CMOS Strip Chip Status

Xin Shi

On behalf of CMOS Strip Chip Team

2025.07.25

CEPC Silicon Tracker Weekly Meeting

CMOS Strip Chip (CSC) – Goal

	Chip Parameters
Strip width	10 μm
Strip pitch	20 μm
Strip number / chip	1,024
Chip size	2.1×2.3 cm ² (active area: 2.05 cm x2.05 cm)
Spatial resolution	σ~5 μm
Time resolution	~3 ns
Power consumption	~80 mW/cm ²
Data size per hit	32 bits (10b chn ID + 8b BX + 6b TOT + 5b chip ID)
Event rate / chip	Maximum ~0.25 Gbps
LV / HV	1.8 V / 200 V
Wafer resistivity	2k Ω cm
Technology Node	180 nm

CMOS Strip Chip – Roadmap

- CSC1
 - Passive CMOS strip sensor
 - Separate front-end electronics CMOS circuit
- CSC2
 - Small size and large pitch prototype
- CSC3
 - Full size and small pitch with full function circuit

CSC1 Overview

- Passive CMOS sensor
 - Main sensor
 - Test structure
- Separate front-end electronics circuit
 - Analog Front-end
 - TDC
 - Validation circuit
- Overall layout

CSC1 – Main Sensor

180µm

• 晶圆

- 2kΩ p型
- 减薄到 180µm
- 背面注入 p+ 并退火
- 背面溅射金属
- 器件参数
 - Pitch 75.5µm
 - 电极宽 18µm
 - 偏压电阻设计值 ~1.6 MΩ

电极条电学仿真 IV / CV

$2k \Omega$ thickness = 180 µm

• Collected charge: ~ 2.3 fC

Simulation Structure of two strips

Doping

Potential

Electric Field

微条间电阻与电容仿真

 $C_{int} = 5 fF$

 $R_{int} = 21 \ G\Omega$

晶圆与工艺选择

- 晶圆
 - 天津中环 8 英寸 2kΩ / 普通晶圆
- 工艺
 - 0.18µm RF Mix-Signal
 - 直接在片上加工,不长外延
 - 1P4M + 顶层厚金属层
- 背部工艺
 - 晶圆减薄至 180µm
 - •背面注入 p 掺杂并激光退火
 - 背面溅射一层金属形成背部接触

No.	Characteristics			
1	生长方法	Growth Metchod	FN	
2	型号	Туре	Ρ	
3	掺杂类型	Dopant	Boron	
4	电阻率	Resistivity	>2000Ω.cm	
5	晶向	Crystal Orientation	<100>	
6	晶向偏离度	Off Orientation	±0.5°	
7	直径	Diameter	200±0.2mm	
8	V槽位置	Flat Location	<110>±1° 深度: 1-1.25mm 角度: 89-95°	
9	边缘轮廓	Edge Profile	R型 22±2°SEMI	
10	厚度	Thickness	725±25µm	
11	总厚度变化	Thickness Variation(TTV)	≤10	
13	弯曲度	Bow	≤30	
14	翘曲度	Warp	≤60	
15	颗粒	Particle	0.3 < 10	
16	正面	Surface Condition	抛光	
17	背面	Backside Condition	酸腐	
18	碳含量	Carbon Concentration (Cs)	≤2E16	
19	氧含量	Oxygen Concentration(NEW ASTM)	≤2E16	
20	金属沾污	Surface Metal Contamination(Al、Na、 K、Ca、Fe、Ni、Cu、Zn、Cr)	< 5E10	

A-1: 微条长21.260mm,有三种条宽
 不同收集极宽度的A-1 sensor 设计

A-2: diode PIN: 5环/4环/3环 PTP: (正常/18um)/30um/55um

五层保护环

A-3: pixel (有1x1/7x7/19x19三种设计)

四层保护环

三层保护环

CSC1 读出电路的功能与设计要求

模拟电路部分将传感器输出的电流脉冲信号进行积分为电压信号,然后经过折叠式共源共栅放大器将 电压信号进行放大,然后进入比较器内进行比较,输出数字方波脉冲信号,进入时间数字转换器 (TDC)中测量其时间信息。

设计要求:

- 1024个通道需要 1024个AFE电路
- 工作温度范围: -40°C ~ +40°C
- 工作电源: 3.3 V
- 功耗 < 20mW/通道
- 动态范围: 10keV-50MeV
- 传感器输出电流信号: 上升时间~0.2ns, 下降时间~3ns, 电流脉冲~0.3uA-20uA

输入级电路的选择

输入级电路作为读出电路的核心部分,其性能对读出电路的噪声,功耗,面积等参数有很大影响。

• 源跟随器

- 结构简单,适用于大面积,低功耗的读出电路。在低背景下有较好的信噪比,但是其在中高背景下,输出信号的非 线性较为严重,并且源跟随器会引入较大的噪声。
- 直接注入结构
 - 由注入管和积分电容构成,占用面积较小,但在低背景下,探测器电流较小,使得注入管跨导变小,输入阻抗增大, 注入效率降低,增大了电路的非线性度。
- 电流镜栅调制结构
 - 利用电流镜的复制作用,将探测器电流按比例放大或缩小,再进行积分。与直接注入结构相比,有更高的灵敏度。
 但是该结构不能给探测器提供稳定的偏压。
- 缓冲直接注入结构
 - 是在直接注入结构基础上跨接反相放大器,降低了电路的输入阻抗,提高了注入效率,改善了响应,但是面积与功 耗都较大。
- 电容反馈跨阻放大器结构
 - 虽然相较前面几种较为复杂,功耗较大,但是该结构中运放与积分电容构成负反馈回路,可以提供很低的输入阻抗, 较高的注入效率,能为探测器提供稳定的偏压。在从低到高的背景范围内,其噪声都很小,非线性度低。

电路设计面临的挑战 – 噪声影响

- 输入电路的噪声对探测器微弱信号输出的信噪比有着重要的影响
- •分别为热噪声(KTC噪声)和闪烁噪声(1/f噪声)
- 热噪声是读出电路中起主要作用的噪声
- •闪烁噪声是MOS 管在漏电流中产生的噪声

•本电路采取的措施

- •采用折叠共源共栅结构作为输入级
- •采用迟滞比较器抗干扰

噪声计算公式:

 $\overline{V_{n}^{2}} = \overline{V_{n,r}^{2}} + \overline{V_{n,i}^{2}} = \left(4kT\gamma g_{m,r} + \frac{K_{P}g_{m,r}^{2}}{C_{OX}(WL)_{r}f}\right) (C_{i} + g_{m,r})^{2} + \left[8kT\gamma \left(\frac{1}{g_{m3}} + \frac{g_{m1}}{g_{m3}^{2}}\right) + \frac{2K_{P}}{C_{OX}(WL)_{1}f} + \frac{2K_{N}}{C_{OX}(WL)_{3}f} \frac{g_{m3}^{2}}{g_{m1}^{2}}\right] \frac{1}{1 + (2\pi fC_{i}R_{i,a})^{2}} \\
k : 玻尔兹曼常数; T : 温度; \gamma : 体效应系数; \\
K_{P} : PMOS管的闪烁噪声系数; K_{N} : NMOS管的闪烁噪声系数 \\
C_{OX} : 单位面积栅氧电容; g_{m} : MOS管跨导; \\
C_{i} : 积分电容; W : MOS管栅宽; L : 栅长; \\
R_{i,a} : 放大器的输入电阻;$

功耗: 0.8mw

- 0.7V温漂为0.0005V, 1.1V温漂为0.003V。
- 当电路通电以后, 电路需要3.7µs达到稳定的输出基准电压

输出参考电压:
$$V_{ref} = \frac{R_4}{R_1} V_{BE,Q1} + \frac{R_4}{R_0} V_T \ln n$$

双极型晶体管*BE*间的电压: $V_{BE}(T) = V_g(T) - [V_g(T_0) - V_{BE}(T_0)] \times \frac{T}{T_0} - (\eta - \alpha) V_T \ln \frac{T}{T_0}$
T: 系统温度;
 T_0 : 自定义的参考温度;
 $V_g(T), V_g(T_0)$: 分别为带隙在温度T和温度T_0时的带隙电压;
 η : 与双极性晶体管相关的常数;

 α :与电压 V_{BE} 上电流有关的常数。

700.5

700.4

E 700.3

700.2 700.1

700.0 1.1018

1.1008

1.1004

1.0992 1.0988

2 1.1 1.0996

 前置放大器将传感器的输出电流信号进行电流-电压的转换,采用共源共栅结构输入加源极输出 结构的两级电路。共源共栅结构提供高增益、高输出阻抗,源极输出电路作为本级的输出级。

假设探测器在t到 $t + \Delta t$ 的时间范围内收集的总电荷量为Q,则探测器输出的电流脉冲信号为:

$$i(t) = \lim_{\Delta t \to 0} \frac{Q}{\Delta t}$$

此电流在电容C上积分获得输出电压:

 $\begin{aligned} V_{c}(t) &= \frac{1}{C} \int_{0}^{t} i(t) dt = \frac{Q}{C} = \frac{E_{IN}}{\varpi} \times e \times \frac{1}{C} \\ E_{IN} : 输入能量; \ \sigma : 平均电离功; \ e : 电子电量. \end{aligned}$

增益: 60db; 带宽:50MHz

输入与输出信号的关系: $V_{out} = \frac{1}{R_0 - R_1} (V_{in-}R_0 - V_{in+}R_1)$ 输出电压摆幅: $V_{DD} - (V_{OD,NM3} + V_{OD,NM1} + |V_{OD,PM6}| + |V_{OD,PM12}|)$

增益: 20dB; 带宽: 100MHz

AFE整体电路

	室温(27°(2)	-40°C		
	输出范围(mV)	摆幅(mV)	输出范围(mV)	摆幅(mV)	
第一级	420-970	550	430-960	530	
第二级	213-1340	1127	230-1230	1000	
第三级	0-1800	1800	0-1800	1800	

各级电路的摆幅

输入脉冲幅值0.3uA

输入脉冲幅值10uA

输入脉冲幅值20uA

采用带隙基准提供偏置电压的设计方案

- 长168.99um, 高40.645um
- •总功耗1.5mW,电路部分0.8mW,分压部分0.7mW

带隙基准提供偏置电压的整体版图

采用电阻网络提供偏置电压的设计方案

- 长78.72um, 高40.645um
- 总功耗1.1mW, 电路部分0.8mW, 电阻分压部分0.3mW

电阻网络提供偏置电压的整体版图

TDC 设计

- TDC是将输入时间信息转换为数字量的电路。
- TDC电路主要由延时链、解码器和数据读出模块组成。
- 以基准时钟为基础的二进制计数器对Start与Stop信号之间的时间间隔进行"粗计数",对于小于一个时钟周期的时间间隔通过内插延时单元进行"细计数"。
- 时间测量结果先通过异步先进先出(FIFO)缓冲器进行存储,再经过数据发送模块选择相应的通道进行输出。

TDC 仿真与版图

精度: 48Ps

功耗: 1.8uW

🙀 Wave - Default 🚃									
🍅 •	Msgs								
🔶 dk	1'h0		nona <mark>t</mark> ioninininininininininini	di na na mana mana ina mana mana mana man	ທີ່ເອເອເອເຫັດການ	nin maana maana daa maana ah	malatatananananananananananan	ແຫ່ກາວການການການການການການການການການການການການການກ	
👍 rst	1'h0								
start	1'h0		0	n i	n				
🤞 stop	1'h0					<u>Λ</u>			
	32'd0	(0) 100000000000000000000000000000000000	່ນວ່າການການກາ	ຜ່າງວ່ານການການການ	່າວ ມັນນັ້ນ	00000 1 10			i i i i i i i i i i i i i i i i i i i
	3'h0	0 100000	ເມັນ <mark>ນັ້ນໃນນັ້ນໃນ o</mark>	ນນາມນາມມາມ o ນ	ນນັ້ນມັນມັນ o	າມມາກການສູ່ມາກການສູ			
🧄 🧄 fifo_wr	1'h0		0	0	<u>n</u>	l î l			
+	6'd1	(0	11 lo	1 10	1 10	X Xo			
🦷 🔶 empty	1'h1								
🧄 full	1'h0								
🔷 rd_en	1'h0		<u>n</u>	Π I	1	l l			
🖃 🔶 mem	32'h0000000 32	000000000000000000000000000000000000000	.) 0000000 00000	0 1 0000000 0000000	000000000000000000000000000000000000000	0000) 00000000 00000	000 0000000 0000000 000	00000 00000000 00000000	
🛓 - 🔶 [15]	32'h00000000	00000000							i i i
🛓 - 🔶 [14]	32'h00000000	00000000							
🛓 - 🔶 [13]	32'h00000000	00000000							
🛓 - 🔶 [12]	32'h00000000	00000000							
🛓 - 🔶 [11]	32'h00000000	00000000							
🛓 - 🤣 [10]	32'h00000000	00000000							í le
🛓 - 🔶 [9]	32'h00000000	00000000							
🛓 - 🔶 [8]	32'h00000000	00000000							
🛓 🔶 [7]	32'h00000000	0000000							
🛓 - 🔶 [6]	32'h00000000	0000000							
🛓 - 🔶 [5]	32'h00000000	0000000							
🛓 - 🔶 [4]	32'h00000000	(00000000							
🛓 🤣 [3]	32'd0	0				(37500			
😐 🥎 [2]	32'd0	0			40528				
	32'd0	0	Na0450	<u> 140000</u>					
	32,90		1,39952 Y 20052	1 40000	140529	1 27500			
	5200		1, 39952	λ 40000	1 40520	1, 37, 500			

		10 10 4. 40 10 10 90 10	
33.5			20 A
			000
			u pel 20002 ful
			Lipci 80002 emptys are a si
12pc18000210004.588888888			u personaz dourras e sus el
500 200		1 005500 1 20055000 1 20055 1 2005500 1 2005500 1 20055	800 800
			Sec. 1
	6 (30) (30)	9299 9299 92	
200 B			20 授
2007 2007	10 20 20 20 20 20 20 20 20 20 20 20 20 20	50722 8078 80 3778 9779 97	86 19
_ L		The second second second	······································

尺寸: 238556um^2

高阻片上器件可靠性验证

 在180nm工艺下,对高阻片和非高阻片上半导体器件表征。通过仿真 得到器件参数的预期值,再通过对比高阻片和非高阻片下的器件表现 来验证高阻片的可靠性。

- 高阻片: 流片测试验证;
- 非高阻片: 仿真结合流片。

器件测试-MOSFET为主

直流测试

- Id-Vg曲线:提取Vth、亚阈值摆幅 (SS)、gm/Id效率。
- Id-Vd曲线:评估输出阻抗(ro)和 沟道调制效应。
- 漏电流:测量关态漏电(Off-state Leakage),高阻片可能因衬底耦合 导致漏电差异。

交流测试

- 电容-电压(C-V)测试:测量栅极电容 (Cgg)和衬底寄生电容(Csub),对比 两种衬底的寄生参数。
- 噪声系数测试:在目标频段(如射频或 音频)测量等效输入噪声(NFmin),高
 阻片通常有利于降低热噪声。

衬底耦合与隔离特性

- 串扰测试:相邻MOS管间注入信号,
 测量衬底耦合导致的串扰幅度。
- 高阻片预期表现更优的隔离能力。
- 衬底噪声注入:通过衬底触点注入 噪声,观察器件输出端的噪声敏感 度。

测试结构实现

- 依据前置放大器结构实际用到的器件类型, 放置待测单元;
- 统计得到待测器件: mn18、mp18、rppoly、rnpoly、rnplus, 即对应基本器件类型的晶体管和电阻

基本器件类型

晶圆片内测试结构

待测器件版图结构,通过金属连接到探盘

75um×75um的探盘结构,通过探针接触的方式 实现电学特性测量

- 将所有待测器件端口引出到探盘, 等间距、规则排列。包含两块区域, 整体尺寸 为1980um×280um×2块。
- 两块区域的差异:为了观测深阱工艺对器件的影响,在保留相同结构的基础上, 在器件的实现区域添加了DN层。

N .	A-1 E pitch 75.5 um							
	↓ ` 条宽 18 um							
			A-1					
	pitch 75.5 um							
	条宽 30 um							
	A-1							
	pitch 75.5 um							
	条宽 55 um							
\uparrow	B-1 由四公正	B-1 一	רם	A-2	S			
шц	电阻力压 B-1	二级风入 B-1	b-z 数字由路	mini	iode			
ע ז	带隙基准	单道&元件 级验证	XX J [°] Cµµ	diodes	ini di			
	B-3	B-3	B-3		2 m			
	电阻分压	带隙基准	带隙基准	A-3	-A			
	二级放大	二级放大	三级放大	mini pixels	MCU	2n ≮		
/	致	<u> </u>	<u> </u>		NICU	M H		
	5mm							
	22mm							

A-1: 微条长21.260mm,有三种条宽
A-2: diode

pin: 5环/5环+DN/3环/1环
PTP: (正常/18um)/30um/55um

A-3: pixel (有1x1/7x7/19x19三种设计)
B-1: 40道输入40道输出的模拟电路芯片 含三种设计

含单个道的拆解验证

B-2: 40道输入汇总输出的数字电路芯片 TDC+总的串行化
B-3: 40道输入汇总输出(B-1+B-2连起来)

MCU:模块/DAQ控制

22mm

总结与计划

- CSC1 传感器与测试结构完成
- •读出电路的设计完成
- 高阻电路测试器件基本完成

- - 数字电路导出 GDS, MCU 设计
 - 完成整板 GDS 拼接
 - 合同签订后根据技术支持调整最后方案

不同传感器结构比较

	ATLAS 18SS	Freiburg CMOS	CSC1 Sensor (2kΩ)		CSC1 Sensor (4kΩ)	
晶圆阻值 [kΩ]	>3.5	3~5 (>8)	2		4	
晶圆厚度 [μm]	320	150	300 150		300	150
微条间距[µm]	75.5	75.5	75.5		75.5	
微条长[cm]	2.4	2	2		2	
微条宽[µm]	16	15	15		15	
全耗尽电压 [V]	310	30	500	140	250	70
全耗尽电容[pF/channel]	0.5	1	0.5	1	0.5	1
暗电流[nA/cm ²]	1	5	2.3 1.1		2.3	1.1

CSC simulation : 30-degree injection

2K Ω thickness = 180 um Collected charges = 81 pairs/um X (75.5um/cos30°) = 7061e About 1.1 fC

