

SMEFT, HEFT and UV models

万霞 Xia Wan (陕西师范大学 SNNU)

2412.00355(*JHEP* 06 (2025) 021), 2503.00707(*JHEP* 06 (2025) 249), in progress

in collaboration with 宋华洋 Huayang Song (IBS-CTPU-PTC,Korea) and 戈子舟 Zizhou Ge (SNNU)

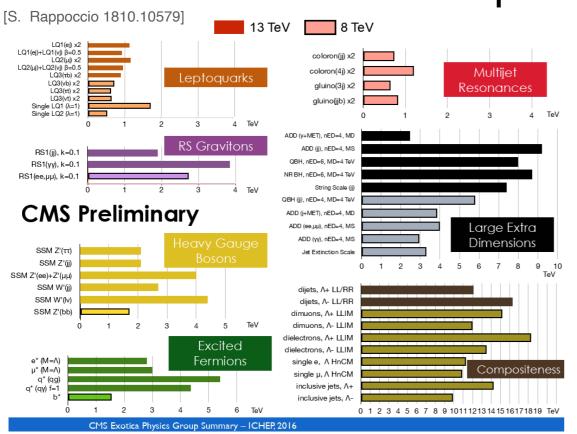
TeV物理前沿专题研讨会暨第31届LHC Mini-Workshop Qingdao, 10月12日, 2025.

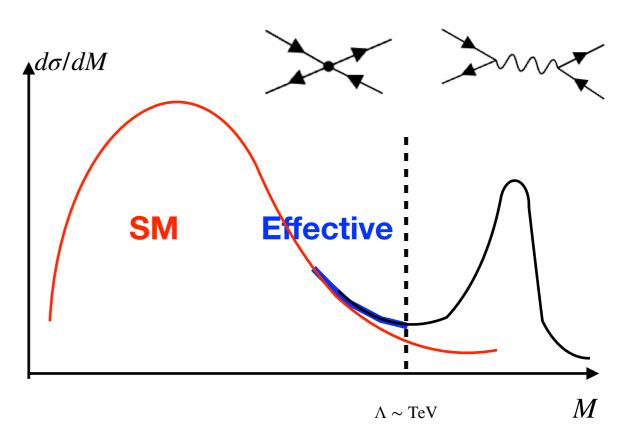
Outline

- Introduction: SMEFT, HEFT and Matching.
- A non-linear framework for matching.
- Matching Higgs Triplet Model to HEFT in decoupling regime.
- Non-decoupling regime and one-loop matching.
- Summary.

Why EFT

• In direct search of new particles, we get constraints.





New Particle is heavy, so it is better to study the indirect effects?

- UV theory is not known, use most general EFT operators to parameterize NP. (Bottom-up approach).
- UV theory is known, integrate out the heavy particles and match to EFT. (Top-down approach).

Two EFTs: SMEFT and HEFT

Both are invariant under $SU(3)_c \times SU(2)_L \times U(1)_Y$ symmetry and contains SM fields.

SMEFT, linear realization of the Higgs and Goldstones, canonical dimension

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} G^+ \\ v + h + iG^0 \end{pmatrix}, \quad \mathcal{L}_{\text{SMEFT}} \supset \frac{1}{2} D_{\mu} H^{\dagger} D^{\mu} H + \frac{m^2}{2} H^{\dagger} H - \lambda (H^{\dagger} H)^2 + \frac{C_H}{\Lambda^2} (H^{\dagger} H)^3 + \cdots$$

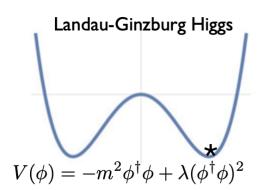
HEFT, nonlinear realization, chiral dimension

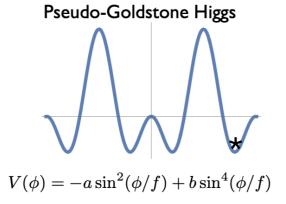
$$h,U \equiv \exp\left(\frac{i\pi_i\sigma_i}{v_{\rm EW}}\right), \quad \mathcal{L}_{\rm HEFT}^{\rm LO} \supset \frac{1}{2}D_\mu h D^\mu h - V(h) + \frac{v_{\rm EW}^2}{4}F(h){\rm Tr}(D_\mu U^\dagger D^\mu U) + \cdots$$
 g,
$$V(h) = \frac{1}{2}m_h^2h^2\bigg[1 + (1+\Delta\kappa_3)\frac{h}{v_{\rm EW}} + \cdots\bigg], \quad F(h) = 1 + 2(1+\Delta a)\frac{h}{v_{\rm EW}} + \cdots$$
 n Lu's talks

See Jian Wang, Lei Zhang, Nan Lu's talks

$$V(h) = \frac{1}{2} m_h^2 h^2 \left[1 + (1 + \Delta \kappa_3) \frac{h}{v_{\text{EW}}} + \cdots \right], \quad F(h) = 1 + 2(1 + \Delta a) \frac{h}{v_{\text{EW}}} + \cdots$$

[H. Sun, M.-L. Xiao, and J.-H. Yu, 2206.07722]



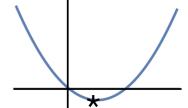


SMEFT/HEFT

Coleman Weinberg Higgs

$$V(\phi) = \lambda (\phi^\dagger \phi)^2 + \epsilon (\phi^\dagger \phi)^2 \log rac{\phi^\dagger \phi}{\mu^2} \qquad V(\phi) = -\mu^3 \sqrt{\phi^\dagger \phi} + m^2 \phi^\dagger \phi$$

Tadpole-induced Higgs



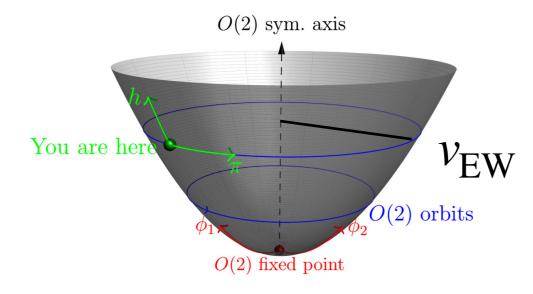
$$V(\phi) = -\mu^3 \sqrt{\phi^{\dagger}\phi} + m^2 \phi^{\dagger}\phi$$

A Geometric Picture

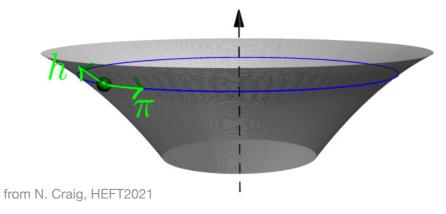
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \longrightarrow$$

SM doublet
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \longrightarrow \overrightarrow{\phi} = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix}, \quad \overrightarrow{\phi} \to O\overrightarrow{\phi}, \text{ where } O \in O(4) \supset SU(2) \times U(1)$$

$$\mathcal{L}_{\text{SMEFT}} = \frac{1}{2} A(\vec{\phi} \cdot \vec{\phi}) (\partial \vec{\phi} \cdot \partial \vec{\phi}) + \frac{1}{2} B\left(\vec{\phi} \cdot \vec{\phi}\right) (\vec{\phi} \cdot \partial \vec{\phi})^2 - V\left(\vec{\phi} \cdot \vec{\phi}\right) + \mathcal{O}\left(\partial^4\right)$$



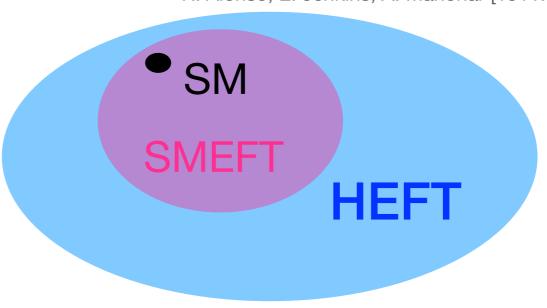
SMEFT/HEFT



only HEFT

HEFT encompasses SMEFT

R. Alonso, E. Jenkins, A. Manohar [1511.00724,1605.03602]

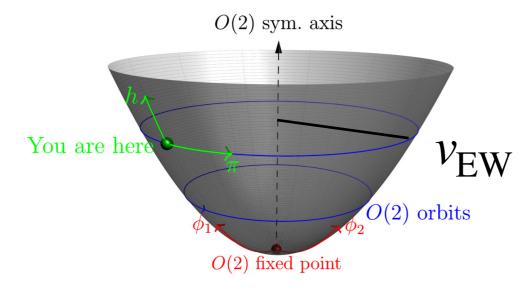


A Geometric Picture

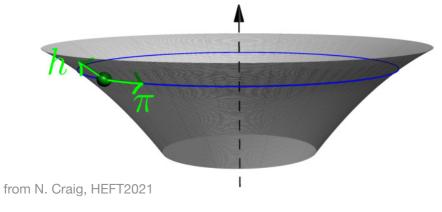
FIVI GOUDIET
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \longrightarrow \overrightarrow{\phi} = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix}, \quad \overrightarrow{\phi} \to O\overrightarrow{\phi}, \text{ where } O \in O(4) \supset SU(2) \times U(1)$$

$$\begin{pmatrix}
\varphi_{3} \\
\phi_{4}
\end{pmatrix}$$

$$\mathcal{L}_{\text{SMEFT}} = \frac{1}{2} A(\vec{\phi} \cdot \vec{\phi}) (\partial \vec{\phi} \cdot \partial \vec{\phi}) + \frac{1}{2} B(\vec{\phi} \cdot \vec{\phi}) (\vec{\phi} \cdot \partial \vec{\phi})^{2} - V(\vec{\phi} \cdot \vec{\phi}) + \mathcal{O}(\partial^{4})$$



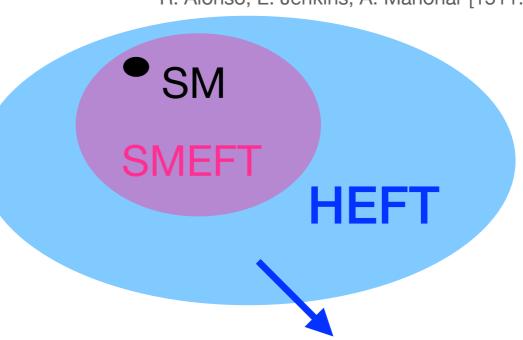
SMEFT/HEFT



only HEFT

HEFT encompasses SMEFT

R. Alonso, E. Jenkins, A. Manohar [1511.00724,1605.03602]



BSM Non-decoupling Particles

Non-decoupling Particles

Decoupling: While the mass of a particle goes infinity, its contribution vanishes.

E.g.
$$\mathscr{L} \supset -\frac{1}{2} M_S^2 S^2 - \kappa S |H|^2$$
. $\sim \kappa^2 / M_S^2 \to 0 \text{ (if } M_S \to \infty \text{)}$

Non-decoupling effects at tree level

E.g.
$$\mu^{-} \to e^{-}\nu_{\mu}\bar{\nu}_{e}$$
 $\sim \frac{g_{2}^{2}}{M_{W}^{2}} \to \frac{1}{v_{\rm EW}^{2}} \; (\text{if } M_{W} \to \infty)$

Due to Higgs mechanism, M_W is not a free parameter.

$$M_W = g_2 v_{\rm EW} / 2 \rightarrow g_2 = 2 M_W / v_{\rm EW}$$

Non-decoupling Particles

Non-decoupling effects at one-loop level

Ilaria Brivio and Michael Trott, 1706.08945

As
$$m_t \to \infty$$
, or $m_h \to \infty$, $\Delta \rho \nrightarrow 0$

$$m_t = y_t v_{\rm EW}/2 \rightarrow y_t = m_t/v_{\rm EW}$$

BSM non-decoupling effects

Timothy Cohen, Nathaniel Craig, Xiaochuan Lu, and Dave Sutherland, 2008.08597

- The new particle derive their masses majorly from the Higgs mechanism. or
- There are additional sources of electroweak symmetry breaking.

Generally they are more easier to be found in HL-LHC or CEPC.

Matching UV Models to HEFT

Through matching we would like to study,

- Could a same UV model match to both SMEFT and HEFT?
 When will the HEFT be needed?
- The SMEFT matching is mature at one-loop level (diagrammatic method and functional method). How to make the HEFT matching programmable?

Covariant Derivative Expansion (CDE)

How to use the Standard Model effective field theory, Brian Henning, Xiaochuan Lu, and Hitoshi Murayama, 1412.1837

Universal One-loop Action

The Universal One-Loop Effective Action, Aleksandra Drozd, John Ellis, J'er'emi Quevillon and Tevong You, 1512.03003

Automation

STrEAMlining EFT Matching, Timothy Cohen, Xiaochuan Lu, and Zhengkang Zhang, 2012.07851

One-Loop UV-SMEFT dictionary

From the EFT to the UV: the complete SMEFT one-loop dictionary, Guilherme Guedes, Pablo Olgoso, 2412.14253

Linear Standard Model extensions in the SMEFT at one loop and Tera-Z,

John Gargalionis, Jérémie Quevillon, Pham Ngoc Hoa Vuong, Tevong You, 2412.01759

- A non-linear framework of UV models (2412.00355)
- Matching Real Triplet Higgs Model to HEFT in the decoupling regime (2503.00707)
- Matching in non-decoupling regime (in progress),
- Matching at one-loop (in progress)

Real Higgs Triplet Extension of the SM (RHTE)

 A singlet extension, a second doublet extension (2HDM), next is triplet.

[G. Buchala et al, 1608.03564, 2312.13885], [S. Dawson et al, 2305.07689, 2311.16897], [F. Arco et al, 2307.15693]

 The custodial violation appears at tree level with a nonzero VEV.

The Model: the SM plus a real $SU(2)_L$ triplet with Y=0

Linear form

$$H = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} (v_{H} + h + iG^{0}) \end{pmatrix}, \qquad \Sigma = \frac{1}{2} \Sigma_{i} \sigma_{i} = \frac{1}{2} \begin{pmatrix} v_{\Sigma} + \Sigma^{0} & \sqrt{2}\Sigma^{+} \\ \sqrt{2}\Sigma^{-} & -v_{\Sigma} - \Sigma^{0} \end{pmatrix}, i = 1, 2, 3,$$

$$\mathcal{L}_{\mathrm{RHTE}}(\mathbf{H}, \Sigma) \supset D_{\mu} \mathbf{H}^{\dagger} D^{\mu} \mathbf{H} + \langle D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \rangle - V(H, \Sigma),$$

$$V(H, \Sigma) = Y_1^2 H^{\dagger} H + Z_1 (H^{\dagger} H)^2 + Y_2^2 \langle \Sigma^{\dagger} \Sigma \rangle + Z_2 \langle \Sigma^{\dagger} \Sigma \rangle^2 + Z_3 H^{\dagger} H \langle \Sigma^{\dagger} \Sigma \rangle + 2 Y_3 H^{\dagger} \Sigma H$$

 $Z_i s$ are dimensionless, $Y_i s$ are dimensional

< ... > denotes trace

Matching RHTE to SMEFT

$$\begin{split} \mathscr{L}_{\mathrm{RHTE}}(\mathbf{H},\Sigma) \supset D_{\mu}\mathbf{H}^{\dagger}D^{\mu}\mathbf{H} + \langle D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma \rangle - V(H,\Sigma), \\ V(\mathbf{H},\Sigma) &= Y_{1}^{2}\mathbf{H}^{\dagger}\mathbf{H} + Z_{1}(\mathbf{H}^{\dagger}\mathbf{H})^{2} + Y_{2}^{2}\langle\Sigma^{\dagger}\Sigma\rangle + Z_{2}\langle\Sigma^{\dagger}\Sigma\rangle^{2} + Z_{3}\mathbf{H}^{\dagger}\mathbf{H}\langle\Sigma^{\dagger}\Sigma\rangle + 2Y_{3}\mathbf{H}^{\dagger}\Sigma\mathbf{H} \\ &\qquad \qquad \qquad \qquad \qquad \qquad \\ \mathcal{L}^{\Sigma} &= \frac{1}{2}\overrightarrow{\Sigma}^{T}(-D_{\mu}D^{\mu} - Y_{2}^{2} - Z_{3}\mathbf{H}^{\dagger}\mathbf{H})\overrightarrow{\Sigma} + Y_{3}\overrightarrow{\Sigma} \cdot \mathbf{H}^{\dagger}\overrightarrow{\sigma}\mathbf{H} - \frac{1}{4}Z_{2}(\overrightarrow{\Sigma} \cdot \overrightarrow{\Sigma})^{2} \end{split}$$

EoM of Σ :

$$(-D_{\mu}D^{\mu} - Y_2^2 - Z_3 \, \mathbf{H}^{\dagger} \mathbf{H}) \overrightarrow{\Sigma}_c = - \, Y_3 \mathbf{H}^{\dagger} \overrightarrow{\sigma} \mathbf{H} + Z_2 (\overrightarrow{\Sigma}_c \cdot \overrightarrow{\Sigma}_c) \overrightarrow{\Sigma}_c$$

$$\overrightarrow{\Sigma}_c = - \, \frac{1}{-D_{\mu}D^{\mu} - Y_2^2 - Z_3 \, \mathbf{H}^{\dagger} \mathbf{H}} Y_3 \mathbf{H}^{\dagger} \overrightarrow{\sigma} \mathbf{H} + \frac{1}{-D_{\mu}D^{\mu} - Y_2^2 - Z_3 \, \mathbf{H}^{\dagger} \mathbf{H}} Z_2 (\overrightarrow{\Sigma}_c \cdot \overrightarrow{\Sigma}_c) \overrightarrow{\Sigma}_c$$

Expansion with
$$1/Y_2^2$$
 (if $Y_2^2 \gg v_{\rm EW}^2$)
$$\mathcal{L}_{\rm SMEFT} = \frac{1}{2Y_2^2} Y_3^2 \mathrm{H}^\dagger \vec{\sigma} H \cdot \mathrm{H}^\dagger \vec{\sigma} \mathrm{H} + \frac{1}{2} (\mathrm{H}^\dagger \vec{\sigma} H)^T \frac{1}{Y_2^2} (-D_\mu D^\mu - Z_3 H^\dagger H) \frac{1}{Y_2^2} \mathrm{H}^\dagger \vec{\sigma} H + \cdots$$

T. Corbett, A. Helset, A. Martin, M. Trott, [2102.02819]
J. Ellis, K. Mimasu, F. Zamperdri, [2304.06663]

Matching RHTE to HEFT

$$h, U \equiv \exp\left(\frac{i\pi_i \sigma_i}{v_{\rm EW}}\right), \quad \mathcal{L}_{\rm HEFT}^{\rm LO} \supset \frac{1}{2} D_{\mu} h D^{\mu} h - V(h) + \frac{v_{\rm EW}^2}{4} F(h) \text{Tr}(D_{\mu} U^{\dagger} D^{\mu} U) + \cdots$$
$$V(h) = \frac{1}{2} m_h^2 h^2 \left[1 + (1 + \Delta \kappa_3) \frac{h}{v_{\rm EW}} + \cdots\right], \quad F(h) = 1 + 2(1 + \Delta a) \frac{h}{v_{\rm EW}} + \cdots$$

RHTE in linear form

$$H = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} \left(v_{H} + h + iG^{0} \right) \end{pmatrix}, \quad \Sigma = \frac{1}{2} \Sigma_{i} \sigma_{i} = \frac{1}{2} \begin{pmatrix} v_{\Sigma} + \Sigma^{0} & \sqrt{2} \Sigma^{+} \\ \sqrt{2} \Sigma^{-} & -v_{\Sigma} - \Sigma^{0} \end{pmatrix}, i = 1, 2, 3$$

$$\begin{pmatrix} G_{\rm EW}^+ \\ H^+ \end{pmatrix} = \begin{pmatrix} \cos \delta - \sin \delta \\ \sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} G^+ \\ \Sigma^+ \end{pmatrix} \qquad \begin{pmatrix} h \\ K \end{pmatrix} = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} h^0 \\ \Sigma^0 \end{pmatrix}$$

$$\tan \delta = 2v_{\Sigma}/v_{\rm H}.$$

- 1. Solve EoMs of H^{\pm} , K.
- 2. Embed $G_{\rm EW}^{\pm}$, G^0 into an exponential matrix form. ?! It must be complicated.

Find a non-linear representation

SM:
$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v_{\text{EW}} + h + iG^0) \end{pmatrix}, \quad U \equiv \exp\left(\frac{i\pi_i \sigma_i}{v_{\text{EW}}}\right)$$

$$H = U \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\text{EW}} + h^0 \end{pmatrix}, \quad U \equiv \exp\left(\frac{i\pi_i \sigma_i}{v_{\text{EW}}}\right)$$

2HDM

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix} , \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix} ,$$

Higgs Basis:
$$H_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v_{\text{EW}} + h_1^H + iG^0) \end{pmatrix}, H_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (h_2^H + iA) \end{pmatrix}$$

$$\mathcal{H}_1 = U \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\text{EW}} + h_1^H \end{pmatrix}, \qquad \mathcal{H}_2 = U \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (h_2^H + iA) \end{pmatrix}$$

U could be considered as a rotation.

S. Dawson et al. 2305.07689

Triplet
$$H = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} \left(v_{H} + h + iG^{0} \right) \end{pmatrix}, \quad \Sigma = \frac{1}{2} \Sigma_{i} \sigma_{i} = \frac{1}{2} \begin{pmatrix} v_{\Sigma} + \Sigma^{0} & \sqrt{2} \Sigma^{+} \\ \sqrt{2} \Sigma^{-} & -v_{\Sigma} - \Sigma^{0} \end{pmatrix}, i = 1, 2, 3$$

$$H = U \frac{1}{\sqrt{2}} \left(\frac{2\frac{v_{\Sigma}}{v_{H}} \phi^{\pm}}{v_{H} + h^{0}} \right), \qquad \Sigma = U \Phi U^{\dagger}, \ \Phi = \frac{1}{2} \phi_{i} \sigma_{i} = \frac{1}{2} \left(\frac{v_{\Sigma} + \phi^{0}}{\sqrt{2} \phi^{-}} - v_{\Sigma} - \phi^{0} \right)$$

$$H = U \frac{1}{\sqrt{2}} \begin{pmatrix} 2\frac{v_{\Sigma}}{v_{H}} \phi^{\pm} \\ v_{H} + h^{0} \end{pmatrix}$$

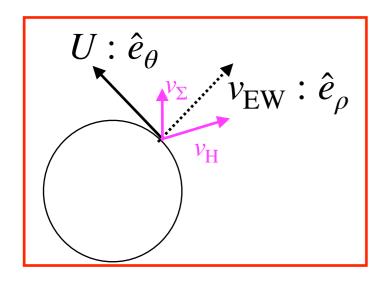
$$\Sigma = U\Phi U^{\dagger}, \ \Phi = \frac{1}{2}\phi_{i}\sigma_{i} = \frac{1}{2} \begin{pmatrix} v_{\Sigma} + \phi^{0} & \sqrt{2}\phi^{+} \\ \sqrt{2}\phi^{-} & -v_{\Sigma} - \phi^{0} \end{pmatrix}$$

Kinetic mixing cancels

$$D_{\mu}H^{\dagger}D^{\mu}H \supset 2\frac{v_{\Sigma}}{v_{H}} \times v_{H}\epsilon_{3jk}D_{\mu}\phi_{j}D^{\mu}\pi_{k}/(2v_{\mathrm{EW}}) \qquad \langle D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma\rangle \supset -v_{\Sigma}\epsilon_{3jk}D_{\mu}\phi_{j}D^{\mu}\pi_{k}/v_{\mathrm{EW}}$$

U does not appear in potential, no mass mixing

$$V(\mathbf{H}, \Sigma) = Y_1^2 \mathbf{H}^{\dagger} \mathbf{H} + Z_1 (\mathbf{H}^{\dagger} \mathbf{H})^2 + Y_2^2 \langle \Sigma^{\dagger} \Sigma \rangle + Z_2 \langle \Sigma^{\dagger} \Sigma \rangle^2 + Z_3 \mathbf{H}^{\dagger} \mathbf{H} \langle \Sigma^{\dagger} \Sigma \rangle + 2 Y_3 \mathbf{H}^{\dagger} \Sigma \mathbf{H}$$



Does these two rules suitable for a general SU(2) representations? E.g. a quadruplet, a quintet.

Quadruplet with Y = 3/2

$$\begin{pmatrix} \Theta_{111} \\ \sqrt{3}\Theta_{112} \\ \sqrt{3}\Theta_{122} \\ \Theta_{222} \end{pmatrix} \rightarrow \begin{pmatrix} \Theta^{3+} \\ \Theta^{++} \\ \Theta^{+} \\ \Theta^{0} \end{pmatrix} \qquad \qquad \\ H_{i} = U_{i}^{j}\mathfrak{h}_{j}, \quad \mathfrak{h} = \begin{pmatrix} \chi^{+} \\ \frac{1}{\sqrt{2}} \left(v_{\mathrm{H}} + h^{0} + i\chi^{0}\right) \right) \\ \Theta_{ijk} = U_{i}^{l}U_{j}^{m}U_{k}^{n}\phi_{lmn} \\ \langle \phi_{222} \rangle = \langle \phi^{*222} \rangle = v_{\Theta}/\sqrt{2}, \operatorname{Im}(\phi_{222}) = \eta_{4}/\sqrt{2}, \phi_{122} = \phi^{+}/\sqrt{3} \\ \mathcal{L}_{\mathrm{H}}^{\mathrm{mix}} = \langle \mathfrak{h}_{2} \rangle \left((U^{\dagger}D_{\mu}U)_{1}^{2}D^{\mu}\mathfrak{h}^{*1} - (U^{\dagger}D_{\mu}U)_{2}^{1}D^{\mu}\mathfrak{h}_{1} + (U^{\dagger}D_{\mu}U)_{2}^{2}(D^{\mu}\mathfrak{h}^{*2} - D^{\mu}\mathfrak{h}_{2}) \right), \\ \mathcal{L}_{\Theta}^{\mathrm{mix}} = 3\langle \phi_{222} \rangle \left((U^{\dagger}D_{\mu}U)_{1}^{2}D^{\mu}\phi^{*122} - (U^{\dagger}D_{\mu}U)_{2}^{1}D^{\mu}\phi_{122} + (U^{\dagger}D_{\mu}U)_{2}^{2}(D^{\mu}\phi^{*222} - D^{\mu}\phi_{222}) \right), \\ v_{\Theta}/\sqrt{2} \\ \chi^{+} = -\frac{3v_{\Theta}}{v_{\mathrm{H}}}\phi_{122} = -\frac{\sqrt{3}v_{\Theta}}{v_{\mathrm{H}}}\phi^{+}, \quad \chi^{0} = -\frac{3v_{\Theta}}{v_{\mathrm{H}}}\eta_{4}$$

General Scalar Extensions

$$\Phi_{ijklm...} = U_{i_1}^i U_{j_1}^j U_{k_1}^k U_{l_1}^l U_{k_1}^k U_{m_1}^m \cdots \phi_{i_1j_1k_1l_1m_1}...\underbrace{\underbrace{\frac{1\cdots 1}{2\cdots 2}\cdots 2}_{j-y+1\ j+y-1}}_{\text{for positive charge}} \text{ for negative charge } \\ (D\Phi^{*i_1i_2i_3i_4i_5...})(D\Phi_{i_1i_2i_3i_4i_5...}) & \underbrace{\frac{1\cdots 1}{2\cdots 2}\cdots 2}_{j-y-1\ j+y+1} \underbrace{\text{ for negative charge}}_{\text{for negative charge}} \\ = (D\phi^{*i_1i_2i_3i_4i_5...})(D\phi_{i_1i_2i_3i_4i_5...}) + (DU^{*i_n}_{k_n}DU^{j_n}_{i_n})\phi^{*\cdots i_{n-1}k_ni_{n+1}...}\phi^{-i_{n-1}j_ni_{n+1}...} \\ + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}D\phi^{*\cdots i_{n-1}k_ni_{n+1}...}\phi_{\cdots i_{n-1}j_ni_{n+1}...} + DU^{*i_n}_{k_n}U^{j_n}_{i_n}\phi^{*\cdots i_{n-1}k_ni_{n+1}...}D\phi^{-i_{n-1}j_ni_{n+1}...}} \\ + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}D\phi^{*\cdots i_{n-1}k_ni_{n+1}...}\phi_{\cdots i_{n-1}j_ni_{n+1}...} + DU^{*i_n}_{k_n}U^{j_n}_{i_n}\phi^{*\cdots i_{n-1}k_ni_{n+1}...}D\phi^{-i_{n-1}j_ni_{n+1}...}} \\ + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}DW^{*i_n}_{k_n}DU^{j_n}_{k_n} + DU^{*i_n}_{k_n}U^{j_n}_{i_n}U^{*i_n}_{k_n}DU^{j_n}_{i_n}}_{\phi^{*\cdots i_{n-1}k_ni_{n+1}...}\phi^{-i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}k_ni_{n+1}...}D\phi^{-i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}k_ni_{n+1}...}\phi^{-i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}k_ni_{n+1}...}D\phi^{-i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}j_ni_{n+1}...}\phi^{-i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}k_ni_{n+1}...}D\phi^{-i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}k_ni_{n+1}...}\phi^{-i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}k_ni_{n+1}...}D\phi^{-i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}k_ni_{n+1}...}D\phi^{-i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*i_n}_{k_n}DU^{j_n}_{i_n}\phi^{*\cdots i_{n-1}j_ni_{n+1}...}}_{\phi^{*\cdots i_{n-1}j_ni_{n+1}...}} + \underbrace{(U^{*$$

In this non-linear representation, U and heavy states are separate. As HEFT matching is to "integrate out" heavy states and leave Goldstones in U form, under this representation the matching become straight and simple, further programmable.

HEFT Matching of the real Higgs triplet extension

Non-linear representation

$$H = U \frac{1}{\sqrt{2}} \begin{pmatrix} 2 \frac{v_{\Sigma}}{v_{H}} \phi^{\pm} \\ v_{H} + h^{0} \end{pmatrix}, \qquad \Sigma = U \Phi U^{\dagger}, \ \Phi = \frac{1}{2} \phi_{i} \sigma_{i} = \frac{1}{2} \begin{pmatrix} v_{\Sigma} + \phi^{0} & \sqrt{2} \phi^{+} \\ \sqrt{2} \phi^{-} & -v_{\Sigma} - \phi^{0} \end{pmatrix}$$

$$\mathcal{L}_{\mathrm{RHTE}}(\mathrm{H}, \Sigma) \supset (D_{\mu}\mathrm{H})^{\dagger} (D^{\mu}\mathrm{H}) + \langle D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma \rangle - V(H, \Sigma),$$

$$V\left(\mathbf{H},\Sigma\right) = Y_{1}^{2}\mathbf{H}^{\dagger}\mathbf{H} + Z_{1}(\mathbf{H}^{\dagger}\mathbf{H})^{2} + Y_{2}^{2}\langle\Sigma^{\dagger}\Sigma\rangle + Z_{2}\langle\Sigma^{\dagger}\Sigma\rangle^{2} + Z_{3}\mathbf{H}^{\dagger}\mathbf{H}\langle\Sigma^{\dagger}\Sigma\rangle + 2Y_{3}\mathbf{H}^{\dagger}\Sigma\mathbf{H}$$

Minimum condition

$$Y_1^2 = -Z_1 v_{\rm H}^2 - Z_3 v_{\Sigma}^2 / 2 + Y_3 v_{\Sigma}, \quad Y_2^2 = -Z_3 v_{\Sigma}^2 / 2 - Z_2 v_{\Sigma}^2 + \frac{Y_3 v_{\Sigma}^2}{2v_{\Sigma}}.$$

Theoretical constraints

$$Z_{1}, Z_{2} \ge 0, \quad |Z_{3}| \ge -2\sqrt{Z_{1}Z_{2}}$$

$$\max(0, Y_{3}^{-}) < Y_{3} < Y_{3}^{+} \qquad Y_{3}^{\pm} = \frac{1}{2\nu_{\Sigma}} \left(Z_{1}\nu_{H}^{2} + 2Z_{3}\nu_{\Sigma}^{2} \pm \sqrt{Z_{1}^{2}\nu_{H}^{4} + 4Z_{1}Z_{3}\nu_{H}^{2}\nu_{\Sigma}^{2} + 16Z_{1}Z_{2}\nu_{\Sigma}^{4}} \right)$$

$$\xi \equiv \frac{v_{\Sigma}}{v_{\rm H}} \lesssim 0.02 \, (\Delta \rho \leq 0.0005) \, , v_{\rm EW} = 246 \, {\rm GeV}, \, m_h = 125 \, {\rm GeV}$$

Parameter set

$$(Z_1, Z_2, Z_3, Y_3, v_{\text{EW}}, \xi)$$

Power Counting

$$\xi \equiv \frac{v_{\Sigma}}{v_{\rm H}}$$

EoMs

$$\mathcal{L} = \mathcal{L}_{kin}(\phi_1, \phi_2, K, h, U) - V(Z_1, Z_2, Z_3, Y_3, v, \xi; \phi_1, \phi_2, K, h, U),$$

$$\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} H^{a})} \right] - \frac{\partial \mathcal{L}}{\partial H^{a}} = 0 , \quad H^{a} = (K, \phi_{1}, \phi_{2}).$$

$$K = K_{0} + \xi K_{1} + \xi^{2} K_{2} + \dots$$

$$\phi_{1} = \phi_{10} + \xi \phi_{11} + \xi^{2} \phi_{12} + \dots$$

$$\phi_{2} = \phi_{20} + \xi \phi_{21} + \xi^{2} \phi_{22} + \dots$$

The HEFT (LO and NLO)
$$\mathcal{L}(\xi^{0}) = \frac{1}{2}D_{\mu}hD^{\mu}h + \frac{1}{4}v_{H}^{4}Z_{1} - h^{2}v_{H}^{2}Z_{1} - h^{3}v_{H}Z_{1} - \frac{1}{4}h^{4}Z_{1} - \frac{1}{4}(v_{H}^{2} + 2hv_{H} + h^{2})\langle V_{\mu}V^{\mu}\rangle$$

$$\mathcal{L}(\xi^1) = \frac{\xi Y_3}{4v_H} \left(-v_H^4 + 4h^2 v_H^2 + 4h^3 v_H + h^4 \right)$$

$$V_{\mu} = U^{\dagger} D_{\mu} U$$

$$\begin{split} \mathcal{L}(\xi^2) &= \frac{\xi^2}{4v_H^2} \left\{ 8h^2 D_\mu h D^\mu h + v_H^6 Z_3 + 8h^2 v_H^4 (2Z_1 - Z_3) + 8h^3 v_H^3 (5Z_1 - 2Z_3) \right. \\ &\quad + 2h^4 v_H^2 (16Z_1 - 7Z_3) + 2h^5 v_H (4Z_1 - 3Z_3) - h^6 Z_3 \\ &\quad - 4 \left(v_H^4 + 3h v_H^3 + 4h^2 v_H^2 + 3h^3 v_H + h^4 \right) \langle V_\mu V^\mu \rangle \end{split}$$

 $+2\left(v_{H}^{4}+4hv_{H}^{3}+6h^{2}v_{H}^{2}+4h^{3}v_{H}+h^{4}\right)\langle V_{\mu}\sigma_{3}\rangle\langle V^{\mu}\sigma_{3}\rangle$ Custodial symmetry breaking

_		
-	Operator	$P(h)/\left[\xi^3/(Y_3v^3)\right]$
-	$\langle V_{\mu}V^{\mu}\rangle\langle V_{\nu}V^{ u}\rangle$	$holdsymbol{(h+v)^4}$
	$\langle V_{\mu}\sigma_{3}\rangle\langle V^{\mu}\sigma_{3}\rangle\langle V_{\nu}V^{\nu}\rangle$	$-2(h+v)^4$
n^4	$\langle V_{\mu}\sigma_{3}\rangle\langle V_{\nu}\sigma_{3}\rangle\langle V^{\mu}V^{\nu}\rangle$	$2(h+v)^4$
P^{-}	$\langle V_{\mu}V_{\nu}\sigma_3\rangle\langle V^{\mu}\sigma_3\rangle D^{\nu}h$	$-4(h+v)^3$
	$\langle V_{\mu}V_{\nu}\sigma_3\rangle\langle V^{\nu}\sigma_3\rangle D^{\mu}h$	$4(h+v)^3$
-	$\langle V_{\mu}V^{\mu}\rangle D_{ u}hD^{ u}h$	$4(h+v)^2$
	$\langle V_{\mu}\sigma_{3}\rangle\langle V^{\mu}\sigma_{3}\rangle D_{\nu}hD^{\nu}h$	$-4(h+v)^2$
	$\langle V_{\mu}V_{ u} angle D^{\mu}hD^{ u}h$	$-8(h+v)^2$
	$\langle V_{\mu}\sigma_{3}\rangle\langle V_{ u}\sigma_{3}\rangle D^{\mu}hD^{ u}h$	$4(h+v)^2$
	$D_{\mu}hD^{\mu}hD_{ u}hD^{ u}h$	4

$$V_{\mu} = U^{\dagger} D_{\mu} U$$

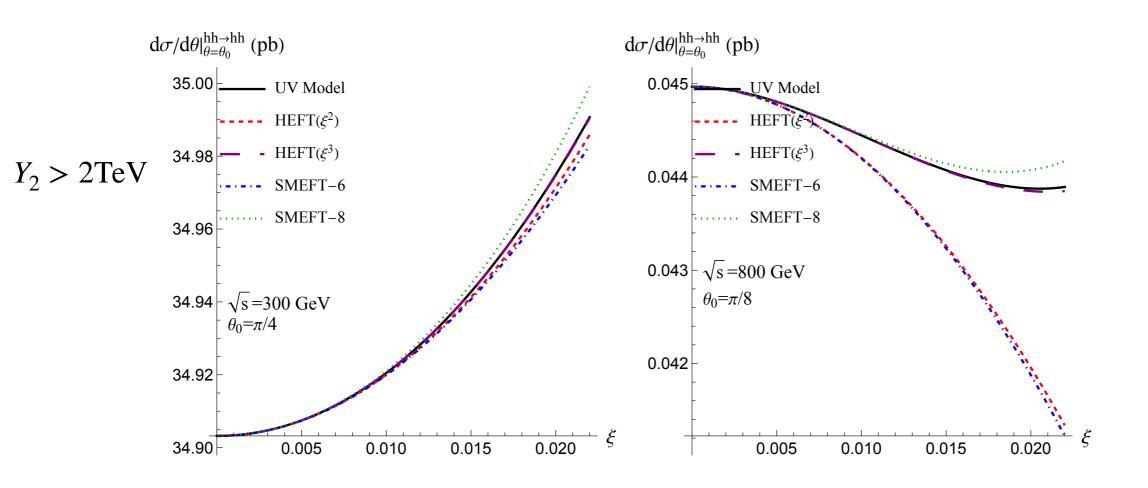
Identities

$$2\langle V_{\mu}V^{\mu}\rangle = \langle V_{\mu}\sigma_{i}\rangle\langle V^{\mu}\sigma_{i}\rangle,$$

$$\langle V_{\mu}\sigma_{1}\rangle\langle V_{\nu}\sigma_{2}\rangle - \langle V_{\nu}\sigma_{1}\rangle\langle V_{\mu}\sigma_{2}\rangle = -2i\langle V_{\mu}V_{\nu}\sigma_{3}\rangle$$

$$\frac{\partial\langle V_{\mu}V^{\mu}\rangle}{\partial U} = 2U^{\dagger}D_{\mu}UD^{\mu}U^{\dagger}$$

SMEFT Vs. HEFT



HEFT converges faster, which is same as in $WW \to hh, ZZ \to hh$ process

Similar results also from 2504.02580, Yi Liao, Xiao-Dong Ma, Yoshiki Uchida

Where is non-decoupling

Parameter set 1
$$(Z_1, Z_2, Z_3, Y_3, v_{\text{EW}}, \xi)$$

Power Counting

$$\xi \equiv \frac{v_{\Sigma}}{v_{\rm H}}$$

$$\begin{split} m_h^2 &= 2Z_1 v_H^2 - 2\xi Y_3 v_H - 4\xi^2 v_H^2 (2Z_1 - Z_3) + O(\xi^3) \\ m_K^2 &= \frac{Y_3 v_H}{2\xi} + 2\xi Y_3 v_H + 4\xi^2 v_H^2 (2Z_1 - Z_3) + 2\xi^2 v_H^2 Z_2 + O(\xi^3) \;, \end{split}$$

$$m_{\phi^{\pm}}^2 = \frac{Y_3 v_H}{2\xi} + 2\xi Y_3 v_H$$

 $\xi \to 0$ corresponds to a decoupling limit.

Parameter set
$$(m_h, m_{\phi^{\pm}}^2, m_K^2, \sin \gamma, v_H, \xi)$$

$$\begin{pmatrix} h \\ K \end{pmatrix} = \begin{pmatrix} \cos \gamma - \sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} h^0 \\ \phi^0 \end{pmatrix}$$

$$\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} H^a)} \right] - \frac{\partial \mathcal{L}}{\partial H^a} = 0 , \quad H^a = (K, \phi_1, \phi_2).$$

$$t \equiv v_H^2/m_{\phi^{\pm}}^2, \qquad \frac{K = K_0 + tK_1 + t^2K_2 + \cdots,}{\phi_1 = \phi_{10} + t\phi_{11} + t^2\phi_{12} + \cdots,}$$

 $\phi_2 = \phi_{20} + t\phi_{21} + t^2\phi_{22} + \cdots,$

$$m_{\phi^{\pm}}^{2}, m_{K}^{2}, \sin \gamma, v_{H}, \xi$$
) $Y_{3} = \frac{2v_{\Sigma}}{v_{H}^{2} + 4v_{\Sigma}^{2}} m_{\phi^{\pm}}^{2}$ $Z_{1} = \frac{1}{2v_{H}^{2}} (c_{\gamma}^{2} m_{h}^{2} + s_{\gamma}^{2} m_{K}^{2})$ $Z_{2} = \frac{1}{2v_{\Sigma}^{2}} \left(s_{\gamma}^{2} m_{h}^{2} + c_{\gamma}^{2} m_{K}^{2} - \frac{v_{H}^{2}}{v_{H}^{2} + 4v_{\Sigma}^{2}} m_{\phi^{\pm}}^{2} \right)$ $Z_{3} = \frac{1}{v_{H} v_{\Sigma}} \left[s_{\gamma} c_{\gamma} \left(m_{K}^{2} - m_{h}^{2} \right) + \frac{2v_{H} v_{\Sigma}}{v_{H}^{2} + 4v_{\Sigma}^{2}} m_{\phi^{\pm}}^{2} \right]$

Where is non-decoupling

Parameter set 1
$$(Z_1, Z_2, Z_3, Y_3, v_{EW}, \xi)$$

Power Counting

$$\xi \equiv \frac{v_{\Sigma}}{v_{\rm H}}$$

$$\begin{split} m_h^2 &= 2Z_1 v_H^2 - 2\xi Y_3 v_H - 4\xi^2 v_H^2 (2Z_1 - Z_3) + O(\xi^3) \\ m_K^2 &= \frac{Y_3 v_H}{2\xi} + 2\xi Y_3 v_H + 4\xi^2 v_H^2 (2Z_1 - Z_3) + 2\xi^2 v_H^2 Z_2 + O(\xi^3) \; , \end{split}$$

$$m_{\phi^{\pm}}^2 = \frac{Y_3 v_H}{2\xi} + 2\xi Y_3 v_H$$

 $\xi \to 0$ corresponds

to a decoupling limit.

Parameter set
$$(m_h, m_{\phi^{\pm}}^2, m_K^2, \sin \gamma, v_H, \xi)$$

$$\begin{pmatrix} h \\ K \end{pmatrix} = \begin{pmatrix} \cos \gamma - \sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} h^0 \\ \phi^0 \end{pmatrix}$$

$$m_{\phi^{\pm}}^{2}, m_{K}^{2}, \sin \gamma, v_{H}, \xi) \ egin{aligned} &Y_{3} = rac{2v_{\Sigma}}{v_{H}^{2} + 4v_{\Sigma}^{2}} m_{\phi^{\pm}}^{2} \ &Z_{1} = rac{1}{2v_{H}^{2}} \left(c_{\gamma}^{2} m_{h}^{2} + s_{\gamma}^{2} m_{K}^{2}
ight) \ &Z_{2} = rac{1}{2v_{\Sigma}^{2}} \left(s_{\gamma}^{2} m_{h}^{2} + c_{\gamma}^{2} m_{K}^{2} - rac{v_{H}^{2}}{v_{H}^{2} + 4v_{\Sigma}^{2}} m_{\phi^{\pm}}^{2}
ight) \ &Z_{3} = rac{1}{v_{H} v_{\Sigma}} \left[s_{\gamma} c_{\gamma} \left(m_{K}^{2} - m_{h}^{2} \right) + rac{2v_{H} v_{\Sigma}}{v_{H}^{2} + 4v_{\Sigma}^{2}} m_{\phi^{\pm}}^{2}
ight] \end{aligned}$$

[S. Dawson et al, 2311.16897],

Scaling:

if
$$m_{\phi^{\pm}}^2 \sim \mathcal{O}(t^{-1})$$
, $m_K^2 \sim \mathcal{O}(t^{-1})$, $\sin \gamma \sim \mathcal{O}(t)$, $\xi \sim \mathcal{O}(t)$

Decoupling

if
$$m_{\phi^{\pm}}^2 \sim \mathcal{O}(t^{-1})$$
, $m_K^2 \sim \mathcal{O}(t^{-1})$ Non-decoupling

HEFT in non-decoupling regime

$$\begin{split} \mathcal{L}(t^{-1}) &= \frac{v_H^2 \left[(4\xi^2 + 1) m_K^2 (s_\gamma + \xi c_\gamma)^2 - \xi^2 m_\phi^2 \right]}{8(4\xi^2 + 1)} - \frac{h^3 m_\phi^2 s_\gamma^2 (2\xi c_\gamma + s_\gamma)}{2\xi (4\xi^2 + 1) v_H} \\ &- \frac{h^4}{8\xi^2 (4\xi^2 + 1)^2 v_H^2 m_K^2} \left\{ m_\phi^2 s_\gamma^2 \left[(4\xi^2 + 1) m_K^2 (6(2\xi^2 - 1) c_\gamma^4 + 7 c_\gamma^2 + 18\xi c_\gamma^3 s_\gamma - 4\xi c_\gamma s_\gamma - 1) \right. \right. \\ \mathcal{L}(t^0) &= \frac{1}{2} \left\langle V_\mu \sigma_3 \right\rangle \left\langle V^\mu \sigma_3 \right\rangle \left\{ h^2 s_\gamma \left[-\xi c_\gamma^3 + \frac{c_\gamma m_\phi^2 (3s_\gamma (c_\gamma - 2\xi s_\gamma) + 4\xi)}{(4\xi^2 + 1) m_K^2} + s_\gamma^3 \right] - 2h\xi v_H s_\gamma + \xi^2 v_H^2 \right\} \\ &+ \frac{1}{4} \left\langle V_\mu V^\mu \right\rangle \left\{ \frac{h^2}{\xi} \left[\frac{m_\phi^2 s_\gamma (c_\gamma (3(8\xi^2 - 1) s_\gamma^2 - 16\xi^2) + 2\xi (9s_\gamma^2 - 8) s_\gamma)}{(4\xi^2 + 1) m_K^2} + c_\gamma s_\gamma (4\xi^2 + (1 - 4\xi^2) s_\gamma^2) \right. \\ &+ \xi (-5s_\gamma^4 + 2s_\gamma^2 - 1) \right] - 2hv_H (c_\gamma - 4\xi s_\gamma) - (4\xi^2 + 1) v_H^2 \right\} \\ \mathcal{L}(t^1) \quad \text{Op:} \left\langle V_\mu V^\mu \right\rangle \left\langle V_\nu V^\nu \right\rangle \\ &- \frac{v_H^2 (4\xi c_\gamma + s_\gamma)^2}{8m_K^2} \\ &- \frac{hv_H (4\xi c_\gamma + s_\gamma)}{8\xi (4\xi^2 + 1) m_K^2} \left\{ s_\gamma^2 \left[c_\gamma^2 (4(16\xi^4 - 1) m_K^2 + 3(1 - 16\xi^2) m_\phi^2) + 16\xi^2 m_\phi^2 \right] \\ &+ 2\xi c_\gamma s_\gamma \left[(27c_\gamma^2 - 16) m_\phi^2 - 2(4\xi^2 + 1) (5c_\gamma^2 - 4) m_K^2 \right] + 2c_\gamma^2 m_\phi^2 \left[3(4\xi^2 - 1) c_\gamma^2 - 8\xi^2 + 3 \right] \right\} \end{split}$$

The comparison between HEFTs and SMEFT is progress.

HEFT at 1-loop

$$\frac{\delta^2 S}{\delta \phi_i(x)\delta \phi_j(y)} = (1 + 2\xi^2) \langle D_\mu U^\dagger D^\mu U \rangle \, \delta_{ij} \delta^{(4)}(x - y) + \langle U^\dagger D_\mu U \sigma_i \rangle \, \langle U^\dagger D_\mu U \sigma_j \rangle \, \delta^{(4)}(x - y) - \langle (U^\dagger D_\mu U)^2 \rangle \, \delta_{ij} \delta^{(4)}(x - y)$$

$$+ i \, \langle U^\dagger D_\mu U \sigma_l \rangle \, \left(\varepsilon_{lij} + 2\xi^2 \delta_{l3} \varepsilon_{3ij} \right) D^\mu \delta^{(4)}(x - y)$$

$$- \left(1 + 4\xi^2 \right) \delta_{ij} D^2 \delta^{(4)}(x - y) - i D^\mu \left[\langle U^\dagger D_\mu U \sigma_l \rangle \, \left(\varepsilon_{lji} + 2\xi^2 \delta_{l3} \varepsilon_{3ji} \right) \delta^{(4)}(x - y) \right]$$

$$V^i_\mu = \langle U^\dagger D_\mu U \sigma_i \rangle$$

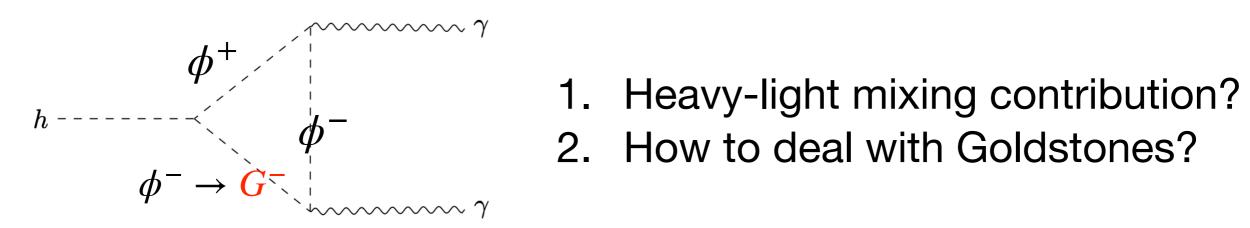
Universal One-loop Action

Brian Henning, Xiaochuan Lu, and Hitoshi Murayama, 1412.1837

$$32\pi^2\Delta\mathcal{L}_{\mathrm{EFT}}^{1\text{-loop}}$$

$$\supset -h\left(2a\left\langle V_{\mu}V^{\mu}\right\rangle - bV_{\mu}^{1}V_{1}^{\mu} - bV_{\mu}^{2}V_{2}^{\mu}\right)d\log\frac{M^{2}}{\mu^{2}}$$

$$+\frac{d}{6M^{2}}\partial_{\mu}hD^{\mu}\left[2a\left\langle V_{\nu}V^{\nu}\right\rangle - b\left(V_{\nu}^{1}V_{1}^{\nu} + V_{\nu}^{2}V_{2}^{\nu}\right)\right] + \frac{g^{\prime2}d}{6M^{2}}hB_{\mu\nu}B^{\mu\nu}$$
Heavy-particle only



HEFT at 1-loop

$$W^{\mu} \rightarrow \hat{W}^{\mu} + W^{\mu}, \quad B^{\mu} \rightarrow \hat{B}^{\mu} + B^{\mu}, \quad H \rightarrow \hat{H} + H, \quad U \rightarrow \hat{U}U,$$

Stueckelberg Transformation (get unitary gauge)

$$\hat{W}^{\mu} \to \hat{U}\hat{W}^{\mu}\hat{U}^{\dagger} + \frac{i}{g_2}\hat{U}\partial^{\mu}\hat{U}^{\dagger} \qquad W^{\mu} \to \hat{U}W^{\mu}\hat{U}^{\dagger},$$

$$U = 1 + i \frac{\pi}{v_{\text{EW}}} - \frac{1}{2} \frac{\pi^2}{v_{\text{EW}}^2} + \mathcal{O}(\pi^3), \quad \pi = \pi_i \sigma_i,$$

$$\text{tr}(D_{\mu} U^{\dagger} D^{\mu} U) \rightarrow -4 \text{ tr} \left\{ \pi \left(\frac{1}{v^2} \hat{D}_{\mu} \hat{D}^{\mu} + g_2^2 \frac{1}{v^2} \hat{C}_{\mu} \hat{C}^{\mu} \right) \pi \right\}$$

$$\hat{C}^{\mu} = \hat{W}_1^{\mu} \sigma_1 + \hat{W}_2^{\mu} \sigma_2 + \frac{1}{c_{\text{W}}} \hat{Z}^{\mu} \sigma_3$$

In progress

Summary

- HEFT is more general than SMEFT. To study non-decoupling effects we need develop HEFT tools.
- We get a non-linear framework of UV models (with general scalar extension) which encapsulate the Goldstones in its exponential form. Under this framework, matching UV models to HEFT become straightforward.
- We match the triplet Higgs model to HEFT in the decoupling regime by functional method and show its numerical results.
- For non-decoupling regime, we get the HEFTs by scaling method.
- For one-loop matching, we are trying to embed non-linear Goldstones into the universal one-loop actions (developed in SMEFT matching).

Thanks for your attention!