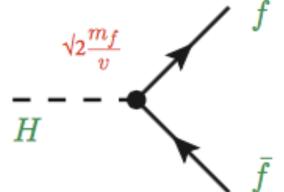
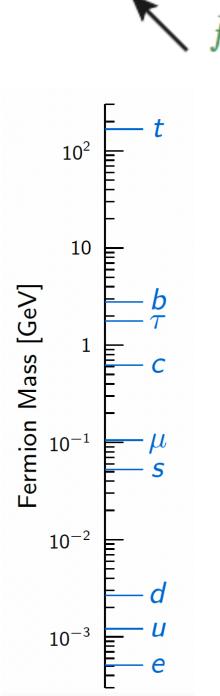

Higgs rare and exotic decays at CMS

Chen Zhou (周辰)
Peking University (北京大学)

TeV 物理前沿专题研讨会 LHC Mini-Workshop Qingdao, October 10-12, 2025

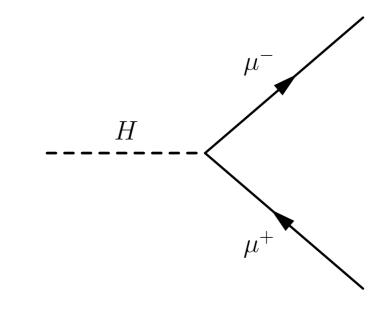
Contents of this talk

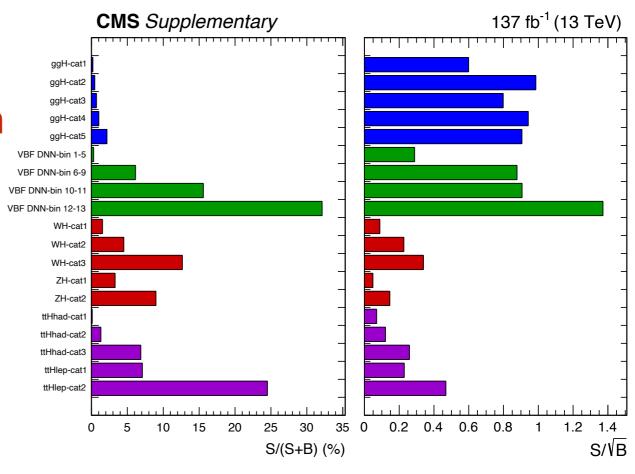

- Rare and exotic decays of Higgs boson are important portals to new physics
- CMS experiment has a large program to study these processes and keep improving sensitivities
- Focus on results recently released
- Results of Higgs rare decays
 - H→ff, H→llγ, H→meson
- Results of Higgs exotic decays
 - H→invisible, H→aa


$$H \rightarrow ff$$

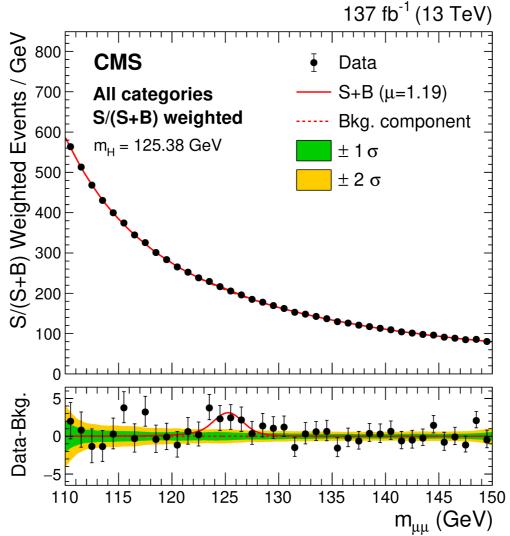
Yukawa couplings

 In Standard Model, Higgs boson couples to fermions (quarks and leptons) through Yukawa interactions




- giving masses to quarks and leptons
- Yukawa interactions are the least constrained sector of the Higgs physics
 - important to study the Yukawa sector, which may provide important indication for the origin of the fermion mass pattern
- Experimental signatures: ttH production,
 H→ττ decay, H→bb decay, etc.
 - In SM, Yukawa couplings are proportional to fermion masses; BSM physics can modify coupling strengths

H→µµ decay

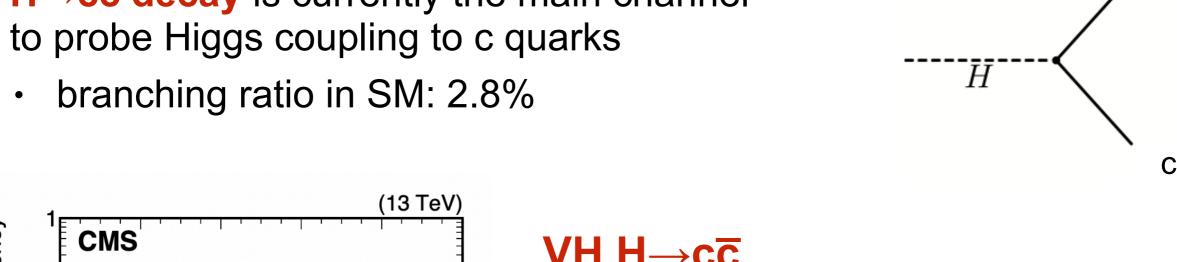

- The couplings between the Higgs boson and third-generation fermions (top quark, bottom quark, τ lepton) have already been observed
 - The Higgs couplings with fermions of the other generations have not been established
- The Higgs decay to two muons offers the best opportunity to observe the Higgs couplings with second-generation fermions at the LHC
 - Small branching ratio in SM (2x10⁻⁴)
 - key ingredients of the analysis: for sure optimal di-mu mass resolution, but also extreme optimization of the categories for best S/B

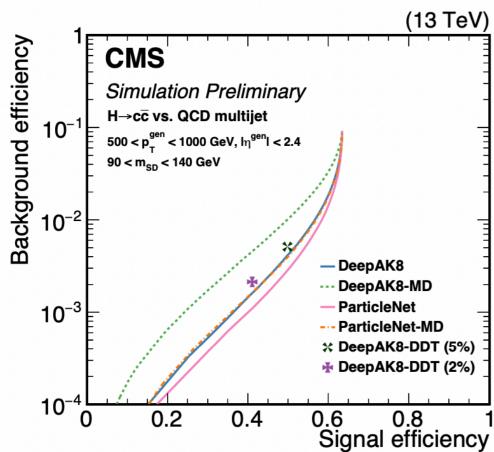
<u>JHEP 01 (2021) 148</u>

H→µµ decay

JHEP 01 (2021) 148

- The observed H→μμ significance in CMS full Run 2 result is 3.0σ (expected 2.5σ)
- These results provide first evidence for the Higgs couplings to second generation fermions


H→µµ decay

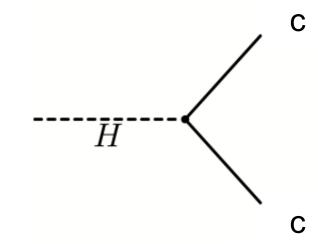


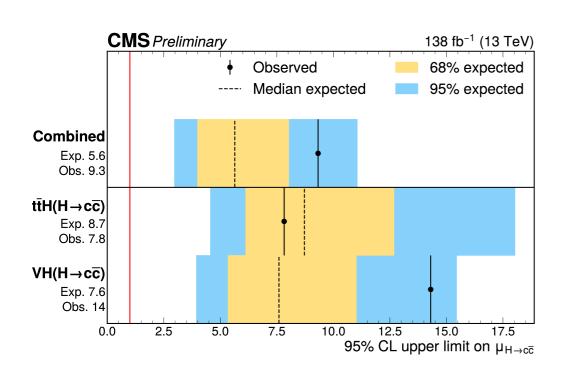
- Working on Run 3 analysis
 - hopefully observe the H→μμ decay with more than 5σ

H→cc decay

H→cc decay is currently the main channel to probe Higgs coupling to c quarks

CMS-DP2020/002


VH H→cc


- Tag leptonically decaying W/Z boson
- Combine both resolved and boosted jet analyses
- Boosted analysis benefits from Graph Neural Network based charm tagging (Phys. Rev. D 101, 056019 (2020), CMS-DP2020/002)
- Constraint on Higgs-charm Yukawa coupling modifier: 1.1 < |Kc| < 5.5

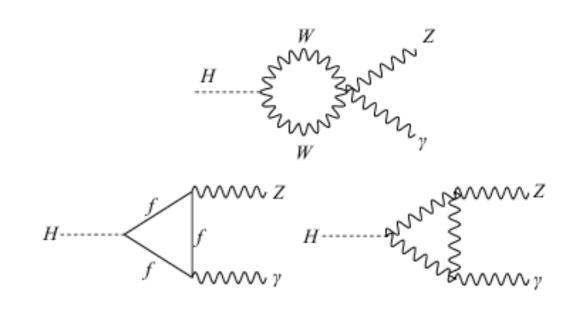
C

H→cc̄ decay

- H→cc decay is currently the main channel to probe Higgs coupling to c quarks
 - branching ratio in SM: 2.8%

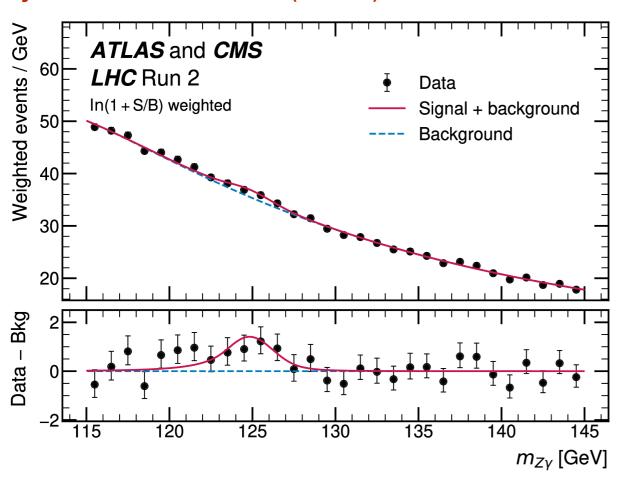
ttH H→cc

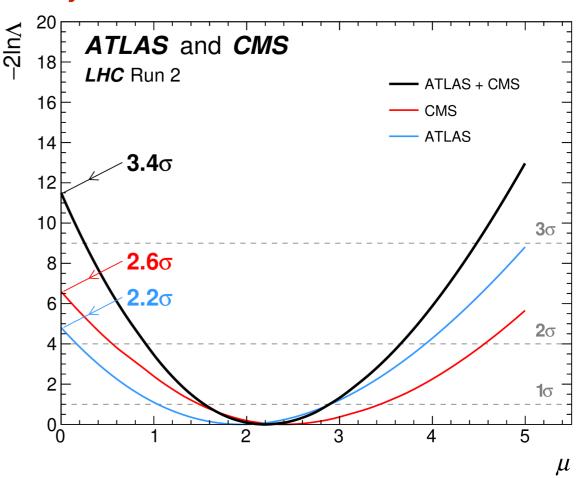
- First search for H→cc in ttH production channel
 - Graph convolutional NN for simultaneous ID of b- and c-jets (PNet)
 - Multiclass event classifier-based (ParT)
- In combination with VH, most stringent constraint to date


 $\frac{\text{CMS-PAS-HIG-24-018}}{\text{CMS-PAS-HIG-24-018}}$

 $|y_c/y_c^{SM}| \le 3.5 (2.7) \text{ obs. (exp.)}$

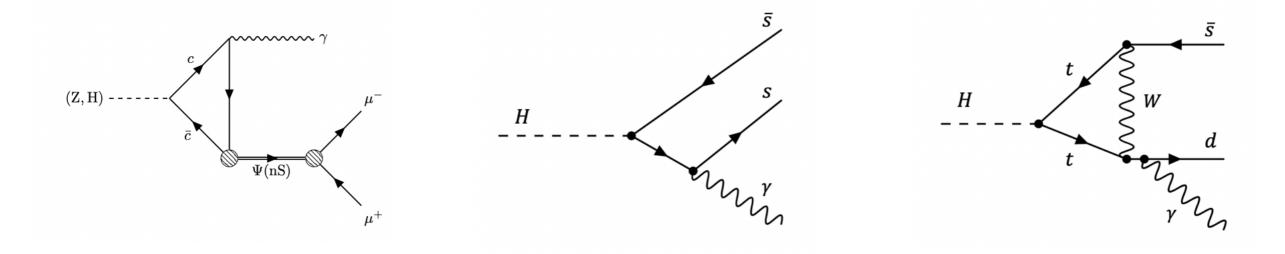
$$H \rightarrow II \gamma$$


H→Zγ decay


- BSM particles & couplings could be present in the quantum loops
- Difference between H→Zγ decay and H→γγ/H→ZZ decay sensitive to new physics
 - (e.g. Qing-Hong Cao et al. *Phys. Lett.* B 789 (2019) 233)
 - Small branching ratio in SM (1.6x10⁻³);
 main bkg: non-Higgs Zγ, Z+jets
- Select events with two leptons (mll ~90 GeV) and one photon and separate them to multiple categories to target various production modes
- Fit in IIγ mass distribution over all categories

H→Zγ decay

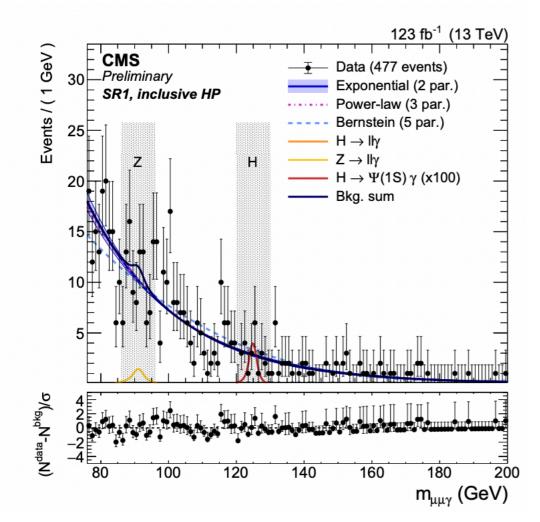
Phys. Rev. Lett. 132 (2024) 021803, Featured in Physics


- In ATLAS+CMS combined result, the observed H→Zγ significance is 3.4σ (expected 1.6σ)
 - First evidence of the H→Zγ decay
- Signal strength is 2.2 ± 0.7: agrees with theoretical expectation within 1.9σ
- With the ongoing Run-3, we will be able to improve the precision of this rare Higgs decay

H-mesons

Higgs decays to mesons

 Higgs decays to mesons can be used to study Higgs couplings to light, charm and bottom quarks, as well as new physics in the loops


Look into associated production to reduce background

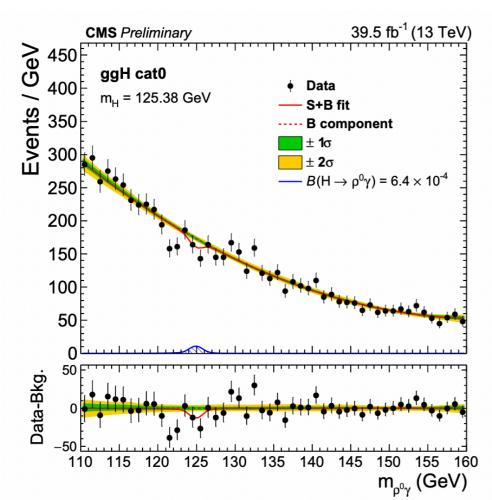
Chen Zhou (Peking U)

Higgs decays to heavy meson + photon

- Sensitive to Higgs boson couplings to charm quarks
- The quarkonium decays to two muons leave a clear signature inside the detectors

Process	This analysis (123 fb $^{-1}$)				
	$\mu_{obs}(\mu_{exp})$	$\sigma_{obs}(\sigma_{exp})[\mathrm{pb}]$			
$Z o \Psi(1S) \gamma$	$7.2 \; \left(8.6^{+4.1}_{-2.7}\right)$	$3.8 \ \left(4.4^{+1.9}_{-1.3}\right) \times 10^{-2}$	$0.6~\left(0.7^{+0.3}_{-0.2}\right) \times 10^{-6}$		
$Z \to \Psi(2S) \gamma$	29 (68^{+36}_{-22})	$8 \ (19^{+8}_{-6}) \times 10^{-2}$	$1.3 \ \left(3.1^{+1.4}_{-0.9}\right) \times 10^{-6}$		
${\rm H} \rightarrow \Psi(1{\rm S})\gamma$	$88 \ \left(62^{+30}_{-19}\right)$	$1.4~\left(1.0^{+0.5}_{-0.3} ight) imes 10^{-2}$	$2.6 \ (1.8^{+0.9}_{-0.6}) \times 10^{-4}$		
${\rm H} \rightarrow \Psi({\rm 2S}) \gamma$	970 $\left(781^{+417}_{-259}\right)$	$5.5 \ \left(4.4^{+2.3}_{-1.5}\right) \times 10^{-2}$	$9.9 \ \left(8.0^{+4.2}_{-2.6}\right) \times 10^{-4}$		

Interpretation of results in κ -framework provides constraints on κ_c/κ_γ at 95% CL


$$\kappa_c / \kappa_v \in (-157, +199)$$
 (observed)
 $\kappa_c / \kappa_v \in (-121, +161)$ (expected)

no signal is observed

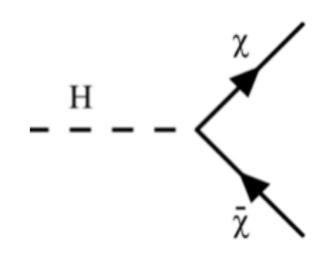
CMS-PAS-SMP-22-012

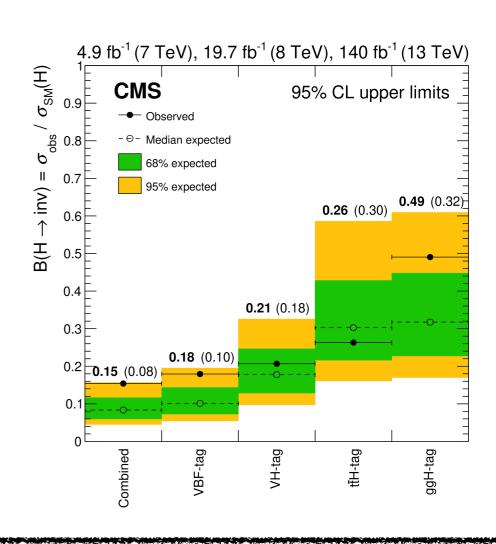
Higgs decays to light meson + photon

- Sensitive to Higgs boson couplings to light quarks and anomalous flavour-changing Higgs boson couplings
- The bounds states can decay into kaons and pions, which are reconstructed from tracks with vertex-constrained fit and have good mass resolution at low pT

	U.L. <i>B</i> (H	$I \to \rho^0 \gamma$)	U.L. <i>B</i> (F	$H o \phi \gamma)$	U.L. $\mathcal{B}(H o K^{*0}\gamma)$		
category	$Exp.(10^{-4})$	Obs. (10^{-4})	$Exp.(10^{-4})$	Obs. (10^{-4})	$Exp.(10^{-4})$	Obs. (10^{-4})	
VH	$62.3^{+25.6}_{-17.9}$	73.7	$37.3^{+16.9}_{-11.3}$	45.0	$25.3^{+11.4}_{-7.3}$	48.5	
low- p_{T}^{γ} VBF	$49.6_{-15.0}^{+22.5}$	35.6	$33.1^{+18.7}_{-11.5}$	27.9	$18.8^{+8.90}_{-5.7}$	12.3	
high- p_{T}^{γ} VBF	$22.9_{-6.9}^{+10.5}$	16.0	$16.0^{+9.0}_{-5.5}$	10.7	$9.13_{-2.75}^{+4.25}$	6.66	
ggH	$6.01^{+2.53}_{-1.72}$	4.37	$3.08^{+1.33}_{-0.98}$	3.46	$2.20^{+0.94}_{-0.62}$	1.93	
combined	$5.71_{-1.63}^{+2.37}$	3.74	$2.88^{+1.33}_{-0.83}$	2.97	$2.10^{+0.90}_{-0.58}$	1.71	

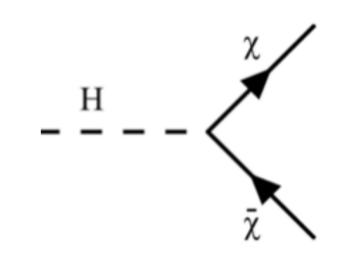
Dedicated trigger for ggF category deployed in 2018, thus expected significance improvement from Run-3

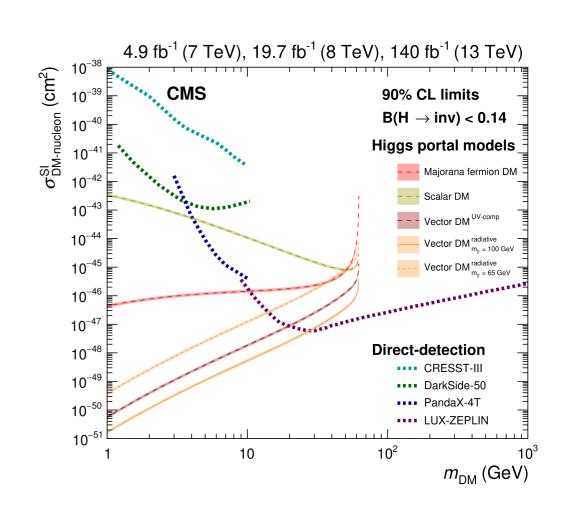

no signal is observed


<u>CMS-PAS-HIG-23-005</u>

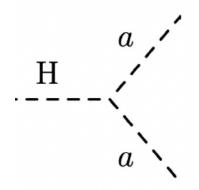
H-invisible

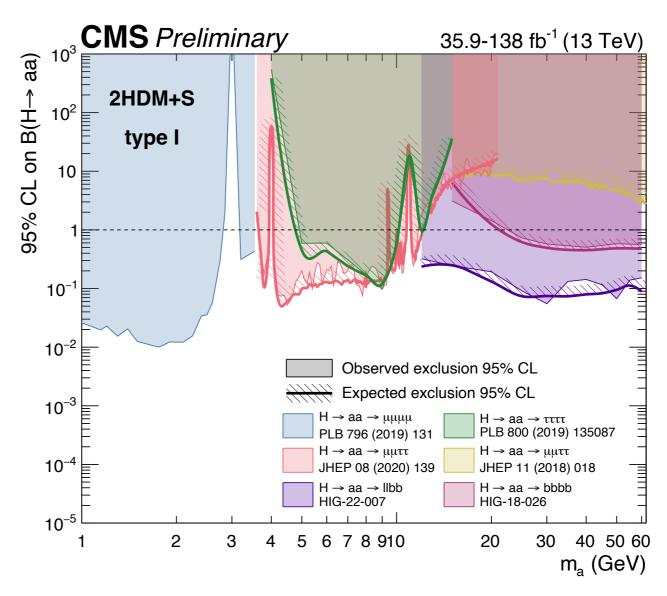
Search for Higgs→invisible decay


- The Higgs discovery has opened up a new path to discover Dark Matter.
 - Higgs→invisible decay is favored by so-called "Higgs portal" model
- Combine VBF, ggF, VH and ttH channels
- Run 2 observed (expected) limits on branching ratios:
 - CMS: BR < 15% (8%) (<u>Eur. Phys.</u>
 <u>J. C 83 (2023) 933</u>)
- Results are interpreted as limit on DM-nucleon scattering in Higgs portal model



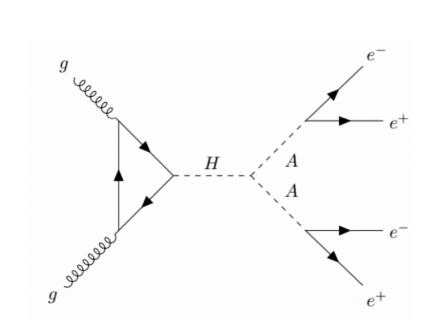
Search for Higgs→invisible decay

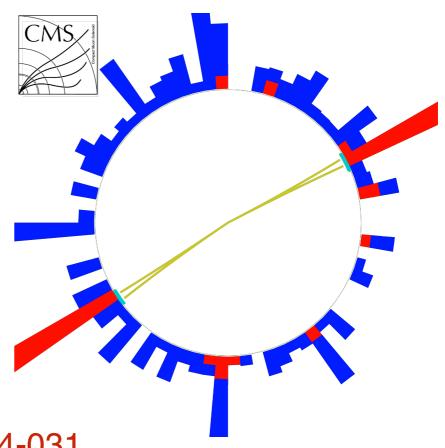

- The Higgs discovery has opened up a new path to discover Dark Matter.
 - Higgs→invisible decay is favored by so-called "Higgs portal" model
- Combine VBF, ggF, VH and ttH channels
- Run 2 observed (expected) limits on branching ratios:
 - CMS: BR < 15% (8%) (Eur. Phys.
 J. C 83 (2023) 933)
- Results are interpreted as limit on DM-nucleon scattering in Higgs portal model


H-pseudoscalars

H→pseudoscalars

Higgs decays to pseudoscalars predicted by various BSM models: two-Higgs-doublet-like models, axion-like particle, etc.

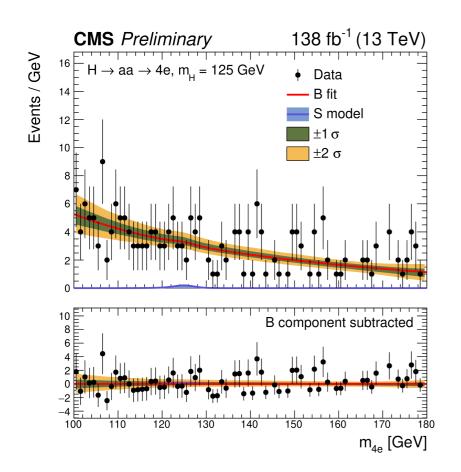

Many final states are analyzed: bbbb, bbll, llll, ...

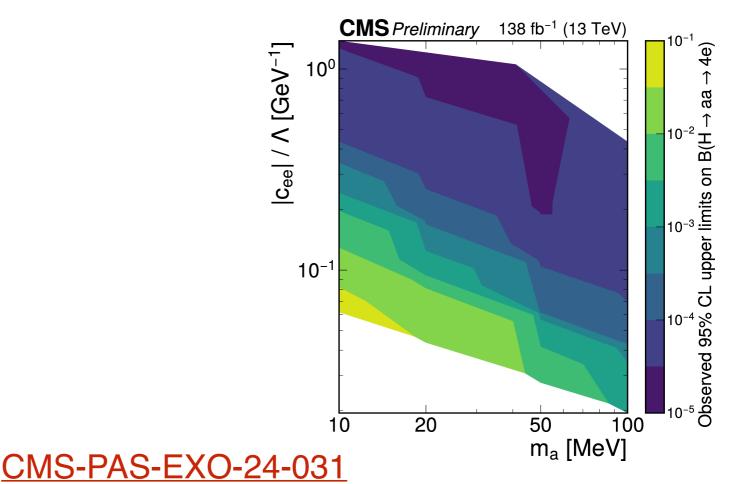


CMS Summary Plots

H→aa→eeee

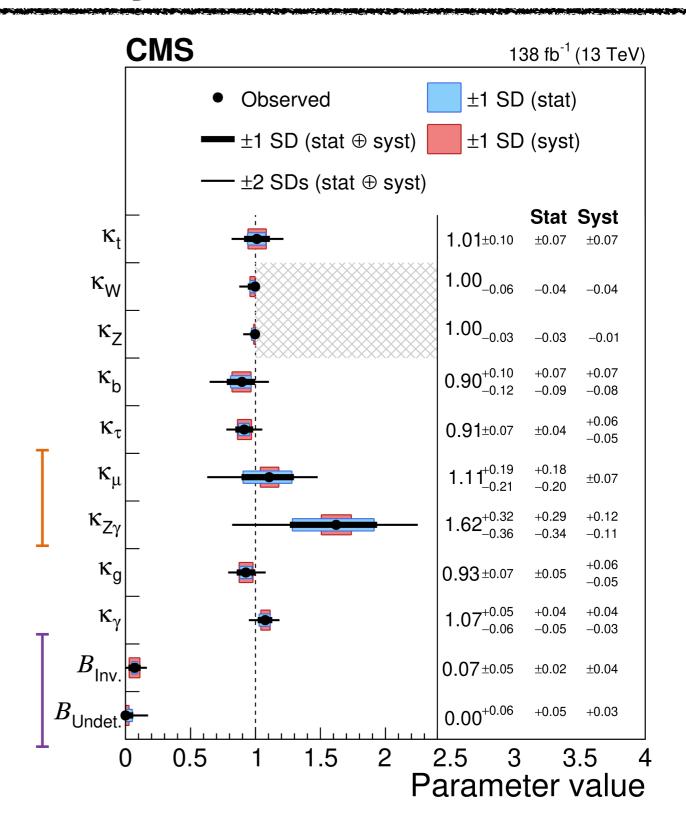
- ATOMKI anomaly gives us additional motivation to search for tens of MeV ALPs
 - Electron channel is important for searching for ALPs in that range
 - Theoretical work by Liu Jia et al: <u>JHEP 05 (2021) 138</u>
- CMS preforms first search for H→aa→4electrons, with a novel multivariate identification technique
 - Showing LHC's potential as a unique axion-like particle search facility



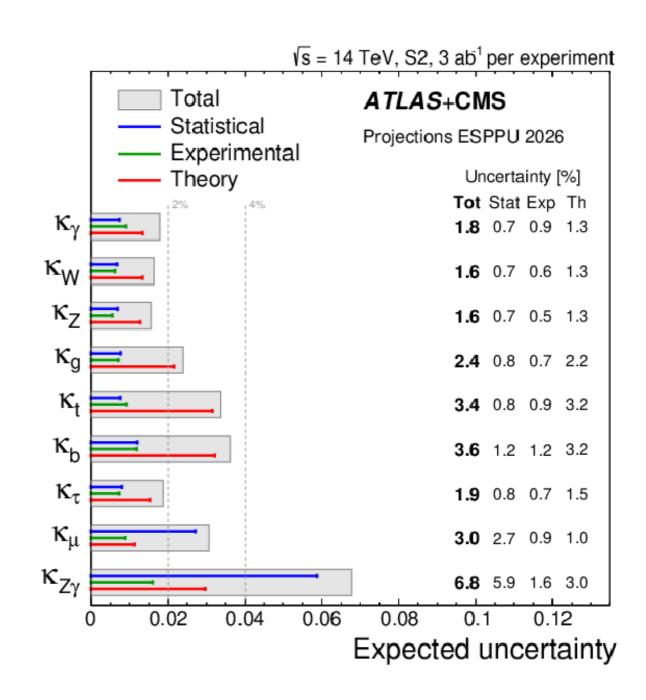


CMS-PAS-EXO-24-031

H→aa→eeee


- ATOMKI anomaly gives us additional motivation to search for tens of MeV ALPs
 - Electron channel is important for searching for ALPs in that range
 - Theoretical work by Liu Jia et al: <u>JHEP 05 (2021) 138</u>
- CMS preforms first search for H→aa→4electrons, with a novel multivariate identification technique
 - Showing LHC's potential as a unique axion-like particle search facility

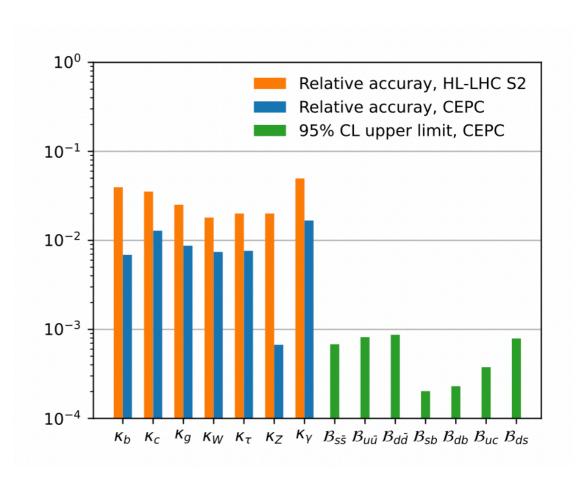
Summary


- CMS experiment has a large program to study Higgs boson rare and exotic decays and keep improving sensitivities
 - Results are so far consistent with the SM predictions
 - First evidence of H→μμ and H→Zγ
 - etc.
- Run 3 is ongoing and HL-LHC is coming.
 Stay tune for the new results!

Nature 607 (2022) 60-68

Summary

- CMS experiment has a large program to study Higgs boson rare and exotic decays and keep improving sensitivities
 - Results are so far consistent with the SM predictions
 - First evidence of H→μμ and H→Zγ
 - etc.
- Run 3 is ongoing and HL-LHC is coming.
 Stay tune for the new results!


arxiv:2504.00672

Higgs rare and exotic decays at CEPC

- We apply Al-based jet-origin identification to Higgs rare and exotic decay measurements at CEPC
 - The upper limits at 95% confidence level on the branching ratios of H
 → ss, uu, dd and H → sb, db, uc, ds can be determined to 2 × 10⁻⁴ to
 1 × 10⁻³, which are greatly improved upon previous studies

TABLE I. Summary of background yields from $H \to b\bar{b}/c\bar{c}/gg$, Z, and W prior to the flavor-based event selection, along with the expected upper limits on Higgs decay branching ratios at 95% CL under the background-only hypothesis.

	Bkg (10 ³)		Upper limits on Br (10 ⁻³)							
	\overline{H}	Z	\overline{W}	$s\bar{s}$	иū	$d\bar{d}$	sb	db	ис	ds
$ u\bar{\nu}H$	151	20	2.1	0.81	0.95	0.99	0.26	0.27	0.46	0.93
$\mu^+\mu^-H$	50	25	0	2.6	3.0	3.2	0.5	0.6	1.0	3.0
e^+e^-H	26	16	0	4.1	4.6	4.8	0.7	0.9	1.6	4.3
Comb.	• • •	• • •	• • •	0.75	0.91	0.95	0.22	0.23	0.39	0.86

Phys. Rev. Lett. 132 (2024) 221802

Thank you!