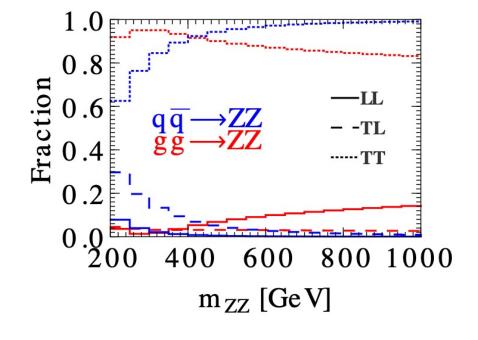
$$egin{aligned} rac{1}{\sigma}rac{\mathrm{d}\sigma}{\mathrm{d}\cos heta_{\ell^+}^*} &= rac{3}{4}f_{\mathrm{L}}\,\left(1-\cos^2 heta_{\ell^+}^*
ight) & \mathsf{For}\,Z o ll \ &+ rac{3}{8}f_{-}\,\left(1+\cos^2 heta_{\ell^+}^* - 2\cos heta_{\ell^+}^*rac{c_{\mathrm{L},\ell}^2-c_{\mathrm{R},\ell}^2}{c_{\mathrm{L},\ell}^2+c_{\mathrm{R},\ell}^2}
ight) \ &+ rac{3}{8}f_{+}\,\left(1+\cos^2 heta_{\ell^+}^* + 2\cos heta_{\ell^+}^*rac{c_{\mathrm{L},\ell}^2-c_{\mathrm{R},\ell}^2}{c_{\mathrm{L},\ell}^2+c_{\mathrm{R},\ell}^2}
ight)\,, \end{aligned}$$

10/11/25 Lailin Xu


Inclusive diboson production

Diboson polarization

Why the LL fraction is smallest?


Stable-*Z* approximation:

$$egin{aligned} arepsilon_{-}^{\mu} &= rac{1}{\sqrt{2}}(0,\cos heta,-i,-\sin heta), \ arepsilon_{+}^{\mu} &= rac{1}{\sqrt{2}}(0,-\cos heta,-i,\sin heta), \ arepsilon_{L}^{\mu} &= rac{1}{M}(p,E\sin heta,0,E\cos heta) &\stackrel{E\gg M}{\longrightarrow} rac{p^{\mu}}{M} \end{aligned}$$

- LL is most sensitive to the mass, but kinematically suppressed!
- **Dominant** contribution to σ_{LL} comes from the threshold region.

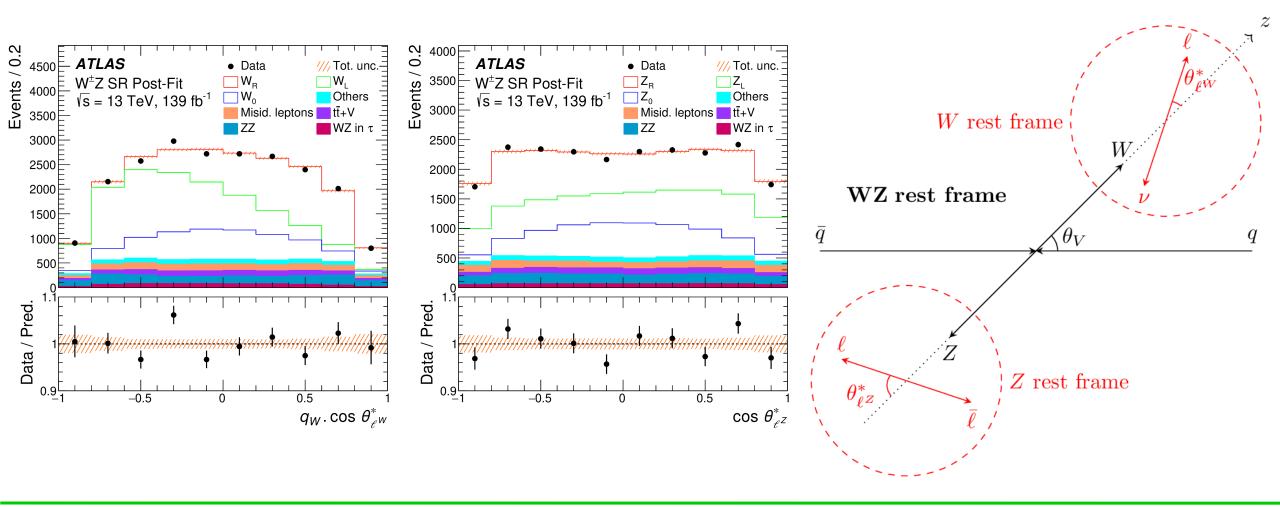
Duc Ninh LE, Phenikaa University, Vietnam

Q-H Cao, B. Yan et al, <u>arXiv:2004.02031</u>

LHCP 2025 theory talk

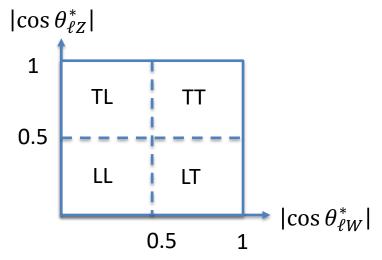
Diboson polarization

Recent measurements

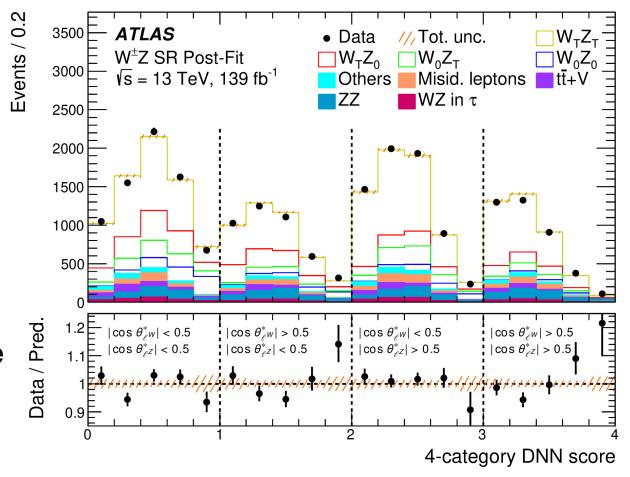

- $pp \rightarrow ZZ \rightarrow 4l$, ATLAS JHEP 12 (2023) 107 (Z_LZ_L measured with 4.3 σ)
- $pp \rightarrow WZ \rightarrow lvll$ joint WZ polarization measurements
 - ATLAS PLB 843 (2023) 137895 ($W_L Z_L$ observed with 7.1 σ)
- $pp \rightarrow WZ \rightarrow lvll$ single-boson polarization measurements
 - ATLAS <u>EPJC 79 (2019) 535</u>
 - CMS <u>JHEP 07 (2022) 032</u>

Process	Features			Experimental status
	Signal rate	S/B	Spin information	
$ZZ \rightarrow 4l$	X	\checkmark	$\checkmark\checkmark$	ATLAS
$WZ \rightarrow lvll$	✓	✓	✓	ATLAS (and CMS with single boson polarization)
$WW \rightarrow lvlv$	\checkmark	X	X	None
$WW \rightarrow lvqq$	\checkmark	X	✓	None

WZ polarization measurement

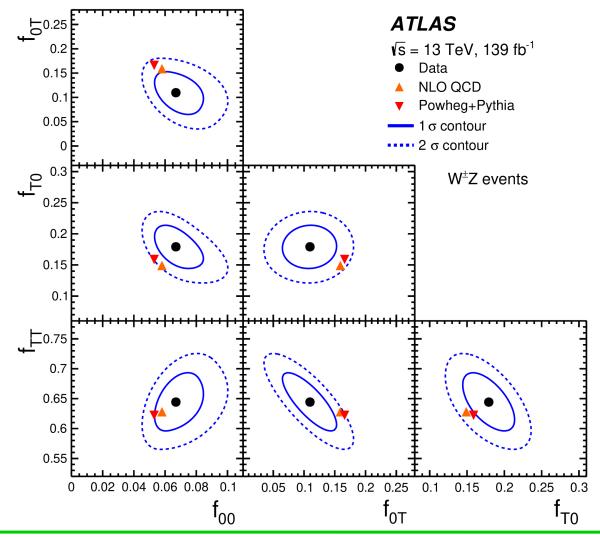

• A regression NN is developed to reconstruct p_z^v from the $W \to lv$ decay

ATLAS: PLB 843 (2023) 137895



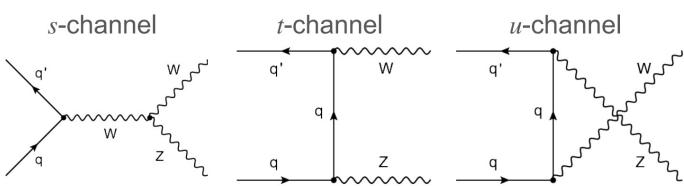
WZ polarization measurement

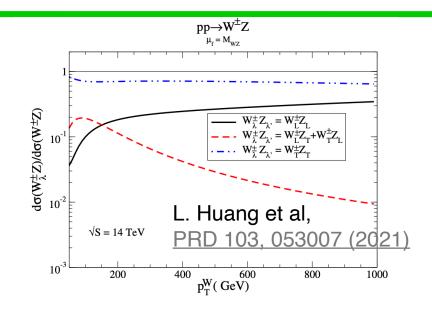
- A DNN based discriminant used to extract the polarization fractions
 - Events are further split into 4 categories based on $(|\cos \theta_{\ell W}^*|, |\cos \theta_{\ell Z}^*|)$


- NLO QCD corrections with a DNN reweighting
 - 4 DNNs trained to reweight the inclusive WZ events to each polarized sample
 - The 4 DNNs are then applied to the Powheg WZ inclusive sample

WZ polarization measurement

- All joint polarization states observed
 - Observed (expected) $W_L Z_L$ 7.1(6.2) σ
 - Consistent with NLO QCD predictions

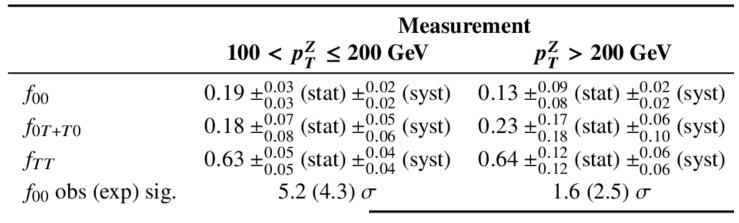

	Data	Powheg+Pythia	NLO QCD	
$W^{\pm}Z$				
f_{00}	0.067 ± 0.010	0.0590 ± 0.0009	0.058 ± 0.002	
$f_{ m OT}$	0.110 ± 0.029	0.1515 ± 0.0017	0.159 ± 0.003	
$f_{ m T0}$	0.179 ± 0.023	0.1465 ± 0.0017	0.149 ± 0.003	
$f_{ m TT}$	0.644 ± 0.032	0.6431 ± 0.0021	0.628 ± 0.004	

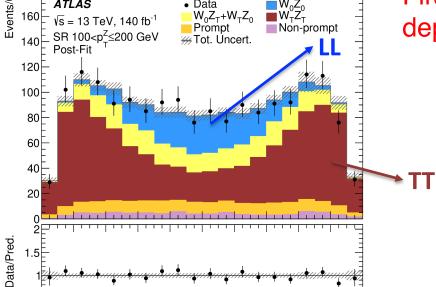


Energy Dependence and the Radiation Amplitude Zero Effect

- Polarization fraction is p_T dependent
- RAZ effect: at leading-order, the dominant helicity amplitude for TT vanishes when $\cos \theta_V \sim 0$
- RAZ only happens for WZ and $W\gamma$ processes and not for WW and ZZ processes
 - Observed in $W\gamma$ but not in WZ yet

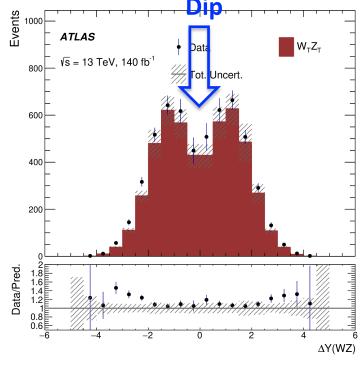
$$\frac{d^2 \sigma_{WZ}^{LL}}{d^2 \sigma_{WZ}^{TT}} \sim \frac{1}{8 \cos^2 \theta_V} \frac{1 - \cos^2 \theta_V}{1 + \cos^2 \theta_V}$$




- High $p_T(Z)$ region enhances the LL fraction
- Low $p_T(WZ)$ region suppresses jet activity thus enhances the RAZ effect \rightarrow also enhancing the LL fraction

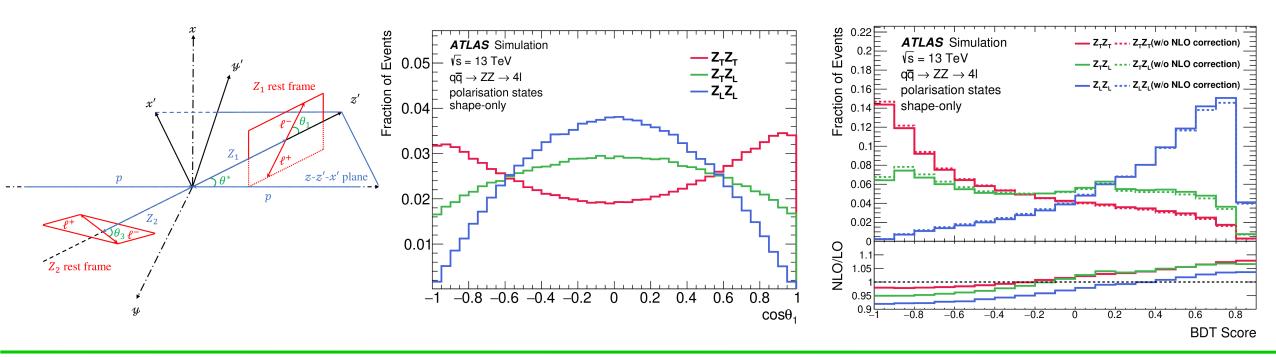
 f_{LL} increases from 5 – 7% in the inclusive region to 20 – 30% in the region with high $p_T(Z)$ and low $p_T(WZ)$

Observation of WZ pol. and the Radiation Amplitude Zero effect

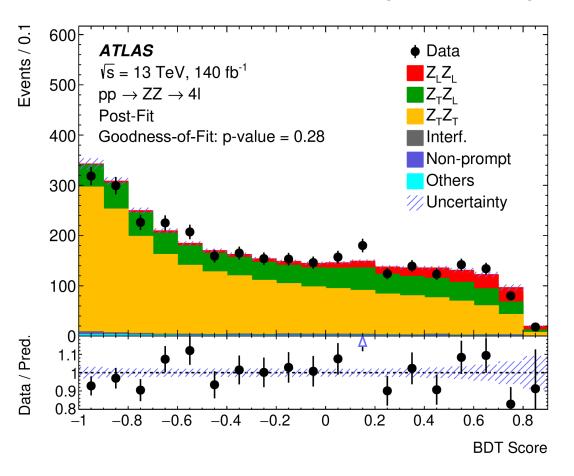


 $\cos \theta_{v}$

First measurement of energy dependence of diboson polarization


ATLAS, PRL133 (2024) 101802

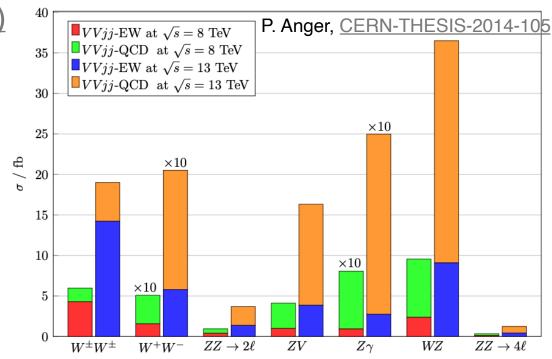
- RAZ effect leads to a dip around 0 in the $\Delta Y(WZ)$ and $\Delta Y(l_WZ)$ distributions
- Significant dips are observed
- Unfolded distributions also measured


ZZ polarization measurement

- In $ZZ \rightarrow 4l$ decay, both Z bosons can be fully reconstructed
 - Two on-shell Z events are selected: $m_{4l} > 180 \ GeV$, $|m_{ll} m_Z| < 10 \ GeV$
- A BDT discriminant to separate $Z_L Z_L$ from the others
- NLO QCD and EW corrections applied to LO events via reweighting

ZZ polarization measurement

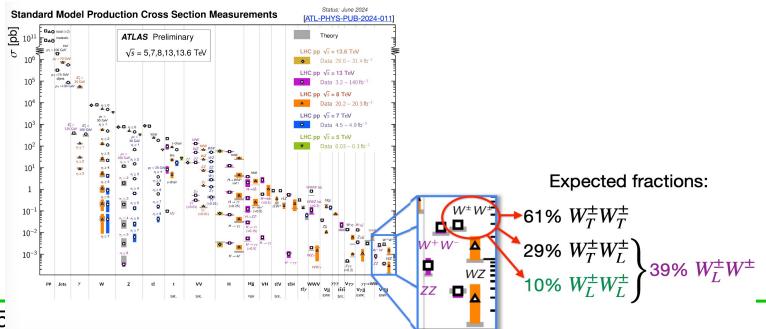
- BDT template fit to extract the polarization fraction
 - Observed(expected) $Z_L Z_L$ signal strength: 4.3(3.8) σ

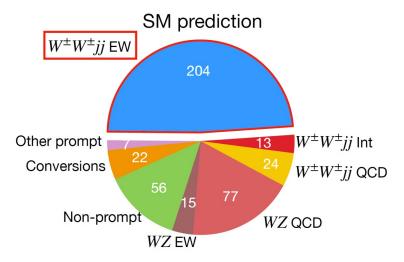


First evidence of $Z_L Z_L$ production

VBS

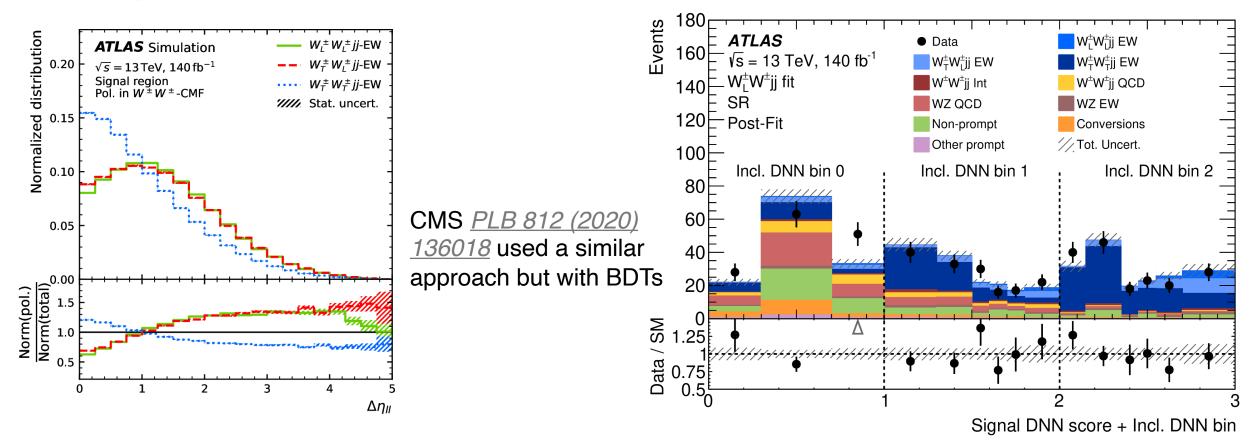
Polarization measurements in VBS


- Same-sign WW production is the most sensitive channel to study vector boson scattering
- Recent measurements
 - $pp \rightarrow W^{\pm}W^{\pm}jj$ VBS, CMS <u>PLB 812 (2020) 136018</u> (W_LW_X measured with 2.3 σ)
 - $pp \rightarrow W^{\pm}W^{\pm}jj$ VBS, ATLAS <u>PRL 135 (2025)</u> 111802, (W_LW_X measured with 3.3 σ)



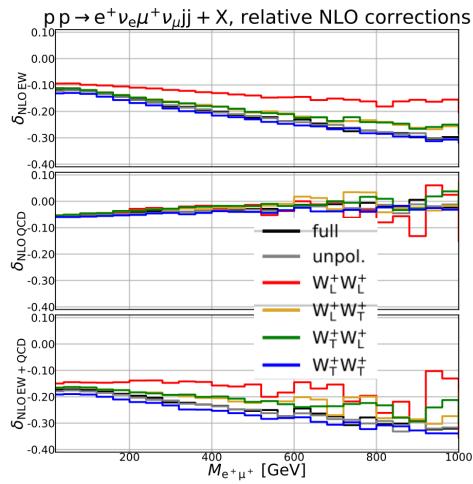
W[±]W[±]jj VBS polarization measurement

Challenges:


- VBS modeling; background estimation; selection & bkg rejection → well studied in inclusive VBS measurements
- Modeling of polarization VBS process @ NLO
- Limited number of single- & di-longitudinal events
 - Measure $W_L^{\pm}W^{\pm}jj$ and set limits for $W_L^{\pm}W_L^{\pm}jj$
- Reconstruct the polarization information with neutrino as $E_{\rm T}^{\rm miss}$

W[±]W[±]jj VBS polarization measurement

- Two sets of DNNs are trained to improve the separation
 - $DNN_{\text{inclusive}}$ to distinguish EW $W^{\pm}W^{\pm}jj$ process from backgrounds
 - $DNN_{polarization}$ to extract the polarized signal for EW $W_L^{\pm}W_L^{\pm}jj$ or $W_L^{\pm}W^{\pm}jj$


Higher-order corrections ATLAS: PRL 135 (2025) 111802

Polarization effects reflected in the kinematics of leptons, jets and missing

energies

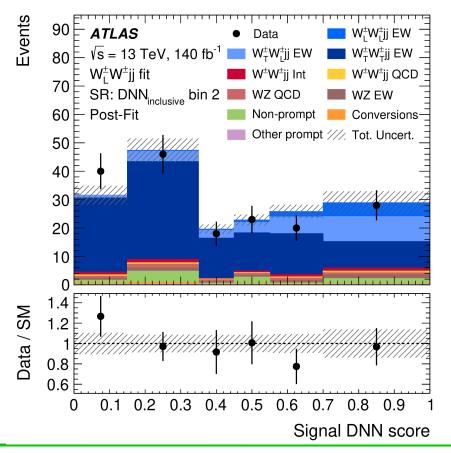
Precise full-kinematics simulation is essential

- Substantial NLO QCD and EW corrections
 - Polarization state dependent
- NLO QCD:
 - Sherpa3 provides VBS polarization simulation for LL, TL, TT and the Interference
 - With VBS approximation and Narrow-Width-**Approximation**
 - LO in EW and approximate NLO in QCD
 - Dedicated DNNs used to correct approximations
- NLO EW:
 - M_{ii} reweighting based on fixed-order corrections

A. Denner , C. Haitz, G. Pelliccioli, arXiv:2409.03620

W[±]W[±]ii VBS polarization measurement

DNN template fit to extract the polarization fraction


ATLAS: PRL 135 (2025) 111802

Observed(expected) $W_L^{\pm}W^{\pm}jj$ signal significance: 3.3(4.0) σ

FEATURED IN PHYSICS

EDITORS' SUGGESTION

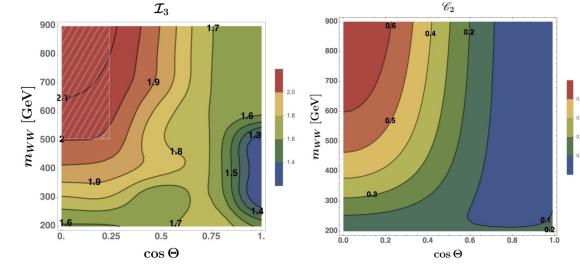
CMS: 2.3(3.1) σ



Physics VIEWPOINT

Probing the Higgs Mechanism with Particle Collisions and AI

Published 10 September, 2025

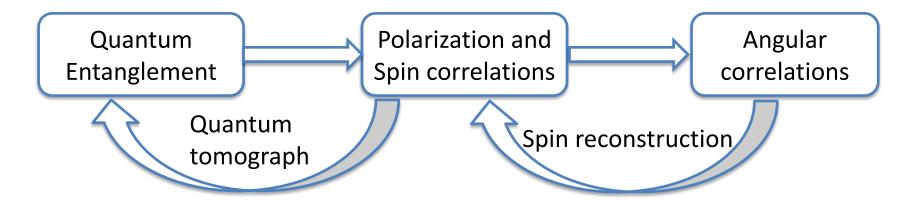

A deep neural network has proven essential in confirming a key prediction of one of the standard model's cornerstones.

Propsect

- Diboson polarization measurements
 - Only $W_L Z_L$ observed so far, more channels to come $(Z_L Z_L, W_L W_L, \text{ etc})$
 - Probe BSM
 - Quantum tomograph in diboson system?

- VBS polarization measurement
 - Establish $V_L V_L \rightarrow V_L V_L$ at the HL-LHC?

Number of expected $pp \rightarrow WW$ events that that violate the Bell inequality


$$(run2) \mathcal{L} = 140 \text{ fb}^{-1} \qquad (Hi-Lumi) \mathcal{L} = 3 \text{ ab}^{-1}$$

$$\underline{\text{events}} \qquad 288 \qquad \qquad 6145$$

E. Gabrielli et al, arXiv:2302.00683

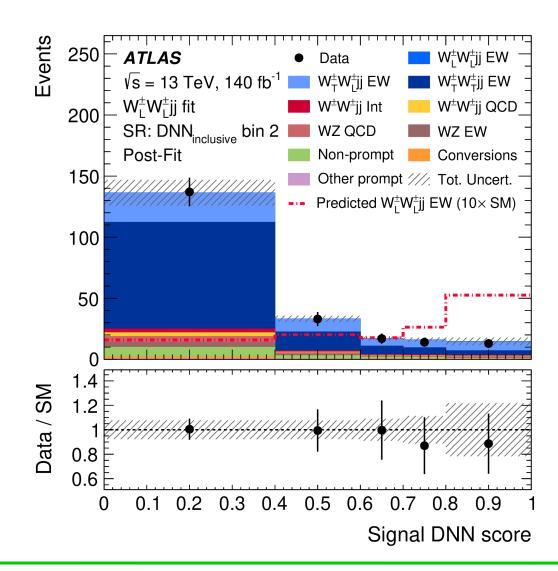
Summary

- Diboson polarization study (either in inclusive $pp \to VV$ production or in VBS) well motivated to test the EWSB and probe BSM
 - Large datasets available at the LHC
 - New developments in MC event generators for polarized boson production
 - Advanced ML techniques as polarization taggers
- Continuous development in theoretical calculations also essential
- Also paves the road for Quantum Entanglement study

Backup

SDM and Quantum Entanglement

- The spin density matrix is a fundamental tool in quantum mechanics, encapsulating all observable information of a quantum system $\rho = \sum_i p_i \left| \Psi_i \right\rangle \left\langle \Psi_i \right|,$
- A $V_A V_B$ system produced in pp collisions is a pair of qutrits
- The system is separable if If the SDM can be written as $\rho = \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$,
 - ρ_A^i , ρ_B^i are the density matrices acting on the Hilbert spaces of subsystems Aand B, respectively.
 - $p_i \ge 0, \sum_i p_i = 1$
- QE wittness: concurrence

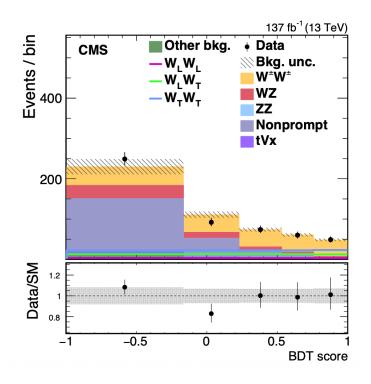

For pure state
$$\mathcal{C}[|\Psi
angle] \equiv \sqrt{2\left(1-\mathrm{Tr}[(
ho_A)^2]
ight)} = \sqrt{2\left(1-\mathrm{Tr}[(
ho_B)^2]
ight)},$$
 For mixed state $\mathcal{C}(
ho) \equiv \inf_{\{|\Psi_i
angle\}} \sum_i p_i \mathcal{C}[|\Psi_i
angle].$

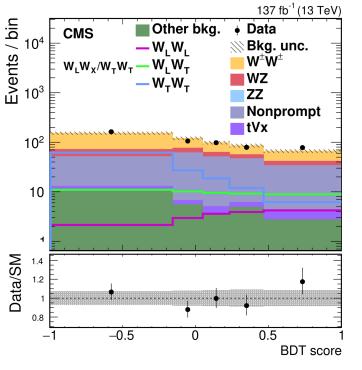
$$egin{aligned} (\mathcal{C}(
ho))^2 & \geq & 2\max\left\{0, \; \operatorname{Tr}ig[
ho^2ig] - \operatorname{Tr}ig[(
ho_A)^2ig], \; \operatorname{Tr}ig[
ho^2ig] - \operatorname{Tr}ig[(
ho_B)^2ig]
ight\} \; \equiv \; \mathscr{C}_{\operatorname{LB}}^2\,, \ (\mathcal{C}(
ho))^2 & \leq & 2\min\left\{1 - \operatorname{Tr}ig[(
ho_A)^2ig], \; 1 - \operatorname{Tr}ig[(
ho_B)^2ig]
ight\} \; \equiv \; \mathscr{C}_{\operatorname{UB}}^2\,. \end{aligned}$$

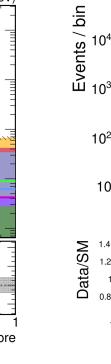
$$\mathcal{C}_{LB} > 0 \Rightarrow \text{QE}$$

 $\mathcal{C}_{UB} = 0 \Rightarrow \text{non-QE (separable)}$

Frank Krauss et al, arXiv:2505.12125


ATLAS ssWW polarization




CMS ssWW

Polarization samples are generated using MADGRAPH5 aMC@NLO at

LO interfaced with Pythia8

Other bkg.

- W, W,

137 fb⁻¹ (13 TeV)

Data

Bkg. unc.

 $W_L^{\pm}W^{\pm}jj$ against all

 $W_L^{\pm}W_L^{\pm}jj$ against all

"Inclusive BDT": Trained on WW as a signal vs Top quark simulated events that account for the Non-prompt background

Two BDTs to separate the polarization components

CMS

ssWW

ATLAS	CMS
LX WW-cmf signifance: 4.56 (expected) LL WW-cmf upper limit: 0.75 fb (expected) Expect about 210 ssWW-EW events	LX WW-cmf signifance: 2.3 (3.1) LL WW-cmf upper limit: 1.17 (0.88) fb Expect about 190 ssWW-EW events
53% ssWW-EW purity	36% ssWW-EW purity (40% are nonprompt events with high uncertainty)
Polarised higher-order QCD	Unpolarized NLO-QCD
Polarised NLO-EW UNP fit: \(\frac{y}{1}\) for = 0.96, \(\rho = 0.54 \) The \(\frac{y}{1}\) for = 0.96, \(\rho = 0.54 \) The \(\frac{y}{1}\) for = 1.02, \(\rho = 0.94 \) The \(\frac{y}{1}\) for = 0.91 Sat. uncert. Fit uncert O .80	Unpolarised NLO-EW Only applied on TT (would explain overestimated significance)
Renorm. and factor., resumm., and merging scale uncertainty calculated at higher-order QCD	Renorm. and factor. scale uncertainty at LO-QCD
Polarisation interference directly modelled	Polarisation interference not taken into account
Discrimination via DNNs	Discrimination via BDTs
Study of different MVA approachesExtensive optimization of training setup	 Application of DNNs leaded to similar results
Combination of two DNNs	Combination of two BDTs
2D bin optmization to maximize significance Dominated by statistic	 5x5 bins with similar LL (LX) yields Dominated by statistic
Dominated by statistic	Dominated by statistic

10/11/25