
量子计算与量子算法

徐晓思 中国工程物理研究院研究生院



课程内容

➢ 量子计算背景
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量子计算背景：量子计算机

量子计算机是一种使用量子逻辑进行通用计算的设备。

实现量子计算的物理平台：超导，离子阱，原子，

硅基，光子，氮空位色心等等。

IBM的超导系统

中科大的九章部分装置

IonQ的离子阱芯片
Google的超导芯片



➢ 经典计算机的极限：

摩尔定律。

➢ 一些问题（如分子模

拟、组合优化）随系

统规模指数增长。

➢ 量子系统天然具有指

数态空间。

量子计算背景：为什么要造量子计算机



量子计算背景：与经典计算对比

特性 经典计算 量子计算

信息单位 比特（0或1） 量子比特（叠加态）

操作 逻辑门 幺正门

并行性 数据并行 振幅并行

结果 确定 概率分布



➢ 量子计算在各种领域都有很多潜在的应用

➢ 计算更大规模问题

➢ 量子多体问题

➢ 量子动力学演化

➢ 数学优化问题

➢ 超越经典算法

➢ 搜寻算法 (Grover)： 𝑂(𝑁) → 𝑂( 𝑁)

➢ 质因数分解算法 (Shor)： 𝑂( 𝑁) → 𝑂(log(𝑁))

量子计算背景：应用



量子硬件

控制系统

量子编译

量子线路
安排和优
化 (纠错)

量子算法

量子应用

量子计算背景：量子计算架构
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1个比特：0 𝑜𝑟 1

2个比特：00 𝑜𝑟 01 𝑜𝑟 10 𝑜𝑟 11

量子计算机: 量子比特是两能级的量子系统，表示0,1或其叠加态

1个量子比特：

𝜓 = 𝛼 0 + 𝛽 1 , 𝛼 2 + 𝛽 2 = 1

2个量子比特： 

𝜓 = 𝛼1 00 + 𝛼2 01 + 𝛼3 10 + 𝛼4 11

N个量子比特：

经典计算机：比特表示0 或者 1

➢ 量子叠加态

量子计算基础知识：量子态与叠加原理

𝜓 = ෍

𝑖

2𝑁

𝛼𝑖 𝜓𝑖 ෍

𝑖

2𝑁

|𝛼𝑖|2 = 1

Bloch 球



量子计算基础知识：量子纠缠

➢ 一个双体系态 |𝜓⟩ 若不可写成

➢ 如 Bell 态：

➢ 特点：

➢ 不可分解

➢ 局域测量会瞬间影响全局状态

➢ 子系统处于最大混态，但整体仍是一个纯态

𝜓 = 𝜙𝐴 ⨂ 𝜙𝐵

的形式，则为一纠缠态

➢ 量子计算加速来源：

一个无纠缠的 𝑁-qubit 状态表示仅需要O(𝑁) 个参数

但一般纠缠态需要2𝑁个复数参数，才能完全描述

几乎所有量子算法的加速，都依赖纠缠



➢ 量子计算机是𝑁个量子比特的集合，波函数属于一个2𝑁维的复Hilbert空间。

➢ 当与环境耦合忽略不计，波函数的演化是幺正的。

➢ 量子计算通过量子线路来实现。量子线路的本质是幺正变换和测量的组合。

量子计算基础知识：量子演化

初态制备 量子线路 量子测量

通用的量子计算过程：



量子计算基础知识：量子模拟

➢ 量子模拟 (Analog quantum computing): 直接让量子系统按照哈密顿量自然演化。

➢ 通常是专用型

➢ 难以实现容错

➢ Digital quantum computing: 将演化离散成一系列量子逻辑门。

➢ 通用量子计算

➢ 能实现容错计算

➢ 对硬件要求高



量子计算基础知识：经典逻辑门

➢ 通用布尔计算体系：利用非门、与门、或门和复制

门这几个基本逻辑门，可以构造出任意布尔函数

与门

或门

非门

异或门

𝑓: 0,1 𝑛 → 0,1 𝑚

输入A 输出NOT A

0 1

1 0

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

非门

与门

与非门

或非门

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

或门



量子比特的状态是一个存在于二维复矢量空间的矢量

➢ 量子态

➢ 单比特基本量子门：

X门： Y门：

Z门：

量子计算基础知识：量子线路和量子门

Hadamard门：

Phase 门（S、T 等）：



➢ 双比特基本量子门：创造纠缠

CNOT门：

量子计算基础知识：量子线路和量子门

一般的单比特门：

➢ 通用旋转门（Bloch 球旋转）：

任意单比特门都可以由 Rz–Ry–Rz 或 Rx–Rz–Rx 

实现。

CPhase门：

−



➢ 通用门集：能够近似任意幺正操作到任意精度的量

子门组合，而且所需的门数仅多项式增加 (Solovay–

Kitaev 定理)。

➢ 常用选择：

➢ CNOT, H, T

➢ CNOT, Ry(π/4), S

➢ Clifford group:

➢ 通用量子线路

量子计算基础知识：量子线路通用结构

最小门集：CNOT, H, S

纯 Clifford 电路 + Pauli 初态 + Pauli 测量，可以高效地在经典计算机上模拟 (Gottesman–Knill 定理)



➢ 量子计算中的测量是沿着某个方向（basis）测量

➢ 量子测量的本质：沿某个可观测量（Z, X, Y）的本

征态进行投影

Z测量

𝜓 = 𝑎1 0 + 𝑎2 1

𝑃1 = 𝑎1
2的概率得到 0 （测到+1）

𝑃2 = 𝑎2
2的概率得到 1 （测到-1）

量子计算基础知识：量子测量

Z 测量：投影到 0 , 1

X 测量：投影到 + , −

Y 测量：投影到 𝑖 , −𝑖

旋转基 → 测 𝑍 →  结果相乘

量子态：

➢ 对期望值的测量：

➢ 多比特测量：

⟨𝑃⟩  =  ⟨𝜓|𝑃|𝜓⟩



量子计算基础知识：噪声与退相干

➢ 基本门噪声模型：

➢ Bit flip (X): →

➢ Phase flip (Z): → − 

➢ 基本环境噪声模型：

➢ 退极化 (depolarizing)：描述随机泡利噪声的平均效果，是最常用的理论噪声模型

➢ 退相干 (dephasing)：丢失相位信息，幅值不变

➢ 振幅阻尼噪声 (amplitude damping)：激发态 1 自发弛豫到 0

➢ 丢失噪声 (leakage)：比特从计算空间 0 , 1 跑到了计算空间之外的其他能级

➢ 量子门噪声通道：

如退极化 ：

➢ 测量噪声：把 0 读成 1、或把 1 读成 0 



量子计算基础知识：量子错误缓解

➢ 量子错误缓解：通过对测量结果做数学修正或推断来减少噪声导致的偏差

➢ 只能降低误差而不能真正纠错

➢ 实现较容易，适合NISQ线路

➢ 方法：

➢ Zero-Noise Extrapolation

➢ Probabilistic Error Cancellation

➢ Virtual distillation

➢ Clifford-based calibration

➢ Readout mitigation

➢ …

Zero-Noise Extrapolation



量子计算基础知识：量子纠错

➢ 量子纠错：持续检测与纠正错误，使量子信息在噪声环境中长期保持可靠。

➢ 非常困难：量子态不能直接读取；探错和纠错本身操作也有误差

➢ 策略：把逻辑比特编码进多个物理比特（使用大量冗余比特）

➢ 典型方法：表面码、LDPC 码、Steane 码、GKP 码等

➢ 三比特码：

噪声会把态推到编码空间之外

纠错核心操作：测量稳定子（Stabilizer）S

错误导致状态不再是稳定子的

+1 本征态，会产生 -1 结果



量子计算基础知识：量子纠错

➢ 三比特码：

解码表：

X X

X
=

CZ gate:

Apply the CZ 
gate:

If no error:

If with one X 
error:

We get:
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初态制备 量子线路 量子测量

𝑎1 𝑥1 + 𝑎2 𝑥2 + ⋯ 𝑎𝑛 𝑥𝑛

制备初态 幺正操作算符𝑈𝑓

𝑎1 𝑓(𝑥1) + 𝑎2 𝑓(𝑥2) + ⋯ 𝑎𝑛 𝑓(𝑥𝑛)

(effectively: 𝑏1 𝑥1 + 𝑏2 𝑥2 + ⋯ 𝑏𝑛 𝑥𝑛 )

测量

➢ 量子算法的设计思路：

➢ 利用量子加速特性

➢ 量子态中途不能被(完全)读取

➢ 操作算符必须是幺正的

➢ 降低线路复杂度（poly(n)）

量子算法基础：基本框架

➢ 通用的量子计算过程：

⟨𝑃⟩  =  ⟨𝜓|𝑃|𝜓⟩



量子算法基础：Oracle

➢ Oracle: 黑盒子，一个已知结构不知

内容的布尔函数

只能通过调用黑箱 (query) 得知 f(x) 

量子算法绝大多数的加速来自于：

如何更少地调用 oracle

Query Complexity: 调用次数

➢ 量子 oracle 用量子门实现：

相位Oracle



量子算法基础：量子傅里叶变换

➢ Quantum Fourier Transform QFT: 离

散傅里叶变换的直接量子化形式

二进制展开

则：

拆开相位：

由于

由于

得到：
QFT 把 𝑥 映射
为 n 个比特的
张量积



量子算法基础：量子傅里叶变换

经典DFT 复杂度： 𝑂(𝑁2)

QFT 线路复杂度： 𝑂(𝑛2)

得到：

交换张量积顺序：

把输入态写进了输出各个比特的相位中

➢ 线路实现
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经典量子算法：Deutsch algorithm

➢ 经典计算机：必须调用函数𝑓两次，分别计算

𝑓 0 , 𝑓(1), 然后比较结果。

➢ 量子计算机：只需要调用函数一次

➢ Deutsch 问题 (最早展示量子加速)：

给定一个布尔函数

任务：判断函数是常数函数还是平衡函数



经典量子算法：Deutsch algorithm

➢ 使用Phase Oracle:

初始为：

使用Oracle后：

对第一个比特再施加H门：

0 的系数：

1 的系数：

如果𝑓是常数的， 𝑓 0 = 𝑓(1): 始终得到 0

如果𝑓是平衡的， 𝑓 𝑥 = 𝑥 或𝑓 𝑥 = 1 − 𝑥 : 始终得到 1

最后，测量第一个比特：

只用测一次！



经典量子算法：Deutsch-Jozsa algorithm

➢ 推广到多比特的场景：

➢ 经典计算机：最差需要调用𝑓(𝑥) 2𝑛−1 + 1次

➢ 量子计算机：只需要调用函数一次

初始态为：

对所有比特做H门：

使用Oracle后：

对所有比特在 X basis下测量：

如果𝑓是常数的: 得到±1

如果𝑓是平衡的: 得到0



➢ 问题：从包含N个数的无序数列中判断特定的一个数 𝑥0是否在数列中

经典算法：一个个地去对无序列表中的所有元素进行判断，运气最好的情况下一击即中，运

气最差的情况下则需要判断 N 次，复杂度为  𝑂(𝑁)

量子算法：我们对数进行二进制编码，可

以通过设计黑盒子（oracle）找出𝑥0

假设我们要找的数是10010，则可以设计右

图来实现：

𝑈

但是没有量子加速

经典量子算法： Grover’s algorithm



➢ 如何实现量子加速？

经典量子算法： Grover’s algorithm

对所有比特做H门： 包含所有可能

使用Oracle：



为任意态

效果为以 为轴将 翻转

➢ 通过这样的方式翻转多次，

让𝑥0的态的振幅接近于1

经典量子算法： Grover’s algorithm

➢ 到现在找出了这个态，但无法

通过测量将其与其他态区分开

迭代k次：

复杂度降为  𝑂( 𝑁)



经典量子算法： QPE

➢ 量子相位估计算法 (Quantum phase estimation algorithm)



经典量子算法： QPE

➢ 实现线路

➢ 优势：精度高，能得到整个本征谱，

适用性广，误差可控

➢ 困难：线路复杂，对噪声敏感

➢ 把U替换成哈密顿量演化算符，即

可测能谱
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噪声，器件大小、
结构，器件原始门
类型等等

优化算法，量子纠
错、错误缓解，量
子编译等等

方案

从NISQ到早期容错量子时代的量子算法

➢ Noisy intermediate-scale quantum (NISQ)

时代：

➢ 中规模量子比特：几十到几百个物理

比特

➢ 噪声相对较大、没有量子纠错（或纠

错能力极弱）

➢ 只能运行较浅线路

➢ 可能出现量子优势

从当前量子硬件到未来容错量

子计算机之间的时代

➢ 量子算法设计：

➢ 量子线路深度

➢ 量子比特数目

➢ 测量次数和精度

➢ Non-Clifford 门个数

➢ 算法的实际实现

因素

➢ 发展经典-量子混合的算法

经典
计算

量子
计算

主要部分 核心部分

经典计算困难部分大规模数值计算



NISQ - early FT算法：量子应用

➢ 量子系统模拟（求解量子系统能量，量子系统

动力学问题)

➢ 分子电子结构、模拟化学反应

➢ 固体模型（Hubbard、Heisenberg、Ising）

➢ 核结构和核反应

➢ 开放量子系统

➢ 线性代数问题

➢ 求解 Ax=b

➢ 矩阵特征值、奇异值分解

➢ 微分方程

➢ 组合优化问题

➢ 最大分割

➢ 最大独立集

➢ 旅行商问题

➢ 图着色

➢ 量子机器学习

➢ 分类、聚类

➢ 量子态压缩、重构

➢ 线性代数，高维特征映射

➢ 其他 (概率估计、积分计算、随机过程模拟)



NISQ - early FT算法：量子算法概览

➢ 量子变分算法

➢ Variational quantum eigensolver (VQE) 变分量子本征值求解

器： 求能谱

➢ Variational quantum simulator (VQS): 模拟时间演化

➢ Quantum Approximate Optimization Algorithm (QAOA): 求

能谱，组合优化问题

➢ 不基于变分的静态算法

➢ Quantum Lanczos

➢ Hybrid quantum Monte-Carlo

➢ Time-series analysis

➢ Quantum imaginary-time evolution (QITE) 量子虚时间演化

➢ 哈密顿量模拟算法

➢ Trotter分解

➢ Qubitization

➢ Linear combination of

unitaries (LCU)

➢ QSP

➢ 绝热演化/量子退火

➢ 机器学习算法

➢ Quantum Kernel methods

➢ Quantum classifier



➢ 量子系统模拟（求解量子系统能量，量子系统动力学问题) 的主要量子算法

NISQ - early FT算法：量子算法概览
P

h
ys

ic
al

er
ro

r
ra

te

Number of qubits

VQE
VQS

QEC threshold

QSD
QMC
QITE
TSA

Trotter
QPE
QSP

NISQ: Noisy intermediate-scale quantum era

FTQC: fault-tolerant quantum computing

Variants of
QPE, LCU



➢ 静态问题：寻找哈密顿量的基态/激发态

➢ 动态问题: 模拟物理系统的动态演化.

NISQ - early FT算法：量子变分算法

出发点：Pauli矩阵形式的哈密顿量

二次量子化的哈密顿量：

分子模型 费米-哈伯德模型



➢ 变分量子本征值求解器 (VQE)

➢ 问题：求解哈密顿量基态

➢ 构建试验态 (ansatz)

➢ 流程：

NISQ - early FT算法：VQE

➢ 算法核心问题：

➢ 目标函数

➢ 试探态的选取

➢ 参数的优化

➢ 线路测量

✓ 优势：线路相对较浅，适用性广

✓ 困难：测量成本高，对大体系优化困难，

线路表达度依赖强



NISQ - early FT算法：VQE目标函数

➢ 哈密顿量期望值形式

➢ 量子态保真度：目标是制备某个态

➢ 变分态的能量方差

➢ 寻找开放系统稳态

➢ 求解线性代数问题

➢ 最大化交叉熵

用于求激发态：

形式灵活，适用性广



NISQ - early FT算法：VQE试验态 (ansatz)

➢ 初态选择：尽量接近目标态，满足对称性条件

如：全零态 |0…0〉，GHZ态， Hartree–Fock态

➢ 主流ansatz的选择

✓ UCC (unitary coupled cluster): 量子化学问题

✓ 对称性守恒的

✓ Hamiltonian ansatz：基于哈密顿量

✓ Hardware efficient ansatz

算法高度依赖Ansatz的表达能力



NISQ - early FT算法：VQE参数优化

➢ 基于梯度的

➢ Finite Difference（有限差分法）

➢ Parameter-shift Rule（参数偏移规则）

➢ 不基于梯度的

➢ SPSA

优化困难：高维 ansatz 可能出现梯度消失，噪声导致梯度估计不可信



NISQ - early FT算法：VQE线路测量

➢ 线路测量

Z：直接测量 0/1 基底概率

X：施加 Hadamard 变换

Y：施加 Rx(-π/2)

多体 Pauli string 测量：对每个比特旋转，统一在Z基底测量

实际测量变为测量每个 Pauli string 的期望值

➢ 分组测量

➢ Commuting Grouping

➢ Classical shadow

➢ 分组+重要性采样

分子电子结构问题，哈密顿量项数𝑂 𝑛3 ~𝑂(𝑛4)

两个 Pauli strings 满足相对应位置相同或者为I

重构密度矩阵

先测权重大的项, 小系数的只做随机抽样



NISQ - early FT算法：VQE应用

➢ 分子电子结构问题：给定原子核的位置 (Born–

Oppenheimer 近似)，求体系电子的能量

目标：

氢分子：

STO-3G 基组：有四个轨道

需要4比特, 利用对称性，减到2比特

Jordan–Wigner 变换:

Ansatz:



➢ 线性代数

➢ 壳模型

➢ 分子电子结构问题

H2

NISQ - early FT算法：VQE应用

为了求解： 𝑥 =
𝐴−1 𝐵

||𝐴−1 𝐵 ||
，设计哈密顿量：

使 𝑥 为哈密顿量的能量为0的基态



NISQ - early FT算法：VQS

➢ 动态问题—量子变分模拟算

法: 模拟物理系统的动态演

化

考虑一个试验态

希望能用来代表

试验态的薛定谔方程：

McLachlan’s 变分原理:

其解为：



这样的解的形式可以转化为：

其中：

因此可以更新参数，从而来更新量子态，

即模拟量子态随时间的变化：

A和C的元素值用量子计算机测，

线性方程用经典计算机求解

NISQ - early FT算法：VQS



顺磁相 铁磁相

NISQ - early FT 算法：VQS应用

➢ 模拟伊辛模型演化



NISQ - early FT 算法： QAOA

➢ Quantum Approximate Optimization Algorithm 量子近似优化算法：主要用于求解组合

优化和约束满足问题

➢ QUBO（Quadratic Unconstrained Binary Optimization）问题

目标：在二元空间中找到使 最小的 x

等价形式：Ising 模型



NISQ - early FT 算法： QAOA

➢ 例：Maxcut 问题

QUBO 建模：

总权重：



NISQ - early FT 算法： QAOA

➢ 线路结构： Maxcut 问题：

每个 ∣x⟩都是H_c的本征态, 对应所有候选解

变分优化

✓ 优势：线路相对较浅，适用性广，结构明确，可证

明的性能界

✓ 困难：对大体系优化困难，某些问题无量子优势



NISQ - early FT 算法：不基于变分的能谱算法

➢ 不同算法各有取舍，适用范围和目标系统是选择关键；

➢ 算法之间常会组合使用（如VQE+子空间、辅助QMC+子空间）。



NISQ - early FT 算法： QSD

➢ 从经典Lanczos算法演化而来：

➢ 构造Krylov 子空间

➢ 量子算法：

子空间的构造

✓ 优势：可以系统性提高精度

✓ 困难：对误差敏感，测量要求高

子空间的构造方法



NISQ - early FT 算法： TSA

➢ Time-series analysis (spectral analysis) 时间序列分析算法

➢ 能隙计算：

✓ 优势：能得到整个本征谱，能直接得到能

隙，对噪声不敏感

✓ 困难：适用于特定系统，对初态要求高，

测量要求高

其中

则

当

增大𝐸，峰值在𝐸 = 𝐸𝑖 − 𝐸𝑗取到

量子线路实现

➢ 能量计算：



NISQ - early FT 算法： hybrid QMC

➢ Variational Monte Carlo (VMC) 变分蒙特卡罗

将 𝜓𝑇 在一组基矢下展开： 𝜓𝑇 = σ𝑖
𝑁⟨𝑅𝑖|𝜓𝑇⟩ 𝑅𝑖 = σ𝑖

𝑁 𝑟𝑖 𝑅𝑖 ，

定义𝐸𝑙𝑜𝑐 𝑖 =
σ𝑗

𝑁 𝑟𝑗 𝑅𝑖 𝐻 𝑅𝑗

𝑟𝑖
, 则𝐸 = σ𝑖

𝑁 𝑟𝑖
2

σ𝑘
𝑁 𝑟𝑘

2 𝐸𝑙𝑜𝑐 𝑖

当 𝜓𝑇 𝝀 = 𝜓0 时， 𝐸 𝝀 = 𝐸0

𝜓𝑇 𝝀 : 含参试验态

𝐸 =
σ𝑖

𝑁 𝜓𝑇 𝑅𝑖 ⟨𝑅𝑗|𝜓𝑇⟩⟨𝑅𝑗|𝐻|𝑅𝑖⟩

σ𝑘
𝑁 𝜓𝑇 𝑅𝑘 ⟨𝑅𝑘|𝜓𝑇⟩

=
σ𝑖𝑗

𝑁 𝑟𝑖
∗𝑟𝑗⟨𝑅𝑖 𝐻 𝑅𝑗⟩

σ𝑘
𝑁 𝑟𝑘

2

𝐸 𝝀 =
⟨𝜓𝑇(𝝀)|𝐻|𝜓𝑇(𝝀)⟩

⟨𝜓𝑇(𝝀)|𝜓𝑇(𝝀)⟩

𝑅𝑖 : Fock states

𝑃 𝑠 =
𝑟𝑠

2

σ𝑠
𝑁 𝑟𝑠

2
෠𝐸 = 𝐸𝑙𝑜𝑐 𝑠 𝑠~𝑃(𝑠)

➢ Projector Monte Carlo methods

𝐸 =
𝜓 𝑒−𝛽𝐻𝐻𝑒−𝛽𝐻 𝜓

𝜓 𝑒−2𝛽𝐻 𝜓
能
量

𝛽

Green’s function Monte Carlo (GFMC)

𝜓𝐼 → 𝑒−𝑛∆𝛽𝐻 𝜓𝐼

𝑒−∆𝛽𝐻 𝜓𝐼 ≈ (1 − ∆𝛽𝐻) 𝜓𝐼

初始态通过随机过程演化n步得到𝑤𝑠 , 𝜃𝑠, 𝐸𝑙𝑜𝑐(𝑠)

𝐸 =
σ𝑠

𝑁 𝑤𝑠𝑒𝑖𝜃𝑠𝐸𝑙𝑜𝑐 𝑠

σ𝑠
𝑁 𝑤𝑠𝑒𝑖𝜃𝑠

𝜓𝐼 = σ𝑠
𝑁⟨𝑅𝑠|𝜓𝐼⟩ 𝑅𝑠



NISQ - early FT 算法： hybrid QMC

➢ 符号问题

能
量

迭代次数

𝐸0

𝑒−𝛽𝐻

实际演化

 QMC with constraints

GFMC: fixed-node approximation

AFMC: phaseless approximation

能
量

迭代次数

𝐸0

constrained

unconstrained



NISQ - early FT 算法： hybrid QMC

➢ 符号问题

能
量

迭代次数

𝐸0

𝑒−𝛽𝐻

实际演化

➢ 𝜓𝑇 用量子态替代

𝐸 =
σ𝑠

𝑁 𝑤𝑠
′𝐸𝑙𝑜𝑐 𝑠

σ𝑠
𝑁 𝑤𝑠

′ 𝐸𝑙𝑜𝑐 𝑠 =
⟨𝜓𝑇 𝐻 𝜙𝑠⟩

⟨𝜓𝑇|𝜙𝑠⟩

• Consistent QC-GMC 和 QC-VMC 算法

• Quantum-assisted energy evaluation

只用量子计算机计算𝐸𝑙𝑜𝑐 𝑠

𝐸 =

σs=1
𝑁 𝑤𝑠

𝜓𝑄 𝐻 𝜙𝑠

𝜓𝐶ห𝜙𝑠

σs=1
𝑁 𝑤𝑠

𝜓𝑄ห𝜙𝑠

𝜓𝐶ห𝜙𝑠

✓ 优势：减轻符

号问题，线路

相对较浅

✓ 困难：测量要

求高

用量子计算机事先采样 𝜓𝑇 𝑅𝑖

→ Ƹ𝑟𝑖 = 𝜓𝑇 𝑅𝑖 →  ෠𝜓𝑄 = ෍

𝑖

𝑁

Ƹ𝑟𝑖 𝑅𝑖

𝜓𝑄 : 量子试验态 : 量子计算

𝜓𝐶 : 经典试验态 : 经典计算



➢ 在量子计算机上实现：

➢ 量子电路近似实现 𝑒−𝑖𝐻𝑡 

➢ 精度 𝜖、时间 t 的成本尽可能低。

NISQ - early FT 算法：哈密顿量模拟算法

➢ 动态问题: 模拟物理系统的动态演化

➢ 给定哈密顿量和初始量子态|𝜓 0 ⟩, 计算出经过一段时
间 t 后的最终量子态 |𝜓 𝑡 ⟩



NISQ - early FT 算法：Trotterization

➢ 目标：

每个子项 𝑒−𝑖𝐻𝑗𝑡容易实现,

但整体 𝑒−𝑖𝐻𝑡无法直接实现

原因：

如果：

➢ 一阶Trotterization (Trotter–Suzuki 分解）：

➢ 二阶Trotter

➢ 更高阶Trotter

✓ 优势：原理简单

✓ 困难：需要深线路，存在误差

(Baker–Campbell–Hausdorff 公式)



NISQ - early FT 算法：LCU

➢ Linear combination of unitaries:

A是想实现的non-unitary 操作，比

如哈密顿量，演化的多项式等

归一化：

在ancilla上准备态 (大概log2𝐿个比特):

Select作用在量子态 𝜓 上:

对ancilla逆操作:

对ancilla测量0：

概率为： ，可以进行振幅放大



NISQ - early FT 算法：LCU

➢ Linear combination of unitaries:

➢ 哈密顿量模拟：

吸收相位：

✓ 优势：精度依赖好(polylog(1/ε)),

能实现任意函数

✓ 困难：线路复杂，需要ancilla



NISQ - early FT 算法：qubitization

➢ Qubitization:

归一化：

本征态：

定义：

则有：

定义：

定义：

Block encoding:



NISQ - early FT 算法：QSP

➢ Quantum signal processing QSP:

QSP的一般结构：

长度为 d 的任意 QSP 序列, 对每个本征值 λ，有

对于 degree-d 的目标多项式 𝑃(𝜆)，一定存在一串 d+1 

个相位 𝜙𝑘 , 使得 𝐴(𝜆) = 𝑃(𝜆) （用 Chebyshev 展开）

✓ 优势：复杂度好 ，

能实现任意函数，非常稳定

✓ 困难：线路复杂，需要ancilla



课程内容

➢ 量子计算背景

➢ 量子计算基础知识

➢ 量子算法

➢ 量子算法基础

➢ 经典量子算法

➢ 从NISQ到早期容错量子时代的量子算法

➢ 量子算法在核物理方向的应用



核物理应用

➢ 基态和激发态计算

➢ 不同壳模型（Lipkin model）

➢ 不同量子算法

➢ 不同量子线路

➢ 不同encoding方法

➢ 动力学模拟

➢ 核子-核子散射

➢ 中微子-核子散射

➢ 中微子振荡

➢ 低能反应（如 n+p → d+γ）

➢ 转动、振动模式的集体动力学



核物理应用：核结构问题

➢ Nuclear Shell model：在强相互作用产生的平

均势场中，核子占据单粒子能级，形成壳层结

构，壳层被填满时，原子核特别稳定。

Cohen-Kurath SM: 4He core with valence 

nucleons filling the p shell (4He to 16O)

Wildental SM: 16O core with valence 

nucleons filling the s-d shell (16O to 40Ca)

哈密顿量：

✓ 计算氘核的基态， VQE算法

✓ 使用谐振子基底下的离散变量表象，截断N个

s-wave 基函数



核物理应用：核结构问题

➢ Nuclear Shell model

Cohen-Kurath SM: 4He core with valence nucleons 

filling the p shell (4He to 16O)

Wildental SM: 16O core with valence nucleons 

filling the s-d shell (16O to 40Ca)

降低测量影响：classical shadow

所需测量次数：

( : when 𝑁 ≫ 𝑑2)

➢ 试验态 𝜓𝑇 : 量子子空间对角化算法

{ 𝜓0 , 𝜓1 } 𝜓0 : 初态 𝜓1 = 𝑈 𝜓0

𝐻𝑖𝑗
𝑠 = 𝜓𝑖 𝐻 𝜓𝑗 𝑆𝑖𝑗 = 𝜓𝑖 𝜓𝑗

෨𝜓0 , ෨𝜓1  ෨𝜓1 → (𝐼 − | ෨𝜓0⟩⟨ ෨𝜓0|) ෨𝜓1



总结与展望

➢ 量子计算技术发展阶段：从 NISQ 到 Early Fault-Tolerant 时代

➢ 可控量子比特数持续增长：超导、离子阱、光量子、Rydberg 等体系快速推进

➢ 容错量子计算（FTQC）仍需更低噪声、更高门保真度和可扩展纠错方案

➢ 主流纠错码：表面码、LDPC 码、量子 LDPC 纠错逐渐成熟

➢ 算法研究：从 NISQ 混合算法到容错量子算法

➢ NISQ-early FT 时代：变分类（VQE/ QAOA）、非变分类、哈密顿量模拟等

➢ FT 时代潜在加速：Shor、Grover、HHL、QPE、QSP等

➢ 算法研究重点：表达能力、资源估计、抗噪声、量子线路、量子测量
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