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Outline
• Introduction: SMEFT, HEFT and Matching. 


• A non-linear framework for matching.


• Matching Higgs Triplet Model to HEFT in 
decoupling regime.


• Non-decoupling regime and one-loop 
matching.


• Summary.
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Why EFT
• In direct search of new particles, we get constraints.

3

SM Effective

MΛ ∼ TeV

dσ/dM

New Particle is heavy, so it is better to study the indirect effects? 

• UV theory is not known, use most general EFT operators to 
parameterize NP.  (Bottom-up approach).


• UV theory is known, integrate out the heavy particles and match 
to EFT. (Top-down approach). 

[S.  Rappoccio 1810.10579]



Two EFTs: SMEFT and HEFT

• SMEFT, linear realization of the Higgs and Goldstones, canonical dimension


• HEFT, nonlinear realization, chiral dimension

4

Both are invariant under   symmetry and contains SM fields. SU(3)c × SU(2)L × U(1)Y

h, U ≡ exp ( iπiσi
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1
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DμhDμh − V(h) +
v2

EW
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F(h)Tr(DμU†DμU) + ⋯
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m2
h h2[1 + (1 + Δκ3)

h
vEW

+ ⋯], F(h) = 1 + 2(1 + Δa)
h

vEW
+ ⋯

H =
1

2 ( G+

v + h + iG0), ℒSMEFT ⊃
1
2

DμH†DμH +
m2

2
H†H − λ(H†H)2 +

CH

Λ2
(H†H)3 + ⋯

[H. Sun, M.-L. Xiao, and J.-H. Yu, 2206.07722]

** **

SMEFT/HEFT HEFT
Pankaj Agrawal, Debashis Saha, Ling-Xiao Xu,, Jiang-Hao Yu, C.-P. Yuan,1907.02078

See Jian Wang, 

Lei Zhang, Nan Lu’s talks



A Geometric Picture
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SM doublet

The Standard Model EFT
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, ⃗ϕ → O ⃗ϕ , where O ∈ O(4) ⊃ SU(2) × U(1)

HEFT encompasses SMEFT 
R. Alonso, E. Jenkins, A. Manohar [1511.00724,1605.03602]

A Geometric Perspective
(Think O(4), but O(2) is easier to illustrate)
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HEFT not SMEFT: Case I
When there’s a hole s.t. h = -v is not on the manifold  

(no O(4) fixed point about which to expand in SMEFT coordinates)

[Alonso, Jenkins, Manohar 1605.03602]
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only HEFT 
from N. Craig, HEFT2021
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BSM Non-decoupling Particles



Non-decoupling Particles
Decoupling: While the mass of a particle goes infinity, its 
contribution vanishes.  

7

ℒ ⊃ −
1
2

M2
SS2 − κS |H |2 .E.g. S

• Non-decoupling effects at tree level

WE.g. μ− → e−νμν̄e ∼
g2

2

M2
W

→
1

v2
EW

(if MW → ∞)

  MW = g2vEW/2 → g2 = 2MW /vEW

Due to Higgs mechanism,  is not a free parameter. MW

∼ κ2/M2
S → 0 (if MS → ∞)
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Non-decoupling Particles
• Non-decoupling effects at one-loop level Ilaria Brivio and Michael Trott, 1706.08945

Z Z

t

t̄

W W

t

b̄

h
h

Figure 4: SM one loop corrections to the ⇢ parameter.

theory construction of Refs [116–120] results when the limit mh ! 1 is taken. The corrections
due to the heavy Higgs matched onto this EFT are not suppressed by explicit powers of m2

h in
their leading contributions. The full results of this form are given in Refs. [121, 122]. This is
an example of non-decoupling effects that deviate from a naive expectation formed from the
decoupling theorem.

Even larger corrections come about due to splitting the quark masses in the limit mt �

mb. Note that

m2
t + m2

b � 2
m2

t m2
b

m2
t � m2

b

log

✓
m2

t

m2
b

◆
! 0, (4.10)

in the limit mt ! mb. Integrating out the top, while leaving the b quark in the spectrum,
leads to a theory without a linearly realized SUL(2) symmetry. Furthermore, mt is acting
to regulate an integral, which is a reason that it appears as a polynomial outside of the
logarithm. As mt = yt v/

p
2 the limit mt ! 1 must correspond to v ! 1, yt ! 1, or

both. The former limit is interesting, as the corrections given Eq. 4.10 vanish if mt/mb ! 1

as v ! 1. Then SUL(2) can again be linearly realized. The limit yt � 1 is a strong coupling
limit, leading to a breakdown of perturbation theory. Then the decoupling theorem’s implicit
assumption of a valid perturbation theory no longer holds. In the case of the ⇢ parameter,
the non-decoupling effects come about due to this strong coupling limit in addition to the
differences in the realization of the symmetries of the full theory and the low energy EFT.28

4.3.2 Weak interactions

When exact symmetries are present in a subset of interactions in the EFT, such symmetries
can first be broken explicitly by the heavy fields integrated out. Then the leading operator
mediating a process can be due to the local contact operator correction to the EFT suppressed
by m2 (in the case of weak interactions a suppression by m2

W ), but with no relative suppression
compared to any leading order effect, which is absent. This is another way in which non-
decoupling effects can come about.

The weak interactions are an important example of this form of non-decoupling. The
SM is defined in Section 5.1. Flavour violating effects in the SM due to the weak interactions

28In the case of the ⇢ parameter the corrections shown are also the leading violations of custodial symmetry,
as an additional subtlety.
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As mt → ∞, or mh → ∞, Δρ ↛ 0

4.3 Non-decoupling physics

The decoupling theorem has some exceptions. This should be surprising considering the
generality of the arguments that have been advanced in the previous sections. Calculating
in field theories to an approximate precision, in the presence of separated scales, is usefully
thought of using the techniques of EFT. Such EFTs are constructed based on the separation of
scales that underlies decoupling. However, no theorem can escape the constraints of its exact
wording and assumptions, and this is also true for the decoupling theorem. Several examples
of “non-decoupling" effects are discussed in the literature. Heavy physics of this form does not
imply that an EFT is impossible to construct to capture an IR limit of some UV physics. It
just enforces the construction of the EFT to take on a particular form, usually by requiring
that a non-linear representation of a symmetry be used.27

4.3.1 The ⇢ parameter

Non-decoupling effects can occur when heavy states and the light states are embedded in the
same representations of a symmetry group in the full theory. Divergences can be forbidden by
the linearly realized symmetry, due to cancellation between the particles of different masses
embedded in such a (softly broken) representation of a symmetry group. When some of the
states are no longer in the spectrum in the EFT, the counterterms are no longer forbidden by
the linearly realized symmetry. Then perturbative corrections can grow with the mass of the
state removed from the theory.

The practical signal of this physics can be the appearance of numerically larger perturba-
tive corrections when the heavy state is still retained in the theory, and at times an additional
mass dependence outside of logarithms in such corrections. This can be the case as in the
loop corrections the masses sometimes act to regulate the divergences when the symmetry is
linearly realized. Several historical examples of this form of non-decoupling are present in the
literature, in ⌫e scattering [109], in large O(↵s) corrections (due to quark doublet mass split-
tings) to the axial neutral current [110] and in the behavior of one loop corrections [111–114]
to the ratio of charged and neutral currents in the SM, due to the diagrams shown in Fig. 4.

We discuss this latter case of the ⇢ parameter [115], defined as the ratio of charged
and neutral currents at low energies, as an example. The ⇢ parameter has the perturbative
expansion, with one loop contributions shown in Fig.4 (in MS) which give

⇢ '
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2

✓
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�

11ĜF M̂2
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24
p

2⇡2
log

✓
m2

h

m2
Z

◆
.(4.9)

The Higgs mass dependent correction is not exceedingly large and it is not related in mass to
another particle in the spectrum by a linear realization of a symmetry. The limit mh ! 1 can
be taken, which still leads to a non-linear realization of SUL(2)⇥UY(1) as the Higgs field and
its vacuum expectation value are related when this symmetry is linearly realized. The effective

27Again the existence of the SMEFT and the HEFT can be understood to be related to this fact, as non-
decoupling effects in the scalar sector are a possibility.
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Custodial symmetry: SU(2)L × SU(2)R≈ 1

BSM non-decoupling effects

1. The new particle derive their masses majorly from the Higgs 
mechanism. or  


2.   There are additional sources of electroweak symmetry breaking.

Timothy Cohen,Nathaniel Craig, Xiaochuan Lu, and Dave Sutherland, 2008.08597

 mt = ytvEW/2 → yt = mt /vEW

 Generally they are more easier to be found in HL-LHC or CEPC.



•   Could a same UV model match to both SMEFT and HEFT?

 When will the HEFT be needed?


•  The SMEFT matching is mature at one-loop level 
(diagrammatic method and functional method). How to 
make the HEFT matching programmable?  

9

Matching UV Models to HEFT
Through matching we would like to study,  

How to use the Standard Model effective field theory, Brian Henning, Xiaochuan Lu, and Hitoshi Murayama, 1412.1837

The Universal One-Loop Effective Action, Aleksandra Drozd, John Ellis,  J´er´emi Quevillon and Tevong You, 1512.03003

STrEAMlining EFT Matching, Timothy Cohen,1 Xiaochuan Lu,1 and Zhengkang Zhang, 2012.07851

Linear Standard Model extensions in the SMEFT at one loop and Tera-Z，

John Gargalionis, Jérémie Quevillon, Pham Ngoc Hoa Vuong, Tevong You，2412.01759

From the EFT to the UV: the complete SMEFT one-loop dictionary, Guilherme Guedes, Pablo Olgoso, 2412.14253

Covariant Derivative Expansion (CDE)

Universal One-loop Action

Automation

One-Loop UV-SMEFT dictionary



• A non-linear framework of UV models (2412.00355)


• Matching Real Triplet Higgs Model to HEFT in the 
decoupling regime (2503.00707)


• Matching in non-decoupling regime (in progress),


• Matching at one-loop (in progress)
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 Real Higgs Triplet Extension of the SM (RHTE)
• A singlet extension, a second doublet extension (2HDM), 

next is triplet. 


• The custodial violation appears at tree level with a non-
zero VEV.  

11

 [G. Buchala et al, 1608.03564, 2312.13885],  [S. Dawson et al, 2305.07689, 2311.16897],[F. Arco et al, 2307.15693]

The Model:   the SM plus a real  triplet with  SU(2)L Y = 0
Linear form

extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .
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denotes trace< . . . > are dimensionless,  are dimensionalZis Yis

ℒRHTE(H, Σ) ⊃ DμH†DμH + ⟨DμΣ†DμΣ⟩ − V (H, Σ),

V (H, Σ) = Y2
1H†H + Z1(H†H)2 + Y2

2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH



Matching RHTE to SMEFT
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EoM of :   Σ

ℒΣ =
1
2

⃗Σ T(−DμDμ − Y2
2 − Z3 H†H) ⃗Σ + Y3

⃗Σ ⋅ H† ⃗σH −
1
4

Z2( ⃗Σ ⋅ ⃗Σ )2

⃗Σ c = −
1

−DμDμ − Y2
2 − Z3 H+H

Y3H+ ⃗σH +
1

−DμDμ − Y2
2 − Z3 H+H

Z2( ⃗Σ c ⋅ ⃗Σ c) ⃗Σ c

Expansion with 1/Y2
2

T. Corbett, A. Helset, A. Martin, M. Trott, [2102.02819]
J. Ellis, K. Mimasu, F. Zamperdri, [2304.06663]

(−DμDμ − Y2
2 − Z3 H†H) ⃗Σ c = − Y3H† ⃗σH + Z2( ⃗Σ c ⋅ ⃗Σ c) ⃗Σ c

ℒSMEFT =
1

2Y2
2

Y2
3H† ⃗σH ⋅ H† ⃗σH +

1
2

(H† ⃗σH)T 1
Y2

2
(−DμDμ − Z3H†H)

1
Y2

2
H† ⃗σH + ⋯

ℒRHTE(H, Σ) ⊃ DμH†DμH + ⟨DμΣ†DμΣ⟩ − V (H, Σ),

V (H, Σ) = Y2
1H†H + Z1(H†H)2 + Y2

2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH
mass

(if )Y2
2 ≫ v2

EW



Matching RHTE to HEFT
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1. Solve EoMs of .  

2.  Embed  into an exponential matrix form. ?!  It must be 

complicated.  

H±, K
G±

EW, G0

h, U ≡ exp ( iπiσi

vEW ), ℒLO
HEFT ⊃

1
2

DμhDμh − V(h) +
v2

EW

4
F(h)Tr(DμU†DμU) + ⋯

V(h) =
1
2

m2
hh2[1 + (1 + Δκ3)

h
vEW

+ ⋯], F(h) = 1 + 2(1 + Δa)
h

vEW
+ ⋯

RHTE in linear form

(h
K) = (cos γ −sin γ

sin γ cos γ ) (h0

Σ0)

H =
G+

1

2
(vH + h + iG0) , Σ =

1
2

Σiσi =
1
2

vΣ + Σ0 2Σ+

2Σ− −vΣ − Σ0
, i = 1,2,3

v2
EW = v2

H + 4v2
Σ



Find a non-linear representation
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H =
G+

1

2
(vEW + h + iG0)

 SM:
H = U

1

2 ( 0
vEW + h0), U ≡ exp ( iπiσi

vEW )
 2HDM

among HEFT coe!cients when they are matched to the SMEFT. In particular, in the subset given
above, they are correlated as: ”b|SMEFT = 4”a|SMEFT, and aHWW |SMEFT = 2aHHWW |SMEFT.

3 Heavy Higgs bosons within the 2HDM

In this section we recall the basic aspects of the 2HDM that are relevant for the present computation.
The 2HDM is the simplest extension of the SM that includes two Higgs doublets, #1 and #2, instead
of one doublet #. These two doublets are linear parametrizations of the four complex scalar fields
(hence, eight real scalar fields) defining the 2HDM scalar sector. They are usually defined as:

#1 =

(
ω

+

1
1→
2
(v1 + ε1 + iϑ1)

)
, #2 =

(
ω

+

2
1→
2
(v2 + ε2 + iϑ2)

)
, (3.1)

where v1, v2 are the real vevs acquired by the fields #1, #2, respectively, with tan ϖ = v2/v1 and they
satisfy the relation v =

√
(v2

1
+ v

2

2
) where v = 246GeV is the SM vev. The eight degrees of freedom

above, ω
±
1,2

, ε1,2 and ϑ1,2, give rise to three Goldstone bosons, G
± and G

0, and five massive physical
scalar fields: two CP -even scalar fields, h and H, one CP -odd one, A, and one charged pair, H

±. Here
the mixing angles ϱ and ϖ diagonalize the CP -even and -odd sectors, respectively. These rotations
define the physical mass eigenstates, h, H, A and H

± in terms of the EW interaction eigenstates (or
the other way around) and are given by:

ω
±
1

= cos ϖ G
±

→ sin ϖ H
±

,

ω
±
2

= sin ϖ G
± + cos ϖ H

±
,

ϑ1 = cos ϖ G
0

→ sin ϖ A,

ϑ2 = sin ϖ G
0 + cos ϖ A,

ε1 = cos ϱ H → sin ϱ h,

ε2 = sin ϱ H + cos ϱ h.

The relations among the two usual notations for the GBs inside the doublets are as in Eq. (2.13), i.e.
G

± = →iς
±, G

0 = →ς
0.

The self-interactions among the above scalar fields are provided by the 2HDM potential. Since
a general potential with two Higgs doublets can lead to flavor-changing neutral currents (FCNC) at
the tree level, which are strongly discouraged by experimental measurements, we will impose a Z2

symmetry [36, 37] meaning invariance under #1 ↑ #1 and #2 ↑ →#2. Furthermore, we will allow
this Z2 symmetry to be only softly broken by the parameter m

2

12
, which has dimensions of mass

squared. Thus, the relevant potential for the present work of the CP conserving 2HDM with the Z2

soft-breaking included, expressed in terms of the two doublets #1 and #2, is given by [6, 7, 36]:

V2HDM(#1, #2) = m
2

11
(#†

1
#1) + m

2

22
(#†

2
#2) → m

2

12
(#†

1
#2 + #†

2
#1) +

φ1

2
(#†

1
#1)

2 +
φ2

2
(#†

2
#2)

2

+φ3(#
†
1
#1)(#

†
2
#2) + φ4(#

†
1
#2)(#

†
2
#1) +

φ5

2
[(#†

1
#2)

2 + (#†
2
#1)

2].
(3.2)

After the EW symmetry breaking, SU(2)L ↓ U(1)Y ↑ U(1)em, the minimization conditions for the
above 2HDM potential lead to the existence of five physical Higgs bosons: two CP -even Higgs bosons
h and H, one CP -odd Higgs boson A and two charged Higgs bosons H

± with masses given by mh,
mH (with mh < mH), mA and mH± respectively. In addition, the three would-be Goldstone bosons
disappear from the physical spectrum and provide the needed physical masses for the EW gauge
bosons, mW and mZ . In this work, we will identify the h state with the Higgs boson discovered
in the LHC with a mass mh = 125 GeV [1–3]. The other Higgs bosons will be assumed here to be
heavier than the EW scale v, an hypothesis which is well justified given the present tight experimental
constraints [38, 39].

The previous potential also contains the self-interactions among the scalars of the 2HDM which
are very relevant for the present work. In addition, the interactions of the Higgs bosons with the

– 8 –

Higgs Basis:

Triplet

H = U
1

2

2 vΣ

vH
ϕ±

vH + h0
, Σ = UΦU†, Φ =

1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

ℋ1 = U
1

2 ( 0
vEW + hH

1 ), ℋ2 = U
H+

1

2
(hH

2 + iA)

H1 =
G+

1

2
(vEW + hH

1 + iG0) , H2 =
H+

1

2
(hH

2 + iA)

S. Dawson et al, 2305.07689

U could be 
considered 
as a rotation.

v2
EW = v2

H + 4v2
Σ

H =
G+

1

2
(vH + h + iG0) , Σ =

1
2

Σiσi =
1
2

vΣ + Σ0 2Σ+

2Σ− −vΣ − Σ0
, i = 1,2,3
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H = U
1

2

2 vΣ

vH
ϕ±

vH + h0
Σ = UΦU†, Φ =

1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

DμH†DμH ⊃ 2
vΣ

vH
× vHϵ3jkDμϕjDμπk /(2vEW) ⟨DμΣ†DμΣ⟩ ⊃ − vΣϵ3jkDμϕjDμπk /vEW

Kinetic mixing cancels

U does not appear in potential, no mass mixing
V (H, Σ) = Y2

1H†H + Z1(H†H)2 + Y2
2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH

vEW : ̂eρ

U : ̂eθ

vH

vΣ Does these two rules suitable for a 
general  representations? 
E.g. a quadruplet, a quintet.

SU(2)



Quadruplet with Y = 3/2
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Θ111

3Θ112

3Θ122

Θ222

→

Θ3+

Θ++

Θ+

Θ0 Θijk = Ul
iU

m
j Un

k ϕlmn

Hi = Uj
i 𝔥j, 𝔥 =

χ+

1

2
(vH + h0 + iχ0)

ℒmix
Θ = 3⟨ϕ222⟩((U†DμU )2

1Dμϕ*122 − (U†DμU )1
2Dμϕ122 + (U†DμU )2

2(D
μϕ*222 − Dμϕ222)),

ℒmix
H = ⟨𝔥2⟩((U†DμU)2

1Dμ𝔥*1 − (U†DμU)1
2Dμ𝔥1 + (U†DμU)2

2(D
μ𝔥*2 − Dμ𝔥2)),

vH / 2

vΘ/ 2

⟨ϕ222⟩ = ⟨ϕ*222⟩ = vΘ/ 2, Im(ϕ222) = η4/ 2, ϕ122 = ϕ+/ 3

χ+ = −
3vΘ

vH
ϕ122 = −

3vΘ

vH
ϕ+, χ0 = −

3vΘ

vH
η4
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Neutral

+

In this non-linear representation,  and heavy states are separate. 
As HEFT matching is to “integrate out” heavy states and leave 
Goldstones in  form, under this representation the matching 
become straight and simple, further programmable.

U

U
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HEFT Matching of the real Higgs triplet extension

Y2
1 = − Z1v2

H − Z3v2
Σ /2 + Y3vΣ, Y2

2 = − Z3v2 /2 − Z2v2
Σ +

Y3v2

2vΣ
.

Non-linear representation

Minimum condition
Z1, Z2 ≥ 0, |Z3 | ≥ − 2 Z1Z2

max(0,Y−
3 ) < Y3 < Y+

3 Y±
3 =

1
2vΣ (Z1v2

H + 2Z3v2
Σ ± Z2

1 v4
H + 4Z1Z3v2

Hv2
Σ + 16Z1Z2v4

Σ)
Theoretical constraints

H = U
1

2

2 vΣ

vH
ϕ±

vH + h0
, Σ = UΦU†, Φ =

1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .

– 5 –

Experiment  constraints   ( ) , ,  ξ ≡
vΣ

vH
≲ 0.02 Δρ ≤ 0.0005 vEW = 246 GeV mh = 125 GeV

Parameter set (Z1, Z2, Z3, Y3, vEW, ξ)

K = K0 + ξK1 + ξ2K2 + . . .
ϕ1 = ϕ10 + ξϕ11 + ξ2ϕ12 + . . .
ϕ2 = ϕ20 + ξϕ21 + ξ2ϕ22 + . . . ,

EoMs
Power Counting ξ ≡

vΣ

vH
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ℒ(ξ0) =
1
2

DμhDμh +
1
4

v4
HZ1 − h2v2

HZ1 − h3vHZ1 −
1
4

h4Z1 −
1
4 (v2

H + 2hvH + h2)⟨VμVμ⟩

ℒ(ξ1) =
ξY3

4vH
(−v4

H + 4h2v2
H + 4h3vH + h4)

ℒ(ξ2) =
ξ2

4v2
H

{8h2DμhDμh + v6
HZ3 + 8h2v4

H(2Z1 − Z3) + 8h3v3
H(5Z1 − 2Z3)

+2h4v2
H(16Z1 − 7Z3) + 2h5vH(4Z1 − 3Z3) − h6Z3

−4 (v4
H + 3hv3

H + 4h2v2
H + 3h3vH + h4)⟨VμVμ⟩

+2 (v4
H + 4hv3

H + 6h2v2
H + 4h3vH + h4)⟨Vμσ3⟩⟨Vμσ3⟩}

Vμ = U†DμU

Custodial symmetry breaking

p4

Vμ = U†DμU

2⟨VμVμ⟩ = ⟨Vμσi⟩⟨Vμσi⟩,

⟨Vμσ1⟩⟨Vνσ2⟩ − ⟨Vνσ1⟩⟨Vμσ2⟩ = − 2i⟨VμVνσ3⟩

∂⟨VμVμ⟩
∂U

= 2U†DμUDμU†

Identities
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of the BSM states can be as low as 495 GeV, or the equivalent value of Y2 → 470 GeV , when
ω approaches 0.02, indicating that the SMEFT converges slowly to the full model. This is
clearer in the right panel of Fig. 1. The divergence of the UV model (the black vertical
line) at around ω = 0.0196 is due to the presence of heavy scalars with masses below the
center-of-mass energy. Both the SMEFT and the HEFT lose the predictive power there.
Away from such a value of ω, both EFTs give similar approximations at the same order and
the second order, SMEFT-8 and HEFT(ω3), is a very good replication of the RHTE.

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6

SMEFT-8

0.005 0.010 0.015 0.020
ξ34.90

34.92

34.94

34.96

34.98

35.00

dσ/dθθ=θ0
hh→hh (pb)

s =300 GeV
θ0=π/4

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6

SMEFT-8

0.005 0.010 0.015 0.020
ξ

0.042

0.043

0.044

0.045

dσ/dθθ=θ0
hh→hh (pb)

s =800 GeV
θ0=π/8

Figure 2. Comparison between the UV model and the HEFT, the SMEFT dim-6 (SMEFT-6) and
the SMEFT dim-8 (SMEFT-8) approaches to it in the di!erential cross-section of hh ↑ hh, for a
center-of-mass energy

↓
s and a scattering angle ε0. On both panels, we take Y3 = 730.14 GeV,

Z2 = 1 and Z3 = 0.758, while all other parameters can be fixed by the SM inputs for a certain
value of ω.

We present similar plots but for a large value of Y3 (Y3 = 730.14 GeV) for di!erent
values of the center-of-mass energy (

↓
s = 300 GeV for the left panel and

↓
s = 800 GeV for

the right panel) in Fig. 2. In this case, both EFTs are still good replications of the RHTE
while the HEFT O(ω3) shows a better description for larger values of ω. The improvement
of the SMEFT can be understood by noticing that the lowest value of Y2 is around 2115

GeV, which is far above both the electroweak scale and collision energy, and makes the
SMEFT expansion under control.

We now discuss the scattering processes of WW ↑ hh and ZZ ↑ hh. The similar plots
are shown in Fig. 3 and Fig. 4. We only consider the longitudinal-mode scattering since 1)
the contributions from transverse modes can be neglected and 2) at the high energy limit
the longitudinal modes are just Goldstones required by the Goldstone equivalence theorem,
which are deeply related to the electroweak symmetry breaking. Similar characteristics hold
for WW ↑ hh and ZZ ↑ hh. The O(ω3) corrections significantly improve the quality of
the replication of the UV model in the HEFT and it provides the best approximation to
reproduce the UV predictions for both large and small values of the collision energy. it is
notable that the SMEFT yields a very poor replication when Y3 is small (top panels).

– 18 –

Y2 > 2TeV

HEFT converges faster,  which is same as in 
 processWW → hh, ZZ → hh

Similar results also from 2504.02580, 
Yi Liao,  Xiao-Dong Ma, Yoshiki Uchida
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Parameter set 1 (Z1, Z2, Z3, Y3, vEW, ξ)

Power Counting ξ ≡
vΣ

vH

m2
h = 2Z1v2

H − 2ξY3vH − 4ξ2v2
H(2Z1 − Z3) + O(ξ3)

m2
K =

Y3vH

2ξ
+ 2ξY3vH + 4ξ2v2

H(2Z1 − Z3) + 2ξ2v2
H Z2 + O(ξ3) ,

m2
ϕ± =

Y3vH

2ξ
+ 2ξY3vH  corresponds 

to a decoupling limit.
ξ → 0

Parameter set (mh, m2
ϕ±, m2

K, sin γ, vH, ξ)
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Parameter set 1 (Z1, Z2, Z3, Y3, vEW, ξ)

Power Counting ξ ≡
vΣ

vH

m2
h = 2Z1v2

H − 2ξY3vH − 4ξ2v2
H(2Z1 − Z3) + O(ξ3)

m2
K =

Y3vH

2ξ
+ 2ξY3vH + 4ξ2v2

H(2Z1 − Z3) + 2ξ2v2
H Z2 + O(ξ3) ,

m2
ϕ± =

Y3vH

2ξ
+ 2ξY3vH  corresponds 

to a decoupling limit.
ξ → 0

Parameter set (mh, m2
ϕ±, m2

K, sin γ, vH, ξ)

if m2
ϕ± ∼ 𝒪(t−1), m2

K ∼ 𝒪(t−1), sin γ ∼ 𝒪(t), ξ ∼ 𝒪(t)
Decoupling

if m2
ϕ± ∼ 𝒪(t−1), m2

K ∼ 𝒪(t−1) Non-decoupling

Scaling: 
[S. Dawson et al, 2311.16897],
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L(t1)

The comparison between HEFTs and SMEFT is progress.
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Heavy-particle only

ϕ+

ϕ− → G−
ϕ− 1. Heavy-light mixing contribution?


2. How to deal with Goldstones?

Universal One-loop Action Brian Henning, Xiaochuan Lu, and Hitoshi Murayama, 1412.1837
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U = 1 + i
π

vEW
−

1
2

π2

v2
EW

+ 𝒪(π3), π = πiσi,

tr(DμU†DμU) → −4 tr {π ( 1
v2

D̂μD̂μ + g2
2

1
v2

ĈμĈμ) π}

Stueckelberg Transformation (get unitary gauge)

Ĉμ = Ŵμ
1σ1 + Ŵμ

2σ2 +
1

cW

̂Zμσ3

In progress



Summary
• HEFT is more general than SMEFT. To study non-decoupling 

effects we need develop HEFT tools. 


• We get a non-linear framework of UV models (with general scalar 
extension) which encapsulate the Goldstones in its exponential 
form. Under this framework, matching UV models to HEFT become 
straightforward. 


• We match the triplet Higgs model to HEFT in the decoupling 
regime by functional method and show its numerical results. 


• For non-decoupling regime, we get the HEFTs by scaling method.


• For one-loop matching, we are trying to embed non-linear 
Goldstones into the universal one-loop actions (developed in 
SMEFT matching).
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Thanks for your attention!
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