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Key points of this talk

➔ We find that CMS/ATLAS can achieve >5× sensitivity improvement for di-Higgs 
in the HH→4b final state, with potential to observe HH even before the HL-LHC 

➔ This gain is driven entirely by AI engineering 
❖ “scaling up” improves performance (larger models, larger datasets) and training 

directly on low-level objects (going beyond modularized objects like jets) 

➔ We validated the method’s reliability 
❖ successfully reproduced two prior CMS results 

➔ We aim to deliver this within the next three years. If successful, it will be 
transformative for the LHC, reshaping expectations for what physics 
measurements are achievable
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Illustrative view of the HH(4b) search
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η-φ visualization 
unroll the detector’s 2π surface
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Examples of boosted-regime events
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PRL 131 (2023) 041803PRL 129 (2022) 081802
results websiteresults website

the high-mHH region 
2017-2018 plots 

Counting the last 8 bins:  
 
S=6.7, B=950 
S/√B = 0.22

Counting the 4 bins 
in the mass window:  
 
S=1.63, B=9.5, σB=4.9 
Z = 0.27 
       0.51 (if B is certain) 

ATLAS and CMS Run-2 overview of non-resonant HH→4b in the resolved & 
boosted topologies, covering:

○ Online selection
○ Heavy-flavor tagging
○ Event categorization
○ Background estimation
○ Signal extraction
○ Systematic uncertainties
○ Results

ATLAS papers:
1. ggF+VBF resolved 
2. VBF boosted

Outline

CMS papers:
1. ggF+VBF resolved
2. ggF+VBF boosted 
3. ZZ/ZH in 4b resolved

Marina Kolosova & Yizhou Cai                                      Higgs Pairs Workshop 2025    3

Based on:

https://doi.org/10.1103/PhysRevLett.131.041803
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.081802
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/
https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-005/
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Reproducing CMS’s HH→4b results
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introducing the N(signal) vs 
N(bkg.) canvas

Concept: 
✦  each “cut” can be visualized as a 

point on this canvas. 
✦a “dynamic cut” forms a curve—

effectively a ROC curve scaled by 
total signal/bkg. event counts

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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Reproducing CMS’s HH→4b results
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Events (100 fb-1) passing resolved HH4b 
triggers

Signal (ggF HH4b): 960 
Bkg. (QCD multijets): 3.5e8 (rate@2e34 ≈ 18 Hz) 

Mimic CMS’s 2018 trigger (“4j3b”): 
✦ HT (AK4 pT>30 GeV) > 330 GeV 
✦ four jet pT >  75/60/45/40 GeV 
✦ ≥ 3 b-tagged jets (SophonAK4 loose b-tag 

WP: εl = 10%)

After trigger selection (under 450 fb-1):

pretty realistic!

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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Reproducing CMS’s HH→4b results
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Further require all four leading jets to be 
b-tagged at medium WP (εl = 1%)

Then train a ParT classifier, using four 
jets’ kinematic inputs to distinguish 
signal events vs QCD. 
(ParT algorithm constructs ΔR, mij of all jet 
pairs, effectively enabling jet-pair association.)

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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PRL 129 (2022) 081802

S=6.7 
B=950

Reproduced CMS result!

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.081802
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Reproducing CMS’s HH→4b results
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① Events (100 fb-1) passing boosted-jet triggers

Mimic CMS’s typical boosted-jet trigger: 
✦ HT (AK8 pT>200 GeV) > 800 GeV 
✦ leading AK8 jet trimmed mass > 50 GeV

② And further require two leading jets to have 
soft-drop masses within the circle:  
• centered at (125, 115) with R=25 GeV

Then, we reproduce boosted HH4b 
results

Both signal and bkg. events 
suppressed by x100

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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Reproducing CMS’s HH→4b results
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But the QCD suppression power 
is “astonishingly” powerful
using the sum of two AK8 jets’ 
Sophon (AK8) XbbvsQCD scores as 
the discriminator

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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Reproducing CMS’s HH→4b results
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But the QCD suppression power 
is “astonishingly” powerful
using the sum of two AK8 jets’ 
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PRL 131 (2023) 041803

S=1.63 
B(QCD)≈4.1

CMS’s performance is even stronger 
(may be due to the use of an additional BDT)

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation

https://doi.org/10.1103/PhysRevLett.131.041803
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Reproducing CMS’s HH→4b results

14

Remarks from comparison of CMS’s 
resolved & boosted analyses

Draw contour lines of  s/√b 
…and we see that the boosted 
regime even has more potential 😲

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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Reproducing CMS’s HH→4b results

15

But… can we improve the resolved-
regime strategy? 
😕  Unfortunately, if we insist on 
using AK4 jets in the resolved 
regime, we yield only marginal gains.

Here, we benchmark the best 
achievable performance relying on 
small-R jets 
 
Train a ParT on events passing resolved triggers, 
utilizing full AK4 jet information—including tagging 
scores

Remarks from comparison of CMS’s 
resolved & boosted analyses

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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Reproducing CMS’s HH→4b results
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🤔  Naively, the strong discriminative 
power should generalize across all 
boosting conditions.

Can we achieve 
somewhere close 
to this line?

Remarks from comparison of CMS’s 
resolved & boosted analyses

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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Reproducing CMS’s HH→4b results
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Yes. This is achievable.

➔ First, reproduce CMS’s HH→4b results using our highly realistic Delphes simulation
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Introducing our HH4b strategy

18
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Analysis strategy: training a X→h1h2→4b vs bkg. classifier

➔ Train “X→h1h2→4b” signal versus QCD and tt̅ (passing the “4j3b” resolved trigger!) 
❖ h1 and h2 masses: uniformly distributed in [40, 200] GeV 
❖ X mass → taking various HH→4b topologies as a reference 
❖ using full-event particle-level inputs

19

X h1h2

b

b

b

b

mh1
+ mh2

figure credit

1.6 (mh1
+ mh2

) mX
Take mHH spectrum as a reference

https://repository.cern/records/3jrfq-10p79/preview/CERN-THESIS-2017-231.pdf
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Particle Transformer for Jet Tagging

second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix Y is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same Y is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-
teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging

task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
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Split the signal training samples into 136 grids 
(classes), based on   (mh1
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)

40-200 GeV40-200 GeV

Analysis strategy: training a X→h1h2→4b vs bkg. classifier

Train a “136+2 class” classifier 

• on full-event reconstructed particle inputs (pileup-mitigated) 

• using a Particle Transformer architecture

H. Qu, CL, S. Qian. ICML 2022

The current standard in HEP-ex

full-event 
particles

https://arxiv.org/abs/2202.03772
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The “136+2” classifier offers 
two analysis tools

A powerful bkg-veto classifier

➔ psig = the sum of 136 signal-class 
scores,  defining  
discr = psig / (psig + pQCD + pttbar) 
provides a powerful background-
veto discriminant 

➔ naturally mass-decorrelated due to 
the flat prior of (mh1

, mh2
)

An  estimator(mh1
, mh2

)

40-200 GeV40-200 GeV

➔ 136-grid NN output 
estimated a discrete 
probability density ratio 
(by Neyman–Pearson 
lemma) 

➔ Perform a fit to extract 
the most probable 
point (m0

h1
, m0

h2
)

Analysis strategy: training a X→h1h2→4b vs bkg. classifier
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Mass distributions

➔ Distributions on  plane after selection 
discr = psig / (psig + pQCD + pttbar) > 0.9

(mh1
, mh2

)

22

Expected shapes 
• smooth QCD and tt̅ 

spectrum 
• single-Z/H: form ridge-

like structures 
• ZZ/ZH/HH: 2D peak-like 

structures
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Effect of analysis selection

23

discr = psig / (psig + pQCD + pttbar)

Signal selection:

𝒎𝑯𝟏

𝒎𝑯𝟐

125 GeV

125 GeV 𝒂 = 𝟐𝟓 𝟐
𝒃 = 𝒂 / 𝟓

Select events in the HH mass 
window, and count the yields 
of each physics process
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Effect of analysis selection
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discr = psig / (psig + pQCD + pttbar)

Signal selection:

𝒎𝑯𝟏

𝒎𝑯𝟐

125 GeV

125 GeV 𝒂 = 𝟐𝟓 𝟐
𝒃 = 𝒂 / 𝟓

Select events in the HH mass 
window, and count the yields 
of each physics process

Low statistics at tail region, despite 𝓞(𝟏𝟎^𝟏𝟏) QCD 
events before trigger selections are generated

smoothed ROC curve
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➔ The significance is calculated for each points at smoothed ROC: 

➔ Best significance at S = 20.5 and B = 15.2 
➔ Different settings for 𝝈𝒃 are considered 

❖ 0%, 10%, 20%, 50%

Expected result

24

• >5x improvement in significance over 
existing approach!
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Validity of the new method?

25
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Further investigation into the classifier

26

What does it take to train a powerful classifier?  
Data size is important!1

✦ The nominal model (denoted SophonHH) is 
trained on the full dataset of 140M events 

• ParT with 10M parameters (4x default size) 

✦ To study data dependence, we also trained on 
reduced subsets: 1/10 (14M) of the full 
dataset. 

✦ Number of training batches scale down 
accordingly to avoid overfitting (by 5x)
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Further investigation into the classifier

26

What does it take to train a powerful classifier?  
Data size is important!1

✦ The nominal model (denoted SophonHH) is 
trained on the full dataset of 140M events 

• ParT with 10M parameters (4x default size) 

✦ To study data dependence, we also trained on 
reduced subsets: 1/10 (14M) of the full 
dataset. 

✦ Number of training batches scale down 
accordingly to avoid overfitting (by 5x)

Data size is crucial to the classifier's performance! 
From 13M to 130M: bkg rejection improved by 4-8x
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Further investigation into the classifier

27

Is the QCD background truly irreducible? -No

• From signal vs QCD ROC curves, we observe 
that we can suppress QCD bkgs to a non-
negligible level, even in the resolved regime. 

• Using solely jet-based info, it’s challenging to 
reach the same stage 

• Soft radiation pattern matters in vetoing 
QCD!

2
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Further investigation into the classifier
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Should HH4b vs bkgs have a similar separation power 
across all Lorentz boost conditions? –Yes3

❖ Focus on ggHH signal vs QCD that 
contains exactly 4 gen-b-hadrons 

❖ Use the maximum pT vector sum 
of all b-hadron pairs as an 
indicator to characterize the 
event’s Lorentz boost 

❖ Result:  separation ability is 
consistent across different 
boosting conditions!
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Further investigation into the classifier

29

Robustness across hadronization models, 
ZZ vs HH

4

Comparing the efficiencies of  
Pythia 8.3, Herwig 7.2 and Vincia • Tighter classifier working points enlarge 

discrepancies, most notably between Herwig 7.2 
and the others 

• No significant efficiency loss is observed 

• Similar behavior between and HH vs ZZ 
(allowing to use ZZ→4b as a “calibration candle”)
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Summary & outlook

30

➔ Take home: 
❖ We show that CMS/ATLAS can achieve >5× sensitivity improvement for di-Higgs in the 

HH→4b final state, with potential to observe HH even before the HL-LHC 
❖ This gain is driven entirely by AI engineering 

‣ “scaling up” improves performance;  training directly on low-level objects 

❖ also validated the method’s reliability 
➔ These findings challenge the conventional understanding of di-Higgs! 
➔ Aim to deliver this search within the next three years

arXiv:2508.15048

https://arxiv.org/abs/2508.15048
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Summary & outlook

30

➔ Take home: 
❖ We show that CMS/ATLAS can achieve >5× sensitivity improvement for di-Higgs in the 

HH→4b final state, with potential to observe HH even before the HL-LHC 
❖ This gain is driven entirely by AI engineering 

‣ “scaling up” improves performance;  training directly on low-level objects 

❖ also validated the method’s reliability 
➔ These findings challenge the conventional understanding of di-Higgs! 
➔ Aim to deliver this search within the next three years

A conceptual sketch 
• We are using advanced AI to make the 

fully hadronic channel “clean” 
• As clean as H→4ℓ observation 🙂

arXiv:2508.15048

https://arxiv.org/abs/2508.15048
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Backup
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H. Qu*, CL, S. Qian, ICML 2022

JetClass [data card]
February ‘22

Realistic particle-level features: 
(+impact params d0, dz, d0_err, dz_err)

May ‘24

CL* et al. arXiv:2405.12972

JetClass-II [data card]

emulate pileup (<μ>=50) & 
pileup mitigation with PUPPI

⇒ enable realistic flavour-tagging

https://arxiv.org/abs/2405.12972
https://github.com/jet-universe/jetclass2_generation
https://arxiv.org/abs/2202.03772
https://github.com/jet-universe/jetclass_generation
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JetClass-II [data card]

emulate pileup (<μ>=50) & 
pileup mitigation with PUPPI

⇒ enable realistic flavour-tagging

March ‘25

JetClass-II  
+ realistic small/large-R jet 
tagger (anti-kT R=0.4/0.8)

Y. Zhao, CL* et al. arXiv:2503.00118

[SophonAK4], [Sophon (AK8)]

https://arxiv.org/abs/2405.12972
https://github.com/jet-universe/jetclass2_generation
https://arxiv.org/abs/2202.03772
https://github.com/jet-universe/jetclass_generation
https://huggingface.co/jet-universe/sophon-ak4
https://huggingface.co/jet-universe/sophon
https://arxiv.org/abs/2503.00118
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Performance of b vs light/c tagging Performance of X→bb vs QCD tagging

arXiv:2503.00118 arXiv:2503.00118
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Performance of b vs light/c tagging Performance of X→bb vs QCD tagging
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CMS-DP-2024-066 CMS-PAS-BTV-22-001

Referenced CMS performance!

https://arxiv.org/abs/2405.12972
https://github.com/jet-universe/jetclass2_generation
https://arxiv.org/abs/2202.03772
https://github.com/jet-universe/jetclass_generation
https://huggingface.co/jet-universe/sophon-ak4
https://huggingface.co/jet-universe/sophon
https://arxiv.org/abs/2503.00118
https://arxiv.org/abs/2503.00118
https://arxiv.org/abs/2503.00118
https://cds.cern.ch/record/2904702/files/DP2024_066.pdf
https://cds.cern.ch/record/2866276
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Xbb vs QCD

Sophon/SophonAK4 is really close to CMS's state-of-the-art taggers

b vs light
b vs c

Overlaying Sophon@Delphes 
and CMS results!

Realistic particle-level features: 
(+impact params d0, dz, d0_err, dz_err)
⇒ enable realistic flavour-tagging

Performance of b vs light/c tagging Performance of X→bb vs QCD tagging
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Particle Transformer

34

➔ Transformer tailored for particle physics 
❖ featuring its “attention bias” that embed pairwise features 

respecting different levels of Lorentz symmetry
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Particle Transformer for Jet Tagging

second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix Y is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same Y is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-
teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging

task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
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Further investigation into the classifier
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Which background dominates? QCD or ttbar?

discr = psig / (psig + pQCD + pttbar)discr = psig / (psig + pQCD)

• If ttbar is not vetoed from the discriminant 
definition, it becomes dominant 

• Suggest that boosted-channel search can be 
further improved by incorporating a top-like jet 
veto (currently using a XbbvsQCD discriminant)
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Calibration strategy
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ZZ→4b HH→4b

We assume their MC-to-data 
scale factors, peak shifts, 
and smearing effects are the 
same

ZZ→4b extraction 
(with SF, peak shifts and 
smearing obtained from 

the fit)

HH→4b extraction 
(using shared factors)

A valid strategy

An even safer strategy

ZZ→4b extraction 
(using shared factors)

HH→4b extraction 
(using shared factors)

extracting fake 
“ZZ→4b” obtained from 

event mixing 
(with SF, peak shifts and 

smearing obtained from the 
fit in a different phase space)

Validation region
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Sample production
➔ QCD: 

❖ Pythia-generated 
❖ for resolved studies: only kept events passing the resolved “4j3b” trigger → enabled GEN-level filters to 

improve event-generation efficiency: GEN HT and GEN jet pT cuts (looser than reco-level cuts to avoid over-
removing phase space) 

❖ use the Pythia calculated cross-section 

➔ Z(qq)+jets 
❖ generated by MadGraph LO with the addition +0/1/2 jets and MLM matching with partons. Z→qq decay 

implemented in MadGraph 
❖ for resolved studies: only kept events passing the resolved “4j3b” trigger → use matrix-element-level cuts, on 

pT,j1/2/3  and HT 
❖ use the MadGraph calculated cross-section 

➔  ttbar, single-top, tW, tt̅W, tt̅Z, WW, WZ, ZZ 
❖ generated by MadGraph LO with the addition +0/1/2 jets, or +0/1 jet, or 0 jet (depending on the processes) 
❖ consider inclusive “boson -> fermion fermion” decay modes 
❖ use the highest-order cross sections recommended 

➔ ggF Higgs, VBF Higgs, VH, tt̅H & ggHH signal 
❖ generated by Powheg at NLO 
❖ consider inclusive decay 
❖ use the Powheg cross sections
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