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(1) 为什么需要测量极弱磁场？

(2) 如何实现高精度的极弱磁场测量？

(3) 有什么前沿科学应用？
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"测量是科学的眼睛和手段”
- 伽利略

"科学是从测量开始的"       
- 门捷列夫

测量是科学发展的第一推动力



磁是普遍存在的自然属性

从基本粒子到宏观宇宙天体，磁场与磁现象无处不在

中子星大脑

地磁场 飞行器磁信号 水下航行器磁信号

磁性材料 生物磁信号 基本粒子磁矩
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基于经典物理原理的磁力计

霍尔效应磁力计

洛伦兹力磁力计

磁通门磁力计

精度：uT-mT

0.1-1uT

1nT
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极弱磁场探测具有重要科学意义
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人体磁场

地磁场的1000亿分之一
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核磁共振成像 核磁共振谱仪

核磁共振

原子分子磁场



核磁共振——最早的自旋精密测量

原理：原子核自旋处于外磁场中，
能够吸收和放出对应频率的电磁辐
射，发生磁共振现象!" !="

特点：能够用来准确、
快速和无破坏性地获取
物质的组成和结构上的
信息
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NMR的基本原理

Nuclear Magnetic Resonance Spectroscopy:

• Nucleus with spin（核自旋）

• Magnetic field（磁场）

• Resonance perturbation（共振扰动）

! = #$Larmor进动



10

自旋磁共振的发现：斯特恩-格拉赫实验

The Stern-Gerlach experiment at 100, Nature 4, 140 (2022)

斯特恩 格拉赫

ü 分子束方法（1911年 法国科学家丢努瓦耶提出）

ü 索末菲的角动量量子化理论

ü 银原子束实验：检验银原子束受到梯度力的作用效应

ü 1922年首次证实了角动量的量子化：一种新的角动量

ü 发现质子磁矩，比电子磁矩小2000倍
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自旋磁共振的发现：气态分子束共振法

ü 斯特恩-格拉赫实验升级版本：引入均匀磁场和射频共振磁场

ü 认识Stern实验室中会说英语的博士后：R. Fraser和J. B. Taylor

ü 精确测量80多种原子核的磁矩和自旋（1944年 诺贝尔物理学奖）

ü 1936年 荷兰物理学家C.J.Gorter提出射频共振吸收，但未成功

拉比 ! = #$
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布洛赫 珀塞尔

ü 发明核磁共振感应法：首次扩展到凝聚态样品

ü 发现更加精细的自旋结构信息：
化学位移、自旋标量耦合、驰豫等

ü 提出半经典演化方程：布洛赫方程

V= !"!#

自旋磁共振的发现：凝聚态样品的核磁共振

$%
$&=e

()*+, ≈ 10-6

ü 获得1952年诺贝尔奖物理学奖



传统磁共振在20世纪取得了巨大成功

Otto Stern
1943, Physics

Richard R. Ernst
1991, Chemistry

Kurt Wüthrich
2002, Chemistry

分子束方法
发现质子磁矩

Isidor Isaac Rabi
1944, Physics

用共振方法记录
原子核的磁特性

E. M. Purcell
1952 ,Physics

Felix Bloch
1952, Physics

Paul C. Lauterbur
2003, Medicine

Sir Peter Mansfield
2003, Medicine

医学磁共振成像

n 基础科学突破
3次诺贝尔物理学奖

n 交叉领域技术突破
3次诺贝尔化学
1次生理医学奖
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蛋白质结构高分辨率

凝聚态样品核磁共振新方法
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原子核自旋与磁矩

单个质⼦磁矩

质子产生的磁矩和磁场计算

吴泽

2023年 5月 16日

对于单个质子，其磁矩计算公式为：

EMp D gp
e„

2mp
EI

其中对应的参数含义和具体值如下：

参数 含义 值 量纲（SI）

gp 质子的 g-因子 C5:5856946893.16/ Dimensionless

e 单位电荷 1:602176634 ! 10!19 库伦 C（A"s）

„ 普朗克常数 1:054571817 ! 10!34 J"s（kg"m2/s）

mp 质子质量 1:67262192 ! 10!27 （kg）

EI 量子化角动量 1
2

Dimensionless

表 1: 参数的值和单位，括号里面表示国际单位制

于是单个质子磁矩算出来为

EMp D 1:41060679736.60/ ! 10!26 J " T!1.A " m2/

在 1cm处产生的磁场大小

磁矩在空间某个点 P 处产生的磁场大小是一个矢量，如下图

1
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U S T C Wu Ze

按照如下公式计算磁场 EB：

EB D !0

4"

3
!

EMp ! Or
"

Or " EMp

r3

其中 Or 是 Er 的单位向量，!0表示真空磁导率：

!0 D 4" # 10!7 T ! m=A

我们考虑 Er 的绝对值为 0.01米，方向为垂直于磁矩方向，于是

EB D " !0

4"

EMp

r3
D "10!7 # 1:41060679736 # 10!26

10!6

D 1:41060679736 # 10!27 T

宏观数量的质子产生的磁场

我们考虑包含 1摩尔 =6:02 # 1023 个质子的样品，当然一般来讲其中的自旋方向杂乱无
章，不会表现出宏观磁场。然而在外磁场下会发生热极化，其极化（磁矩）向上的方向为NC，
极化（磁矩）向下的方向为 N!。它们之间的差定义为如下极化度：

p D NC " N!
NC C N!

对于一般的核磁共振谱仪，极化度一般是 p $ 10!5，于是能够贡献宏观磁信号的质子总数为

NC " N! D 6:02 # 1023 # 10!5 D 6:02 # 1018 个

于是样品在 1 cm处的宏观磁场为

EB D 8:4919 # 10!9 T

即大概在 8.5纳特斯拉量级。

2
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原子核自旋与磁矩
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87Rb 的基态 52S1/2和第一激发态 52P1/2 态的磁量子数的最大值都是＋2，若用 Rb 光谱的

D1线的σ+光激发 Rb 原子，由于只允许mF = +1 的跃迁发生，所以处于 52S1/2的 mF = +2 子

能级上的粒子不能被激发至 52P1/2 态(如图 2a 所示)；当原子从 52P1/2 经历自发辐射和无辐射

跃迁回到 52S1/2 时，粒子返回基态各个子能级的几率大致相等，如图 2b 所示。这样，经过若

干循环之后，基态 mF = +2 子能级上的粒子数就会大大增加，即大量粒子被“抽运”到 mF = 
+2 的子能级上，这就是光抽运效应。各子能级上粒子数的这种不均匀分布叫做“偏极化”。

光抽运的目的就是要实现粒子分布的偏极化。 
  右旋圆偏振光具有同样作用，只是它将大量的粒子抽运到基态子能级 mF = -2 上。  

用不同偏振特性的 D1光照射时，表 1 给出了 87Rb 及 85Rb 基态各 Zeeman 子能级的相对

跃迁几率。 
  

表 1  用不同偏振特性的光照射 87Rb 和 85Rb 时，基态各 Zeeman 子能级的相对跃迁几率 
 87Rb 85Rb 

F 2 1 3 2 
mF 2 1 0 -1 -2 1 0 -1 3 2 1 0 -1 -2 -3 2 1 0 -1 -2 
+ 0 1 2 3 4 3 2 1 0 1 2 3 4 5 6 5 4 3 2 1 
 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 
- 4 3 2 1 0 1 2 3 6 5 4 3 2 1 0 1 2 3 4 5 

    
由上表可知σ

＋
与σ-对光抽运具有相反的作用，因此当入射光为电场强度矢量垂直于磁场的

线偏振光时，由于它是由等量的σ+与σ-组成，Rb 原子虽然对光有强烈的吸收，但无光抽运

效应；当入射光为椭圆偏振光即由不等量的σ+与σ-的混合时，光抽运效应较圆偏振光小；

当入射光为π光，即电场强度矢量与总磁场的方向平行时，Rb 原子对光有强的吸收，仍无

光抽运效应。 
 
3．弛豫过程 

    热平衡时，基态各子能级上的粒子数Ｎ服从玻尔兹曼分布： 

.exp0 






kT
ENN                                    (6) 

由于在弱磁场条件下，各 Zeeman 子能级间的能量差很小，可近似地认为各子能级上的粒子

数是相等的，而光抽运使得个别子能级上的粒子数大大的增加，使系统处于非热平衡状态。

一般情况下，光抽运造成的 Zeeman 子能级间的粒数差比玻尔兹曼分布造成的粒子数差要大

几个数量级。 
  系统由非热平衡分布状态趋向于热平衡分布状态的过程称为弛豫过程。弛豫的微观过程

通常很复杂，在 Rb 原子系统中主要有以下几种： 
  （１）Rb 原子与容器壁的碰撞。这种碰撞会导致子能级之间的跃迁，使原子恢复到热平

衡分布，失去光抽运所造成的偏极化。  
  （２）Rb 原子之间的碰撞。这种碰撞导致自旋－自旋交换弛豫，使粒子的磁矩发生改变

从而失去偏极化。当外场为零时，Zeeman 子能级简并，也是通过这种弛豫过程使原子回到

热平衡分布。  
  （３）Rb 原子与缓冲气体之间的碰撞。通常选择分子磁性很小的气体（如Ｎ2）作为缓冲

气体，这样，缓冲气体与 Rb 原子的碰撞对 Rb 的磁能态扰动极小，基本对原子的偏极化没

有影响。在光抽运最佳温度下，Rb 蒸汽的原子密度约为 1011 个／cm3，一般容器壁的原子面

密度约为 1015 个／cm2，因此 Rb 原子与器壁碰撞是失去偏极化的主要原因。当在样品泡中

充入 10Torr 左右的缓冲气体后，由于在此压强下缓冲气体的密度约为 1017 个／cm3，将大大

减少 Rb 原子与器壁碰撞的机会，从而保持了原子高度的偏极化。当然，缓冲气体分子不可

能全部抑制子能级之间的跃迁，其主要作用是使基态由非热平衡分布恢复到热平衡分布的弛

热平衡时，能级粒⼦布局数服从玻尔兹曼分布

宏观数量（1mol）质⼦产⽣的磁场

室温和外磁场（～10T）下，

U S T C Wu Ze

按照如下公式计算磁场 EB：
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3
!

EMp ! Or
"

Or " EMp

r3

其中 Or 是 Er 的单位向量，!0表示真空磁导率：

!0 D 4" # 10!7 T ! m=A

我们考虑 Er 的绝对值为 0.01米，方向为垂直于磁矩方向，于是

EB D " !0

4"

EMp

r3
D "10!7 # 1:41060679736 # 10!26

10!6
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宏观数量的质子产生的磁场

我们考虑包含 1摩尔 =6:02 # 1023 个质子的样品，当然一般来讲其中的自旋方向杂乱无
章，不会表现出宏观磁场。然而在外磁场下会发生热极化，其极化（磁矩）向上的方向为NC，
极化（磁矩）向下的方向为 N!。它们之间的差定义为如下极化度：

p D NC " N!
NC C N!

对于一般的核磁共振谱仪，极化度一般是 p $ 10!5，于是能够贡献宏观磁信号的质子总数为

NC " N! D 6:02 # 1023 # 10!5 D 6:02 # 1018 个

于是样品在 1 cm处的宏观磁场为

EB D 8:4919 # 10!9 T

即大概在 8.5纳特斯拉量级。
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热极化度 ～ 10-5
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在1cm处产⽣的磁场

•在基态下核自旋是无序的， 彼此之间没有能量差。它们的能态是简并的:

• 由于原子核具有核磁矩，当外加一个强磁场时（Bo）, 核磁矩的取向会与
外磁场平行或反平行:

• 取向与外磁场平行核的数目总是比取向反平行的核稍多.

磁场中I=1/2的核（能量自旋状态） 𝑩𝟎

=  h / 4

a

b

𝜶⟩

𝜷⟩
𝑩𝟎

𝑬𝜶/𝜷 = ∓ ½ ℏ ȉ 𝜸 ȉ 𝑩𝟎

∆𝑬 = ℏ ȉ 𝜸 ȉ 𝑩𝟎

磁场中I=1/2的核
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Zeeman分裂 NMR实验基本装置

!
"!#$% &$%

'
(
)
*

H,

探测
（电磁感应理论）

核磁共振实验

自旋感应磁场

射频脉冲
激发核自
旋体系吸
收能量

感应线圈
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质子磁力计：利用氢核自旋的NMR效应

! = #$

如何测量地磁场？
B～ 50 uT
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质子磁力计：利用氢核自旋的NMR效应

测量精度可
达0.5nT级别
功耗大，只能
进行间断测量，
灵敏度不高

1955年，美国成功研制出了第一台质子磁力仪

! = #$%



传统核磁共振谱仪

10T
～300万

15T
～800万

21T
>1000万

1T

传统核
磁：向

高磁场
方向发

展

灵敏度 ∝ B0 3/2

20

弱信号探测

磁共振信号弱，检测灵敏度低

超导磁体：价格昂贵!!!、笨重、磁场不均匀
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核磁共振实验谱仪

Cutting-Edge Technology

28.2 T

Bruker Ascend 1.2 GHz NMR
$17.8 million

Only six 1.2GHz NMR 
spectrometers in the world

如何提高NMR的灵敏度？
at the National Gateway 
Ultrahigh Field NMR Center
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• 1947年兰姆和雷瑟福用波谱学方法测定
氢原子精细结构的兰姆位移

• 1949年美国的比特（F.Bitter）指出，可
把射频波谱技术扩展到原子激发态的研
究中。

• 卡斯特勒的想法“利用偏振光对恒定磁场中
的气态原子或分子作用，有可能实现激发态
塞曼子能级产生选择跃迁”

• 1950年布洛塞尔和比特按照卡斯特勒的思想
做成了第一个光磁共振实验

光抽运改变了磁能级上的粒子数分布，同时采
取光探测的方法，克服了磁共振信号弱的缺
点，把探测灵敏度提高了七、八个数量级。

光磁共振法（双共振现象）

1966 
年诺
贝尔
物理
学奖

卡斯特勒

“激光之父”

光抽运技术和射频或微波磁共振技术相结合的
一种实验技术

https://baike.baidu.com/item/%E6%B3%A2%E8%B0%B1%E5%AD%A6%E6%96%B9%E6%B3%95/17184178?fromModule=lemma_inlink
https://baike.baidu.com/item/%E5%8E%9F%E5%AD%90%E6%BF%80%E5%8F%91%E6%80%81/2749225?fromModule=lemma_inlink
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Laser spectroscopy

Experimental Techniques

8

Magnetic resonance

E

B Laser-assisted 
magnetic resonance

rf

rf

Laser
PD

Why Use Lasers for MR ?

9

Sensitivity
increase by > 10 orders of magnitude

Polarization Signal Energy per Spin

NMR
hνrf
2.10-25 J

Laser
hνopt

3.10-19 JOptically
pumped:

n↑-n↓
n↑+n↓ ⇒1

n↑-n↓
n↑+n↓ ≈ 10
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Sensitivity
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-5NMR:

光磁共振法（双共振现象）

The role of the light 
• polarize the spin system
• measure the spin polarization, serving as a 

detector
• influence the dynamics of the system. 



Magnetometers
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自
旋

磁场精密测量：从经典到量子技术



Optical Pumping
• First suggested by Kastler [J. Phys. Radium, 1950, 11, 255. 

Science, 1967, 158, 214]

27

Spontaneous emissionCircularly polarized light, 
ms = +1



120 D. Suter: Optically detected magnetic resonance

Figure 6. Basic principle of optically detecting magnetic resonance
in transmission by differential absorption.

Difference detection, as shown in Fig. 6, for initially equal
photon numbers, np+

(0) = np�
(0) = n0, yields

1n(`) = �2n0`↵0N0 (p+ � p�) = �2n0`↵0N01p, (1)

where we have used the fractional spin polarization 1p =

p+ � p�. Since difference detection is free of background,
this signal is not significantly perturbed by classical noise of
the laser. It is, however, affected by shot noise, which was not
considered in this classical analysis. According to Eq. (1), a
high sensitivity (i.e. small N0 and 1p) can be achieved by
using a large n0 (i.e. high laser intensity), a long path length
`, and a large absorption coefficient ↵0. These goals tend to
be incompatible, however. As an example, large absorption
coefficients and long path lengths lead to an inhomogeneous
system and violate the assumption of linearity made in this
derivation, while the combination of high laser intensity and
large absorption coefficient leads to unwanted perturbations
of the system. In cases where these issues become important,
it is possible to modify the basic scheme discussed above,
e.g. by using dispersive instead of absorptive detection (Suter
et al., 1991b). In this case, the complex index of refraction
(i.e. absorption as well as dispersion) depends linearly on the
spin polarization of the ground state (Rosatzin et al., 1990).

2.4.2 Spontaneous emission

When electronically excited states are populated during an
experiment, their return to the ground state may be accom-
panied by the emission of a photon that carries informa-
tion about the state that was populated. While it is much
harder to detect spontaneously scattered photons, since they
are emitted over a large solid angle, they provide a signifi-
cantly higher information content than the transmitted laser

Figure 7. Angular momentum conservation during photon emis-
sion.

photons: they are all emitted (if correctly filtered) by the sys-
tem under study.

Whether these photons are actually useful depends on the
system. Figure 7 shows a simple but important case: if the
environment of the emitter has sufficiently high symmetry,
such as in the case of free atoms, angular momentum conser-
vation requires that the angular momentum of the photon is
equal to the difference between the angular momenta of the
two atomic states:

s = J e � J g.

Here, s is the photon angular momentum, while J e, g are the
angular momenta of the electronically excited and electronic
ground states of the atom.

In systems with lower symmetry, the angular momentum
may not be a conserved quantity, and the polarization of
the photons may not depend on the spin of the participating
states. Even in those cases, however, it may be possible to in-
fer the angular momentum state of the quantum system from
some properties of the measured fluorescence. A good exam-
ple is the NV system in diamond, which will be discussed in
Sect. 4.3. Here, the number of scattered photons is a good
indicator of the angular momentum state: if the system is
initially in the mS = 0 state, the photoluminescence rate is
typically 20 % higher than for the mS = ±1 states (Doherty
et al., 2013; Suter and Jelezko, 2017).

Changes in the rate of spontaneous emission cannot only
be induced by driving spin transitions with MW or RF fields,
but also by tuning the energy levels with a static magnetic
field. As an example, a magnetic field can tune the energy
of long-lived states (e.g. due to a spin-forbidden transition to
the ground state) to match the energy of a state with a short
radiative lifetime. As a result, even small symmetry-breaking
terms mix the two (near-)degenerate states, resulting in sig-
nificant increase in the photoemission rate and/or the polar-
ization of the PL. Since the coupling terms mix the two lev-
els, the degeneracy is avoided and the system goes through
a level anticrossing (LAC). Measuring these resonances (see
e.g. Baranov and Romanov, 2001) corresponds to a magnetic

Magn. Reson., 1, 115–139, 2020 https://doi.org/10.5194/mr-1-115-2020

Optical detection: Circular Dichroism
The complement of optical 
pumping: it transfers spin 
angular momentum to the 
photons and polarization-
selective detection 
measures the photon 
angular momentum. 
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F. Bitter, Phys. Rev., 1949, 76, 833. population difference 
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光泵磁共振的典型原子自旋
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碱金属元素：Na，K，Rb，Cs

I=3/2（87Rb）

F＝I+J，…，｜I - J｜
耦合后总量子数

磁量子数
ｍＦ＝F，F－1，…，
－F
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光抽运效应

跃迁选择定则为

（a）87Rb 基态粒子吸收 D"#$
光子跃迁到激发态的过程
（b）87Rb 激发态粒子通过自发
辐射返回基态各子能级

大量粒子被“抽运”到
mF = +2 的子能级上
实现粒子分布的偏极化
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光泵磁共振
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Figure from: D.Budker. : A new spin on magnetometry
Nature (News&Views) 422, 574 - 575 (2003)

• Optical pumping
• Spin precession
• Probe (light intensity/light polarization)

Light-atom
interaction

Vapor cell: Alkali metal atoms

用光来测量原子角动量对磁场的响应
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其中

激光探测—法拉第（Faraday）效应



磁场测量基本过程
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9 

polarization fraction depends on the pump power, detuning, and alkali metal density.  A 
magnetic field perpendicular to the pump beam causes the collective magnetic moment of the 
atoms to reorient.  As a result, the index of refraction of the atomic gas changes.  This change in 
optical properties is measured by detecting the optical rotation of a linearly polarized “probe” 
laser beam typically oriented perpendicular to the pump beam.  Because the measured optical 
rotation is linear in magnetic field, the output signal acts as a magnetic field discriminator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The dymamics of the atomic polarization P, from which arises the magnetic sensitivity, are 
described in the equation 
 
 
                                                                                                                          .                                                         
 
The first term describes diffusion, with diffusion constant D, of the alkali metal atoms through a 
helium buffer-gas which is typically added to vapor cells at a pressure near atmospheric pressure.  
The buffer gas slows the polarized atoms’ trajectory to the glass vapor cell wall where their 
polarization is reoriented randomly.  The second results in the precession of the polarization with 
gyromagnetic ratio γ in the presence of a magnetic field B.  The third term represents the optical 
pumping at a rate R along the direction of photon spin s.  The fourth term describes how the 
optical pumping beam destroys the coherence of P.  Finally, the fifth term encapsulates all other 
decoherence processes such as atomic collisions.   

 

Figure 2: Principle of operation of an atomic magnetometer 

 Optical pumping 

Spins align with the 
pump beam 

Pump 

Circular 
polarization

Alkali Vapor Cell

Randomly oriented 
atomic spins 

Apply Small Magnetic Field

Spins precess in magnetic field 

B

Out of 
plane

Detect with probe beam 

Oriented spins rotate the polarization 
(Faraday rotation) 

B 

Probe beam 

Output 
polarization 

Input 
polarization
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弛豫过程

系统由非热平衡分布状态趋向于热平衡分布状态的过程称为弛
豫过程。

（１）Rb原子与容器壁的碰撞。导致子能级之间的跃迁使原
子恢复到热平衡分布，失去光抽运所造成的偏极化。

（２）Rb原子之间的碰撞。导致自旋－自旋交换弛豫，使粒
子的磁矩发生改从而失去偏极化。

（３）Rb原子与缓冲气体之间的碰撞。将大大减少 Rb原子
与器壁碰撞的机会，从而保持了原子高度的偏极化。
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Wall collision：

原子碰撞效应

W. Happer

W. Happer and H. Tang, PRL 31, 273 (1973); W. Happer and A. Tam, PRA 16, 1877 (1977);
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Alkali metal atoms with hyperfine state indicated by
color precessing in the presence of a magnetic
field experience a spin-exchange collision which
preserves total angular momentum but changes
the hyperfine state, causing the atoms to precess
in opposite directions and decohere.

Alkali metal atoms in the spin-exchange relaxation-
free (SERF) regime with hyperfine state indicated
by color precessing in the presence of a magnetic
field experience two spin-exchange collisions in
rapid succession which preserves total angular
momentum but changes the hyperfine state,
causing the atoms to precess in opposite directions
only slightly before a second spin-exchange
collision returns the atoms to the original hyperfine
state.

The spin-exchange relaxation rate  for atoms with low polarization experiencing slow spin-exchange can be
expressed as follows:[4]

where  is the time between spin-exchange collisions,  is the nuclear spin,  is the magnetic resonance frequency, 
 is the gyromagnetic ratio for an electron.

In the limit of fast spin-exchange and small magnetic field, the spin-exchange relaxation rate vanishes for sufficiently
small magnetic field:[2]

where  is the "slowing-down" constant to account for sharing of angular momentum between the electron and
nuclear spins:[5]

Spin exchange relaxation

preserves total angular momentum but 
changes the hyperfine state, causing 
the atoms to process in opposite 
directions and decohere. 

experience two spin-exchange collisions in 
rapid succession, causing the atoms to 
process in opposite directions only slightly 
before a second spin-exchange collision 
returns the atoms to the original hyperfine state. 
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expressed as follows:[4]

where  is the time between spin-exchange collisions,  is the nuclear spin,  is the magnetic resonance frequency, 
 is the gyromagnetic ratio for an electron.

In the limit of fast spin-exchange and small magnetic field, the spin-exchange relaxation rate vanishes for sufficiently
small magnetic field:[2]

where  is the "slowing-down" constant to account for sharing of angular momentum between the electron and
nuclear spins:[5]

Alkali metal atoms with hyperfine state indicated by
color precessing in the presence of a magnetic
field experience a spin-exchange collision which
preserves total angular momentum but changes
the hyperfine state, causing the atoms to precess
in opposite directions and decohere.

Alkali metal atoms in the spin-exchange relaxation-
free (SERF) regime with hyperfine state indicated
by color precessing in the presence of a magnetic
field experience two spin-exchange collisions in
rapid succession which preserves total angular
momentum but changes the hyperfine state,
causing the atoms to precess in opposite directions
only slightly before a second spin-exchange
collision returns the atoms to the original hyperfine
state.

The spin-exchange relaxation rate  for atoms with low polarization experiencing slow spin-exchange can be
expressed as follows:[4]

where  is the time between spin-exchange collisions,  is the nuclear spin,  is the magnetic resonance frequency, 
 is the gyromagnetic ratio for an electron.

In the limit of fast spin-exchange and small magnetic field, the spin-exchange relaxation rate vanishes for sufficiently
small magnetic field:[2]

where  is the "slowing-down" constant to account for sharing of angular momentum between the electron and
nuclear spins:[5]

Q is the "slowing-down" constant 



无自旋交换弛豫效应（SERF效应）
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PRL 31, 273 (1973)

Atomic number density  
Magnetic field

1973 年，Happer 等发现， 1977 年推导出这⼀现象的理论解释
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布洛赫（Bloch）方程

光与原子相互作用的精确描述需要用到密度矩阵，但是近
似可以用一个简单的布洛赫(Bloch)方程来描述：

üP是电子极化度，第一项表示原子自旋受到外磁场力矩而做拉莫进动；
ü 第二项表示泵浦光Rop沿着z方向泵浦原子，同时也导致自旋弛豫；
ü 第三项表示原子的自旋弛豫Rrel，包括原子与气壁碰撞、自旋之间碰撞、
激光与原子相互作用导致的弛豫等

ü q：由于原子存在核自旋导致的缓慢因子≈2I+1，87Rb约等于4
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Bloch方程的稳态解

当外磁场变化很缓慢时，可以求出布洛赫方程的准静态解

其中
B=0 时平衡
自旋极化
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磁场测量原理

当待测磁场非常微弱

最灵敏的方向：与pump和probe方向正交
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where  is the average polarization of the atoms. The atoms suffering fast spin-exchange precess more slowly when
they are not fully polarized because they spend a fraction of the time in different hyperfine states precessing at
different frequencies (or in the opposite direction).

Relaxation rate  as indicated by magnetic resonance linewidth for atoms as a function of
magnetic field. These lines represent operation with potassium vapor at 160, 180 and 200 °C (higher
temperature provides higher relaxation rates) using a 2 cm diameter cell with 3 atm He buffer gas, 60
Torr N2 quenching gas. The SERF regime is clearly apparent for sufficiently low magnetic fields where
the spin-exchange collisions occur much faster than the spin precession.

The sensitivity  of atomic magnetometers are limited by the number of atoms  and their spin coherence lifetime 
 according to

where  is the gyromagnetic ratio of the atom and  is the average polarization of total atomic spin .[6]

In the absence of spin-exchange relaxation, a variety of other relaxation mechanisms contribute to the decoherence of
atomic spin:[2]

Sensitivity

Spin exchange relaxation-free (SERF) magnetometer 

where  is the average polarization of the atoms. The atoms suffering fast spin-exchange precess more slowly when
they are not fully polarized because they spend a fraction of the time in different hyperfine states precessing at
different frequencies (or in the opposite direction).

Relaxation rate  as indicated by magnetic resonance linewidth for atoms as a function of
magnetic field. These lines represent operation with potassium vapor at 160, 180 and 200 °C (higher
temperature provides higher relaxation rates) using a 2 cm diameter cell with 3 atm He buffer gas, 60
Torr N2 quenching gas. The SERF regime is clearly apparent for sufficiently low magnetic fields where
the spin-exchange collisions occur much faster than the spin precession.

The sensitivity  of atomic magnetometers are limited by the number of atoms  and their spin coherence lifetime 
 according to

where  is the gyromagnetic ratio of the atom and  is the average polarization of total atomic spin .[6]

In the absence of spin-exchange relaxation, a variety of other relaxation mechanisms contribute to the decoherence of
atomic spin:[2]

Sensitivity a 2 cm diameter cell with 
3 atm He buffer gas, 60 
Torr N2 quenching gas 

200 °C 
180 °C 

a 1 cm3 vapor cell
~ 10 aT Hz−1/2  

160 °C 
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94 I. Savukov and S. J. Seltzer

Following Ref. [14], for notational simplicity we introduce the dimensionless magnetic
field parameter β (not to be confused with the spin-temperature parameter),

βi =
(

γ e

ROP + Rrel

)
Bi. (5.25)

In the presence of a slowly changing magnetic field, the quasi-steady-state solution to
Eq. (5.23) can be found. Most SERF magnetometers use a probe laser beam orthogonal to
the pump beam that is tuned off the absorption line, with the probing axis defined here as
x̂. Thus the signal of the SERF magnetometer will be proportional to

Sx = S0
βy +βxβz

1 +
(
β2

x +β2
y +β2

z

) . (5.26)

If the magnetic field is also small (|β| ! 1), then the magnetometer will be most sensitive
to βy (the component perpendicular to both the probe and pump directions), Sx ≈ S0βy.
From Eq. (5.26) it follows that the sensitivity is optimal when ROP = Rrel giving S0=1/4,
or 50% polarization. At higher pumping rates the polarization saturates while the linewidth
continues to broaden, reducing the magnetometer signal, as shown in Fig. 5.4.

Application of a small bias field βz permits detection of a slowly oscillating field (the
frequency is ultimately limited by the temperature of the vapor) β1 (t) = β1 cos(ωt) ŷ.
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Figure 5.4 SERF magnetometer signal, proportional to Sx as given by Eq. (5.26), as a function of
alkali spin polarization. Optimum signal occurs at 50% polarization, corresponding to ROP = Rrel.
Adapted from Ref. [15].
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无自旋交换弛豫效应（SERF效应）

M. Romalis

普林斯顿⼤学

Phys. Rev. Lett., 89:130801, Sep 2002.

10 f Hz−1/2  a shot-noise limited 
sensitivity: 2 aT Hz−1/2  

in  7 cm3 cell at 190 °C 首次实现
SERF态

钾原子
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SERF原⼦磁强计

Nature, 422(6932):596–599, 04 2003

either superconducting or atomic magnetometers. The active
measurement volume used by each channel is only 0.3 cm3.
The inset to Fig. 3b shows the magnetic noise in the difference

between two channels as a function of the distance between them—
that is, the baseline of the gradiometer. The probe beam slightly
expands in the ŷ direction, so the channel spacing is 0.28 cm, 10%
smaller then the photodiode element separation. We expect the
noise to increase with the baseline d of the gradiometer owing to
the magnetic field gradient noise. A fit of the form N ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1 þN2
2 þ d2G2

p
; where N1 and N2 are the intrinsic noise levels

in each channel, gives a magnetic field gradient noise G ¼
1 fT cm21Hz21/2, which is somewhat larger than our estimate of
0.5 fT cm21Hz21/2 for the gradient noise produced by the magnetic
shields18. This probably indicates that some noise comes from local
sources—perhaps the metal in the temperature sensor near the cell.
We can also form a second-order gradiometer using three adjacent
channels. We find that the intrinsic sensitivity of each channel
measured in this way is slightly better, but the improvement is not
significant.
We also investigated the performance of the magnetometer in a

multichannel imaging mode. We first apply a uniform oscillating
magnetic field gradient dBy/dy to check the linearity of the device
(Fig. 4a). With the exception of the outer channels, which are not
fully illuminated by the pump laser, the response is quite linear, and

the measured gradient agrees to within 4% with the strength of the
applied gradient. To simulate a biological source, we place a small
coil about 5.3 cm from the centre of the magnetometer. We apply an
oscillating current to the coil with a frequency of 25Hz, and analyse
the data in 1-s intervals (Fig. 4b). We fit the data to the magnetic
dipolar field profile, and find that after 1 s of averaging the
uncertainty in the distance to the dipole is 2mmand the uncertainty
in its absolute size is 13%.

The spatial resolution of the magnetic field measurements inside
the magnetometer cell is limited by the diffusion of the K atoms. On
the basis of a detailed model of diffusion, we determine the
resolution to be about 2mm for our conditions, slightly smaller
than the spacing between the channels. The accuracy of localization
of magnetic field sources outside the magnetometer depends on a
number of factors, including the signal-to-noise ratio, the distance
from the magnetometer, and the uniformity of the magnetometer
response. Typically, the magnetic field sources can be localized to a
fraction of the detector size, so localization uncertainty of the order
of 0.2mm can be expected in our magnetometer for sufficiently
high signal-to-noise ratio.

In addition to its high sensitivity, the SERF magnetometer
described here does not require cryogenic cooling, making it very
attractive for a wide range of applications, particularly outside
laboratory environments. The bandwidth and size of the magne-
tometer are well suited for detection of biological fields. Two
technical modifications would be needed to use the magnetometer
for magnetoencephalography (MEG). First, the magnetometer
would have to be placed in larger magnetic shields (similar to the
magnetically shielded rooms at present used for MEG with SQUID
magnetometers24), so as to accommodate a patient inside the
shields. Second,more efficient thermal insulation and active cooling

Figure 3 Magnetic field sensitivity and bandwidth of the magnetometer. Magnetic field
noise in a single channel (a, dashed line), and intrinsic magnetic field sensitivity of a single
channel extracted from the difference between adjacent channels (a, solid line). The
magnetic field sensitivity data are obtained by recording the response of the

magnetometer for about 100 s, performing a fast Fourier transform (FFT) without

windowing; and calculating r.m.s. amplitudes in 1 Hz bins. A peak due to the calibrating By
field is seen at 25 Hz. To obtain absolute field sensitivity, we divide the magnetometer FFT

by a normalized frequency-response function shown in b with a fit to A /(f 2 þ B 2 )1/2,

where the bandwidth B ¼ 20 Hz. Inset, magnetic field noise in the channel difference as a

function of the distance between channels. The fit assumes that the noise increases owing

to contributions from magnetic field gradient noise. a.u., arbitrary units.

Figure 4 Magnetic gradient imaging. a, Measured response for an applied uniform
gradient dBy=dy ¼ 315 fT cm21 oscillating at 25 Hz. Only data represented by filled

symbols are used in the linear fit, which gives a slope of 301 fT cm21. b, Measured
response from a magnetic dipole m ¼ 1.25mA cm22 located 5.3 cm away and oscillating

at 25 Hz, with the magnetic dipole field fit. The large error bar on the middle data point

represents the single-channel noise level after 1 s of integration. The small error bars

represent the noise in the relative signal between adjacent channels.
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close to photon shot noise at 40 Hz. The intrinsic magnetic
field noise obtained from the gradiometer measurements
reaches 160 aT /Hz1/2 at 40 Hz. It is still not limited by the
probe noise and is likely due to imperfect cancellation of the
1 / f ferrite noise and local sources of Johnson noise, such as
droplets of K metal in the cell. The magnetization sensitivity
of the gradiometer for our geometry with a 1 cm3 sample
reaches 6!10−11 emu /cm3 /Hz1/2.

The material samples are introduced into the apparatus
through the access tube at ambient pressure. The sample is
held at the end of high purity quartz tube by pumping on its
other end with a vacuum pump. After thorough cleaning the
quartz tube did not present a significant magnetic back-
ground. The quartz tube and the sample are rotated around
the axis at about 7 Hz to distinguish sample magnetic fields
from constant backgrounds and move the signal to a region
of lower magnetic field noise.

A 9 mm diameter, 13 mm long cylinder was prepared
from a sample of weakly magnetized !635 Ma Raven-
sthroat formation peloidal dolostone from the Mackenzie
Mountains, Canada. Two vector components of the rock
magnetization were determined by measuring the phase of
the recorded signal relative to the sample rotation phase.
Higher frequency rotation and gradiometry were not neces-
sary to record even the weakest magnetization of this sample
with high signal-to-noise. The absolute value of the magne-
tization transverse to the rotation axis is plotted in Fig. 4 as a
function of temperature. The sample is continuously rotated

and slowly heated over a period of about 2 h. The magneti-
zation drop at 300–350 °C is due to unblocking of pyrrho-
tite or titanomagnetite crystals with the remaining magneti-
zation most likely carried by magnetite.

In summary, we have described what we believe is the
most sensitive centimeter-sized detector of magnetic fields
and magnetization operating at low frequency. The absence
of cryogenics allows for much larger thermal power dissipa-
tion, so sample temperatures can be varied over a wide range
without extensive radiation shielding. We have achieved
sample temperatures up to 500 °C and higher temperatures
should be possible with thicker heating wires. Samples have
also been maintained at room temperature by gently blowing
air through the sample tube. The small size, low laser power,
and continuous magnetic field recording allow versatile use
of the magnetometer. In addition to the paleomagnetic appli-
cation explored here, many other uses can be readily imple-
mented, including detection of magnetic nanoparticles,21

nuclear magnetic resonance,22 and weak high-temperature
ferromagnetic ordering.23 The fundamental sensitivity limits
of SERF magnetometers have not yet been reached, so fur-
ther improvements can be expected.
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碱金属气室是超高灵敏磁场和惯性测量的灵敏核心，原子源种类
决定了测量灵敏度的极限。

2.4    钾-铷原子 SERF磁强计

气室中含有两种或两种以上的碱原子的磁强

计称为混合抽运磁强计，该磁强计利用自旋交换

光抽运[40] 实现电子自旋极化，即泵浦光偏振一

种原子，该原子极化后再对另外一种原子进行复

极化，具有减小光深和均匀自旋极化 [41] 的优

点。目前，关于混合抽运 SERF 磁强计的研究主

要为钾-铷原子 SERF 磁强计，其气室内的碱金

属密度比是磁强计设计的重要参数。

fT/
√

Hz

1019m−3

普林斯顿大学的 Romails 等[42] 于 2010 年偶

然发现被微量铷原子污染的钾原子泵浦的灵敏度

高于纯净钾原子，首次演示了混合泵式原子磁强

计。日本京都大学的 Ito 等 [43-45] 于 2011-2013
年针对钾-铷原子混合抽运磁强计进行系统性研

究，确定了钾-铷杂化原子的泵浦效率大于单个

原子，泵浦钾原子探测铷原子的敏感度最高，实

现了 30  的超高灵敏度磁强计，并且应用

速率方程对混合磁强计的性质理论研究后得出当

钾原子与铷原子密度比为 1：200 时，能够获得

最佳的灵敏度。2016 年，Ito 等[46] 在考虑了自旋

极化空间分布的影响时研究了钾-铷原子 Bloch
方程，进一步确定钾原子与铷原子的最佳密度比

为 1∶400，其中钾原子密度为 3×  ，其可

使输出信号最大化，提高了空间均匀性。

fT/
√

Hz

fT/
√

Hz

fT/
√

Hz

2014 年，北京航空航天大学 [47]] 钾-铷原子

SERF 磁强计在加热温度为 195 ℃ 时实现了

5   的梯度灵敏度。2018 年，Li 等 [48]将

钾-铷原子双轴 SERF 磁强计加热到 180 ℃，利

用传递函数分析法研究其频率响应与动力学特

性，通过磁场优化后灵敏度为 15  ；Han
等 [49] 将钾 -铷原子密度比为 1∶180 的全光法

SERF 原子磁强计加热到 200 ℃，提出检测原子

拉莫尔进动频率的声光调制检测法，通过在大光

斑上选取几个点来扩大探测光束的尺寸，实现

了 14   的磁场灵敏度，适用于小型多通

道原子磁强计；李阳等[50] 将钾-铷原子密度比为

1∶180 的 SERF 磁强计加热到 210 ℃，采用左

右圆偏振光磁补偿法快速确定交流位移零点，使

用混合光泵浦法消除了交流位移。随后其又在研

究中[51] 发现钾-铷混合气室的碱金属最佳密度比

为 1∶277，并通过调整配比优化泵浦激光参数

fT/
√

Hz使磁强计灵敏度达到 0.68   。2019年，

QUAN 等[52] 将钾-铷原子密度比为 1∶70 的 SERF
磁强计加热到 200 ℃，并用多基因遗传规划算法

对其噪声建模后进行降噪，显著提高了磁强计

在低频频段的灵敏度，从而提高磁场测量系统

精度。 

2.5    小 结

碱金属原子饱和蒸气压各不相同，因此其所

需加热温度不同。表 1 列出了上述文章中较有代

表性的一些不同碱金属原子的加热温度和实测灵

敏度值。由表 1 可以看出，在相同密度下，钾原

子所需加热温度较高，铯原子所需加热温度较

低，因此铯原子 SERF 磁强计更适用于低温应用

领域。在单一碱金属原子磁强计中，基于钾原子

的 SERF 磁强计灵敏度最高，其次是铷原子与铯

原子。在混合抽运磁强计中，主要为关于钾-铷
原子混合抽运 SERF 磁强计的研究，并已实现极

高灵敏度，展现出其实用价值与优良前景。
  

表 1   不同碱金属原子的加热温度及其实测灵敏度
Tab. 1   Heat temperature and measured sensitivity of

different alkali metal atoms

碱金属

原子
加热温度/ ℃ 实测灵敏度/(fT·HZ−1/2) 年份 参考文献

钾 180 0.54 2003 [6]

钾 200 0.16 2010 [11]

铷 200 5 2010 [26]

铷 180 4 2014 [27]

铷 150 15 2018 [28]

铯 103 40 2008 [34]

铯 85 55 2015 [37]

铯 120 10 2017 [39]

钾-铷 195 5 2014 [47]

钾-铷 180 15 2018 [48]

钾-铷 190 0.68 2019 [51]
  

3    应用前景

SERF 原子磁强计具有较高的灵敏度，对超

高精度磁场测量具有重要意义，广泛应用于生物
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不同碱金属原子的加热
温度及其实测灵敏度

SERF 磁强计的灵敏度尚未达到极
限，小型化 SERF 原子磁强计的灵
敏度仍有提升空间，其次，SERF 
原子磁强计的成本还有降低空间，
基于MEMS 的气室研究将进一步
降低其气室成本。解决其在地磁
环境下的应用也很重要，这将使其
扩展更广泛的应用领域，如磁异常
探测、军事反潜等。

SERF 原⼦磁强计



无自旋交换弛豫（ SERF ）原子磁力计是当前灵敏度最高的磁力计
（0.16fT/Hz1/2），且具有无需低温、可小型化、结构简单等优势，已成为
SQUID的有力替代方案。
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0.5fT/Hz1/2

中国科大实验平台

我们组的研究进展： SERF磁力计

实现0.5fT/Hz1/2磁场探测灵敏度（地磁场的1000亿分之一）



58

基于自旋的磁场测量量子极限：海森堡测不准关系

海森堡测不准关系
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如何进⼀步提⾼
弱磁探测灵敏度？
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标准量子极限
（自旋投影噪声）
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Fundamental sensitivity limits 
Spin-projection- noise-limited (or atomic shot-noise-limited) sensitivity δBSNL 

4 D. F. Jackson Kimball, E. B. Alexandrov, and D. Budker

the excited states polarized by the incident light. In most optical magnetometers, the sig-
nals used to detect Larmor precession scale with the ground-state spin polarization, and
consequently, optical pumping dramatically enhances magnetometer sensitivity.

Optical magnetometers, presently unmatched in both absolute accuracy and magnetomet-
ric sensitivity [4, 5], are universally based on these aforementioned principles: (1) optical
pumping of atomic spin polarization, (2) time-evolution of atomic spin polarization due
to the torque exerted on atomic magnetic moments by the magnetic field, and (3) optical
detection of the evolved atomic spin polarization state through the effect of the polarized
atoms on light propagating through the atomic medium. Within this basic framework, there
is a remarkable diversity of experimental techniques and physical effects, many of which
are explored throughout this book, in the cited references, and in online supporting mate-
rial (available at www.cambridge.org/9781107010352), and undoubtedly still others that
remain to be discovered.

1.1.1 Fundamental sensitivity limits

The fundamental quantum-mechanical uncertainty in the measurement of atomic spin pro-
jection constrains the potential sensitivity of optical magnetometers. The spin-projection-
noise-limited (or atomic shot-noise-limited) sensitivity δBSNL of a polarized atomic sample
to magnetic fields1 is determined by the total number of atoms N and the spin-relaxation
rate "rel for measurement times τ ! "rel

−1 [6]:

δBSNL ≈ 1
γ

√
"rel

Nτ
. (1.1)

Equation (1.1) can be understood by noting that a measurement of a single atomic spin for
a time 1/"rel determines the Larmor precession angle with an uncertainty on the order of 1
radian. If the measurement is performed with N atoms, the uncertainty is reduced by

√
N ,

and if the measurement is repeated multiple times, the uncertainty is reduced by the square
root of the number of measurements, which most efficiently is

√
"relτ .

As can be seen from Eq. (1.1), to achieve the highest possible precision in magnetometric
measurements, it is advantageous to have the longest possible relaxation time for the atomic
polarization, i.e., the smallest possible "rel, as well as the largest possible N . Therefore,
optical magnetometers typically are based on measurements of long-lived ground-state spin
polarization [an exception is the 4He magnetometer (Chapter 10), in which polarization of
the metastable 2 3S1 state is used]. A variety of techniques can be employed to minimize
"rel: antirelaxation coating the walls of the vapor cell containing the atoms to reduce spin-
depolarizing wall collisions [7–10] (see Chapter 11), filling the vapor cell with buffer gas
to slow diffusion of atoms to the cell walls (see, for example, Refs. [11–15]), and even
atom trapping and cooling [16, 17] (Chapter 9). Also of note are optical magnetometers

1 Here we ignore factors of order unity that depend on the details of the atomic system and optical magnetometer
scheme, such as the total atomic angular momentum and relative contributions of different Zeeman sublevels.
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the excited states polarized by the incident light. In most optical magnetometers, the sig-
nals used to detect Larmor precession scale with the ground-state spin polarization, and
consequently, optical pumping dramatically enhances magnetometer sensitivity.

Optical magnetometers, presently unmatched in both absolute accuracy and magnetomet-
ric sensitivity [4, 5], are universally based on these aforementioned principles: (1) optical
pumping of atomic spin polarization, (2) time-evolution of atomic spin polarization due
to the torque exerted on atomic magnetic moments by the magnetic field, and (3) optical
detection of the evolved atomic spin polarization state through the effect of the polarized
atoms on light propagating through the atomic medium. Within this basic framework, there
is a remarkable diversity of experimental techniques and physical effects, many of which
are explored throughout this book, in the cited references, and in online supporting mate-
rial (available at www.cambridge.org/9781107010352), and undoubtedly still others that
remain to be discovered.

1.1.1 Fundamental sensitivity limits

The fundamental quantum-mechanical uncertainty in the measurement of atomic spin pro-
jection constrains the potential sensitivity of optical magnetometers. The spin-projection-
noise-limited (or atomic shot-noise-limited) sensitivity δBSNL of a polarized atomic sample
to magnetic fields1 is determined by the total number of atoms N and the spin-relaxation
rate "rel for measurement times τ ! "rel

−1 [6]:

δBSNL ≈ 1
γ

√
"rel

Nτ
. (1.1)

Equation (1.1) can be understood by noting that a measurement of a single atomic spin for
a time 1/"rel determines the Larmor precession angle with an uncertainty on the order of 1
radian. If the measurement is performed with N atoms, the uncertainty is reduced by

√
N ,

and if the measurement is repeated multiple times, the uncertainty is reduced by the square
root of the number of measurements, which most efficiently is

√
"relτ .

As can be seen from Eq. (1.1), to achieve the highest possible precision in magnetometric
measurements, it is advantageous to have the longest possible relaxation time for the atomic
polarization, i.e., the smallest possible "rel, as well as the largest possible N . Therefore,
optical magnetometers typically are based on measurements of long-lived ground-state spin
polarization [an exception is the 4He magnetometer (Chapter 10), in which polarization of
the metastable 2 3S1 state is used]. A variety of techniques can be employed to minimize
"rel: antirelaxation coating the walls of the vapor cell containing the atoms to reduce spin-
depolarizing wall collisions [7–10] (see Chapter 11), filling the vapor cell with buffer gas
to slow diffusion of atoms to the cell walls (see, for example, Refs. [11–15]), and even
atom trapping and cooling [16, 17] (Chapter 9). Also of note are optical magnetometers

1 Here we ignore factors of order unity that depend on the details of the atomic system and optical magnetometer
scheme, such as the total atomic angular momentum and relative contributions of different Zeeman sublevels.
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Photon-shot-noise-limited sensitivity 

1 General principles and characteristics of optical magnetometers 5

using particular condensed matter systems, such as nitrogen-vacancy centers in diamonds
(Chapter 8) and alkali atoms trapped in condensed (superfluid or solid) helium [18–20],
that have small !rel.

There is also a contribution to optical-magnetometer noise from the quantum uncertainty
of measurements of light properties (photon shot noise). Optical detection of atomic spin
precession is usually performed by measuring either the intensity or polarization of light
transmitted through the atomic sample. There are certain intrinsic advantages to measuring
the light polarization, in particular, reduced sensitivity to noise due to laser-intensity fluc-
tuations. If, for example, atomic spin precession is detected by measuring optical rotation
of the plane of transmitted light polarization [21], the photon-shot-noise-limited sensitivity
to the optical rotation angle ϕ is

δϕ ≈ 1
2

√
1
$τ

, (1.2)

where $ is the probed photon flux (photons/s) detected after the atomic sample and δϕ
is measured in rad/

√
Hz. It should also be noted that light–atom coupling via AC Stark

shifts can generate additional noise (see Ref. [22] and Sec 1.4.3). In optimal operation, the
contribution of photon shot noise to overall magnetometric noise does not exceed the contri-
bution from atomic spin-projection noise [6, 23]. Upon optimization of the atomic density
n for a given volume V of the sample, where N = nV , for an atomic-vapor-based opti-
cal magnetometer the dominant spin-relaxation mechanism becomes either spin-exchange
or spin-destruction collisions (depending on the details of the magnetometry scheme), in
which case !rel = ξn, and the optimum magnetometric sensitivity becomes

δBopt ≈
1
γ

√
ξ

V τ
. (1.3)

The relaxation constant ξ ranges between ∼10−9 cm3/s and ∼10−13 cm3/s for alkali atoms,
depending on the details of the collisions [1]. Thus for optical magnetometers using alkali
vapors, the optimal magnetometric sensitivity for a V = 1 cm3 magnetic sensor ranges
between 10−11 and 10−13 G/

√
Hz (1 to 0.01 fT/

√
Hz). Issues related to noise in opti-

cal magnetometers, including exploration of squeezed states and quantum nondemolition
(QND) measurements, are addressed in detail in Chapters 2 and 3.

1.1.2 Zeeman shifts and atomic spin precession

The language of atomic spectroscopy provides a complementary description of optical
magnetometry: the light field propagating through the atomic medium measures the Zeeman
shifts of atomic states. The Hamiltonian describing the Zeeman shift is

HZ = −µ · B . (1.4)
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!： the probed photon flux (photons/s) detected after the atomic sample

N： the total number of atoms 
： the spin-relaxation rate 

τ ： measurement time
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the excited states polarized by the incident light. In most optical magnetometers, the sig-
nals used to detect Larmor precession scale with the ground-state spin polarization, and
consequently, optical pumping dramatically enhances magnetometer sensitivity.

Optical magnetometers, presently unmatched in both absolute accuracy and magnetomet-
ric sensitivity [4, 5], are universally based on these aforementioned principles: (1) optical
pumping of atomic spin polarization, (2) time-evolution of atomic spin polarization due
to the torque exerted on atomic magnetic moments by the magnetic field, and (3) optical
detection of the evolved atomic spin polarization state through the effect of the polarized
atoms on light propagating through the atomic medium. Within this basic framework, there
is a remarkable diversity of experimental techniques and physical effects, many of which
are explored throughout this book, in the cited references, and in online supporting mate-
rial (available at www.cambridge.org/9781107010352), and undoubtedly still others that
remain to be discovered.

1.1.1 Fundamental sensitivity limits

The fundamental quantum-mechanical uncertainty in the measurement of atomic spin pro-
jection constrains the potential sensitivity of optical magnetometers. The spin-projection-
noise-limited (or atomic shot-noise-limited) sensitivity δBSNL of a polarized atomic sample
to magnetic fields1 is determined by the total number of atoms N and the spin-relaxation
rate "rel for measurement times τ ! "rel

−1 [6]:

δBSNL ≈ 1
γ

√
"rel

Nτ
. (1.1)

Equation (1.1) can be understood by noting that a measurement of a single atomic spin for
a time 1/"rel determines the Larmor precession angle with an uncertainty on the order of 1
radian. If the measurement is performed with N atoms, the uncertainty is reduced by

√
N ,

and if the measurement is repeated multiple times, the uncertainty is reduced by the square
root of the number of measurements, which most efficiently is

√
"relτ .

As can be seen from Eq. (1.1), to achieve the highest possible precision in magnetometric
measurements, it is advantageous to have the longest possible relaxation time for the atomic
polarization, i.e., the smallest possible "rel, as well as the largest possible N . Therefore,
optical magnetometers typically are based on measurements of long-lived ground-state spin
polarization [an exception is the 4He magnetometer (Chapter 10), in which polarization of
the metastable 2 3S1 state is used]. A variety of techniques can be employed to minimize
"rel: antirelaxation coating the walls of the vapor cell containing the atoms to reduce spin-
depolarizing wall collisions [7–10] (see Chapter 11), filling the vapor cell with buffer gas
to slow diffusion of atoms to the cell walls (see, for example, Refs. [11–15]), and even
atom trapping and cooling [16, 17] (Chapter 9). Also of note are optical magnetometers

1 Here we ignore factors of order unity that depend on the details of the atomic system and optical magnetometer
scheme, such as the total atomic angular momentum and relative contributions of different Zeeman sublevels.
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using particular condensed matter systems, such as nitrogen-vacancy centers in diamonds
(Chapter 8) and alkali atoms trapped in condensed (superfluid or solid) helium [18–20],
that have small !rel.

There is also a contribution to optical-magnetometer noise from the quantum uncertainty
of measurements of light properties (photon shot noise). Optical detection of atomic spin
precession is usually performed by measuring either the intensity or polarization of light
transmitted through the atomic sample. There are certain intrinsic advantages to measuring
the light polarization, in particular, reduced sensitivity to noise due to laser-intensity fluc-
tuations. If, for example, atomic spin precession is detected by measuring optical rotation
of the plane of transmitted light polarization [21], the photon-shot-noise-limited sensitivity
to the optical rotation angle ϕ is

δϕ ≈ 1
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√
1
$τ

, (1.2)

where $ is the probed photon flux (photons/s) detected after the atomic sample and δϕ
is measured in rad/

√
Hz. It should also be noted that light–atom coupling via AC Stark

shifts can generate additional noise (see Ref. [22] and Sec 1.4.3). In optimal operation, the
contribution of photon shot noise to overall magnetometric noise does not exceed the contri-
bution from atomic spin-projection noise [6, 23]. Upon optimization of the atomic density
n for a given volume V of the sample, where N = nV , for an atomic-vapor-based opti-
cal magnetometer the dominant spin-relaxation mechanism becomes either spin-exchange
or spin-destruction collisions (depending on the details of the magnetometry scheme), in
which case !rel = ξn, and the optimum magnetometric sensitivity becomes

δBopt ≈
1
γ

√
ξ

V τ
. (1.3)

The relaxation constant ξ ranges between ∼10−9 cm3/s and ∼10−13 cm3/s for alkali atoms,
depending on the details of the collisions [1]. Thus for optical magnetometers using alkali
vapors, the optimal magnetometric sensitivity for a V = 1 cm3 magnetic sensor ranges
between 10−11 and 10−13 G/

√
Hz (1 to 0.01 fT/

√
Hz). Issues related to noise in opti-

cal magnetometers, including exploration of squeezed states and quantum nondemolition
(QND) measurements, are addressed in detail in Chapters 2 and 3.

1.1.2 Zeeman shifts and atomic spin precession

The language of atomic spectroscopy provides a complementary description of optical
magnetometry: the light field propagating through the atomic medium measures the Zeeman
shifts of atomic states. The Hamiltonian describing the Zeeman shift is

HZ = −µ · B . (1.4)
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The relaxation constant ξ ranges between ∼10−9 cm3/s and ∼10−13 cm3/s for alkali atoms,
depending on the details of the collisions [1]. Thus for optical magnetometers using alkali
vapors, the optimal magnetometric sensitivity for a V = 1 cm3 magnetic sensor ranges
between 10−11 and 10−13 G/
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Hz (1 to 0.01 fT/
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(QND) measurements, are addressed in detail in Chapters 2 and 3.
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光泵磁共振的典型原子自旋
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Helium (He) magnetometers 

Optically Pumped He-4 Magnetometers 

interference filter depends on the actual light source used. Using a laser, e.g., a
tunable diode laser operating at 1083 nm [11–14] it can be locked to the single D0

line, whereas a He-lamp will transmit the D1 and D2 lines as well, and requires
some filtering in order to minimise absorption transitions at these lines [15]. The
sensing element is a cylindrical glass cell containing 4He at a few mbar. A small
fraction of the helium is excited by a weak electrodeless HF discharge into the 23S1
metastable state. This excitation introduces unpolarized metastable atoms. The
external magnetic field Bo splits the energy into three Zeeman levels, designated
mS = +1, mS = −1 and mS = 0, where DE = h ! fL is the energy difference between
mS = 0 and mS = ±1. The transition from ±1 to 0 can be induced by a resonance
ac-magnetic field B1ðtÞ ¼ B1 ! cos 2p ! fLð Þ. The determination of the Larmor reso-
nance frequency fL then yields the scalar magnitude of the external field according
to:

DE ¼ h ! fL ¼ 2 ! le ! B0 or fL ¼ ðce=2pÞ ! B0 ð1Þ

where the free electron gyromagnetic ratio ce/2p = (2 ! le/h) = 28.02495266
[GHz/T], which is the largest conversion factor of any optically pumped
magnetometer.

The determination of the frequency fL is established in the following way:
Electrons in the triple metastable 23S1 state are optically excited into the higher 2

3P0
energy level by a suitably narrow bandwidth IR-light beam. The excited 23P0 atoms
spontaneously decay unpreferentially to each Zeeman sublevel of the metastable
23S1 state. Thus the light establishes a longitudinal magnetic polarization of the gas.

Fig. 1 Schematic block diagram of a double-resonance He-4 magnetometer with single line
pumping in magnetic spin states of the 4He 23S1 metastable level (D0: 2

3S1 (ms = 0) ! 23P0).
Details see text

Helium Magnetometers 495

use polarization of the 23S1 metastable state 
populated by a high-frequency discharge 

Magnetic resonance 
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混合原子气室

混合原子气室
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Angular Momentum Reservoirs
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No direct transfer to nuclear spins from photon. However, the 
coupling between electronic and nuclear angular momentum is 
usually strong enough to provide an efficient transfer mechanism. 
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惰性气体核自旋超极化

p 电子自旋容易被极化
p 可以通过自旋交换碰撞将电子自旋传递给核自旋
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平衡态下，惰性气体核自旋的极化率P! 由自旋交换速率R"# 与
核自旋的纵向弛豫寿命T1以及碱金属原子自旋极化率Pe有关

碱金属
（K,Rb,Cs）
极化度

碱金属-惰性气体
自旋交换速率

惰性气体
纵向退相干时间

核自旋平衡极化度



气体池：87Rb＋129Xe
＋N2（缓冲淬火气体）

激光抽运使Rb原子极化，
自旋交换作用将129Xe的
核自旋极化（129Xe核自
旋的弛豫时间长）

利用Xe磁信号对
Rb进动的调制获
得Xe的进动频率

碱金属-惰性气体混合气室
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Magnetic fluctuations (e.g.,due to current noise) can be eliminated.

129Xe: spin-1/2 131Xe: spin-3/2

Clock-comparison comagnetometer 
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地球转动：在核自旋产生等效的磁场（～pT）

共磁力仪:测量地球转动
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磁场自补偿效应：对低频磁场噪声不敏感



两种自旋的耦合布洛赫方程
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惰性气体-碱金属自旋演化的布洛赫方程

静磁场 等效磁场

待测交流磁场

电子自旋

核自旋

Su H W, et al. Sci China Inf Sci October 2022 Vol. 65 200501:3

the magnetization of alkali-metal (noble-gas) spins with unity polarization, T1n (T2n) is the longitudinal
(transverse) relaxation time of noble-gas spins, and T1e (T2e) is the longitudinal (transverse) relaxation
times of alkali-metal spins. Te (T1e ≈ T2e) can be regarded as the common relaxation time without
distinction here. The factor Q is the slowing-down factor of alkali-metal atoms depending on the polar-
ization. Because P e

z is much larger than the transverse components P e
x and P e

y , Q primarily depends on
P e
z ≈ P e

0 . Therefore, Q can be approximated as a constant.
Due to the Fermi-contact interactions between alkali-metal electrons and noble-gas nuclear spins, an

effective field βM e,n
0 P e,n is induced by the polarization P e,n, where β = 8πκ0/3 and κ0 is the Fermi-

contact factor. Due to βM e
0P

e ↑ βMn
0P

n, we thus neglect the βM e
0P

e term. As a result, the coupled
Bloch equations in (2) and (3) can be simplified to

∂P e

∂t
=

γe
Q
(B0

z ẑ +Ba+ βMn
0P

n)↓ P e +
P e
0 ẑ − P e

TeQ
, (4)

∂P n

∂t
= γn(B

0
z ẑ +Ba)↓ P n +

P n
0 ẑ − P n

{T2n, T2n, T1n}
. (5)

The solution of the coupled Bloch equations (4) and (5) gives the performance of the noble-gas spin
system. The evolution of P n in (5) is independent on P e and thus can be calculated independently.
In the following, we consider the response of noble-gas spins to a weak external oscillating field Ba =
Ba cos(2πνt)ŷ for two cases: without/with a periodically driven alternating current (AC) field parallel to
the bias field, i.e., along z axis (see details in [16, 18, 19, 24]).

2.1 Spin dynamics without a periodically driving field

We first solve the evolution of noble-gas nuclear spins under a bias field B0
z along z and an oscillating

magnetic field Ba = Ba cos(2πνt)ŷ from (5). With rotating-wave approximation and Bn
eff = βMn

0P
n, we

can derive the steady-state effective field experienced by alkali-metal atoms as [16, 18, 19, 24]

Bn
eff =

1

2
βMn

0 P
n
0 γnBa

{
T2n cos(2πνt) + 2πδνT 2

2n sin(2πνt)

1 + (γnBa/2)2T1nT2n + (2πδν)2T 2
2n

x̂ +
T2n sin(2πνt)− 2πδνT 2

2n cos(2πνt)

1 + (γnBa/2)2T1nT2n + (2πδν)2T 2
2n

ŷ

}

,

(6)

where δν = ν−ν0 is the detuning of the external oscillating field with respect to the Larmor frequency of
noble-gas nuclear spins ν0 = γnB0

z/(2π). The total magnetic field Btot on 87Rb detected can be written
as

Btot = Bn
eff +Ba cos(2πνt)ŷ. (7)

The alkali-metal spins actually experience the superposition of these two fields.
We now solve for the evolution of alkali-metal spins from (4). In the experimental configuration, the

x component of alkali-metal polarization P e
x is detected with a probe beam (see (1)). Thus, we only

need to obtain the explicit expression of P e
x . Under the quasi-static field condition, we can obtain the

steady-state solution:

P e
x ∝

BxBz −By∆B

|B|2 + (∆B)2
≈

BxBz −By∆B

(B0
z )2 + (∆B)2

, (8)

where ∆B = 1/(γeTe) and B ≈ B0
z for the large bias field applied along z. In experiments, the measured

Bx and By are from the total magnetic field in (7), where the effective field generated by nuclear transverse
magnetization in the xy plane is the dominant part [16–18,24].

Based on (6), the effective field Bn
eff induced by the magnetization of the noble-gas nuclear spins

depends on the amplitude of the applied oscillating field Ba. There are three different situations.
(1) Linear case. When Ba is weak enough to satisfy the condition (γnBa/2)2T1nT2n ↑ 1, i.e.,

Ba ↑
2

γn
√
T1nT2n

, (9)

the effective field Bn
eff is proportional to the amplitude of applied oscillating field Ba, as shown in Fig-

ure 3(a).
(2) Nonlinear case. When Ba is comparable to 2/(γn

√
T1nT2n), the (γnBa/2)2T1nT2n term becomes

significant and the response becomes nonlinear, as shown in Figure 3(b).
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Spin Dynamics

2

FIG. 1. Schematics of the recent progress of the spin amplification techniques in a hybrid vapor cell of noble gas and alkali-metal atoms.
The spin amplification techniques are developed on two kinds of different physical models: (i) the time-independent spin systems without
a periodically driven field, and (ii) Floquet spin systems with a periodically driving field. Then, the corresponding technique including spin
amplification and maser are demonstrated in these two systems. Finally, various applications including magnetic-field sensing and searches
for new physics are demonstrated.

where l is the optical path length, re is the classical radius of
the electron, c is the speed of light, f is the oscillator strength,
D(V ) = (V �V0)/[(V �V0)2 +(DV/2)2], V is the frequency
of the probe beam, and DV is the full-width at half-maximum
(FWHM) of the optical transition of frequency V0.

In the vapor cell, the alkali-metal spins spatially overlap
with the noble-gas spins. The spin dynamics of these two
spins can be described by the coupled Bloch equations16,18,19,

∂Pe

∂ t
=

ge

Q
(B0

z ẑ+Ba +bMn
0 Pn)⇥Pe +

Pe
0 ẑ�Pe

{T2e,T2e,T1e}Q
,(2)

∂Pn

∂ t
= gn(B0

z ẑ+Ba +bMe
0Pe)⇥Pn +

Pn
0 ẑ�Pn

{T2n,T2n,T1n}
, (3)

where Pe (Pn) is the polarization of alkali-metal electrons
(noble-gas nuclei), ge (gn) is the gyromagnetic ratio of a
bare electron (noble-gas nuclei), Ba is the external oscillat-
ing magnetic field, Me

0 (Mn
0 ) is the magnetization of alkali-

metal (noble-gas) spins with unity polarization, T1n (T2n) is the
longitudinal (transverse) relaxation time of noble-gas spins,
and T1e(T2e) is the longitudinal (transverse) relaxation times
of alkali-metal spins. Te(T1e ⇡ T2e) can be regarded as the
common relaxation time without distinction here. The factor
Q is the slowing-down factor of alkali-metal atoms depending
on the polarization. Because Pe

z is much larger than the trans-
verse components Pe

x and Pe
y , Q primarily depends on Pe

z ⇡ Pe
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where dn = n �n0 is the detuning of the external oscillating
field with respect to the Larmor frequency of noble-gas nu-
clear spins n0 = gnB0

z/(2p). The total magnetic field Btot on
87Rb detected can be written as

Btot = Bn
eff +Ba cos(2pnt)ŷ. (7)
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where C is a constant determined by initial conditions. When the oscillating field By
ac is suddenly applied to the vapor cell, the

transient response of 129Xe spins can be created, as described in Eq. S8. According to Beff = lMnPn, we can derive the effective
field experienced by 87Rb atoms (or 87Rb magnetometer) as
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To measure the steady-state response signal (i.e., BCW
eff ) from Beff, we set 50 s waiting time to ensure that BTran

eff decays to zero
and thus the transient term can be neglected before data sampling. Hence, in the following, BTran

eff is neglected and Beff ⇡ BCW
eff .

The total oscillating magnetic field Btot on 87Rb detected can be written as

Btot = BCW
eff +By

ac cos(2pnt)yyy. (S10)

We now solve for the evolution of 87Rb spins (Eq. S5). In our experiment, the x component of 87Rb polarization Pe
x is detected

with a probe beam (see Eq. S1). Thus, we only need obtain the explicit expression of Pe
x . Under the quasi-static field condition,

we can obtain the steady-state solution
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where 4B = 1/(geTe). To calibrate the parameter 4B, we apply a 7.11 nT field with 320 Hz frequency along y and scan the bias
field from 0 to 8000 nT. Figure S2 provides the experimental data, which is fitted with Eq. S11 and yields DB ⇡ 2700±13 nT. In
our experiment, a static bias field B0

z above 200 nT is applied along the z axis. In this situation, the 87Rb magnetometer becomes
simultaneously sensitive to the magnetic fields along x and y. This is in contrast to near-zero-field magnetometers, where 87Rb
magnetometer is only sensitive to the magnetic field along y. Therefore, 87Rb magnetometer can measure the effective magnetic
fields along x and y produced by 129Xe nuclear x, y-magnetization.

A. Linear and nonlinear response

The effective field Beff induced by 129Xe magnetization has a close relation with the measured By
ac (for example, axion-like

dark matter field). Thus, it is important to analyse the response of detectable Beff to unknown By
ac. We consider three situations.
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where 4B = 1/(geTe). To calibrate the parameter 4B, we apply a 7.11 nT field with 320 Hz frequency along y and scan the bias
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quency n :

(1) On-resonance case: when n ⇡ n0, the effective field Bn
eff

reaches a maximum and could be much larger than the
oscillating field amplitude Ba, as shown in Fig. 4(a).

(2) Near-resonance case: the effective field increases when
the frequency of the oscillating field frequency n be-
comes close to the Larmor frequency n0. Thus, there is
a frequency bandwidth for the spin-based amplifier.

(3) Far-off-resonance case: when dn � 0, the term
(2pdn)2T 2

2n is dominant in Eq. 6. In this situation,
the effective field Bn

eff generated by noble-gas nuclear
spins is negligible and the applied oscillating field
Ba cos(2pnt)ŷ is dominant, as shown in Fig. 4(b).

B. Spin dynamics with a periodically driven AC field along

z axis

When an additional magnetic field Bac cos(2pnact)ẑ along
z periodically driving the noble-gas spin system, the to-
tal magnetic field experienced by noble-gas nuclear spins
B = Ba cos(2pnt)ŷ+[B0

z +Bac cos(2pnact)]ẑ. This realizes
a Floquet system with time-dependent Hamitonians H (t +
T ) = H (t)28,29. The periodically driving makes the time-
independent system to be a dressed spin system17, which is
characterized by a series of time-independent Floquet states
and energy levels that are analogous to the Brillouin-zone ar-
tificial dimension30. Similarly, by solving the evolution of
noble-gas nuclear spins from Eq. 5 with the weak field approx-
imation gnBa/2 ⌧ 1/T1n, we obtain the steady-state effective
field experienced by alkali-metal atoms as16,18,19,24

Bn
f,eff = bMn

0 Ba{
+•

Â
l=�•

+•

Â
k=�•

Bk,l(u,n)cos[2p(n + lnac)t]

+Ak,l(u,n)sin[2p(n + lnac)t]},
(10)

where the coefficients Ak,l(u,n) and Bk,l(u,n) are

Ak,l(u,n)=
gnPn

0 T2nJk+l(u)Jk(u)
2

1
1+[2p (kvac �dn)T2n]

2 ,

Bk,l(u,n)=
gnPn

0 T2nJk+l(u)Jk(u)
2

2p (kvac �dn)T2n

1+[2p (kvac �dn)T2n]
2 ,

(11)

where the modulation index u = (gnBac)/nac and Jk is the
Bessel function of the first kind. The physical meaning of
these equations is that the transition amplitudes are propor-
tional to the products of the amplitudes of the initial and final
Floquet states and a resonant Lorentz factor.

Figure 5(a) shows that under a periodically driving, the in-
trinsic two-level nuclear spin system (e.g., 129Xe) is extended
to an infinite number of synthetic and time-independent en-
ergy levels. |±,ni = |±i ⌦ |ni is introduced as the basis
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FIG. 4. Relationship between the effective magnetic field Bn
eff and

the oscillating field frequency n . (a) When the oscillation frequency
n of an external magnetic field matches the 129Xe Larmor frequency,
the 129Xe spin magnetization is tilted away from the z axis and
generates an transverse effective field Bn

eff on 87Rb atoms. Due
to the Fermi-contact interaction, the amplification factor defined as
h = |Bn

eff/Ba � 1| enables significant amplification of the signal
from the external magnetic field. (b) In far-off-resonant case, 129Xe
spin magnetization is nearly unchanged along z and thus Bn

eff ⇡ 0.
Adapted and reprinted with permission from ref.16.

states, where n signifies the radio frequency photon number of
the driving field, and |±i denotes the eigenstates of the two-
level spin system sz. The Floquet transition between | "in
and | #im states correspond to an oscillating field with the fre-
quency of n0 +knac (here k = n�m), which forms a sideband
around the 129Xe Larmor frequency. Based on Eq. 10 and
the Lorentz factor in Eq. 11, the response of the Floquet sys-
tem reaches the local maximum in resonant case knac = dn ,
which indicates multiple resonance can be realized, as shown
in Fig. 5(b). Moreover, due to the feasibility to engineer the
inherent discrete states and transitions of quantum systems,
Floquet systems could be a promising platform to explore ad-
vanced quantum amplification beyond ordinary systems with
improved performance, for example, in operation bandwidth
and frequency tunability.
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III. NOBLE-GAS AMPLIFICATION EFFECT

Measuring weak electromagnetic and hypothetical fields
assisted by quantum amplification is important for funda-
mental physics and practical applications including low-
noise masers31,32, ultra-sensitive magnetic resonance spec-
troscopy33, weak field and force measurements34. In the
noble-gas system, the resonant oscillating field can induce an
oscillating noble-gas nuclear magnetization, which can gen-
erate a considerable effective magnetic field Bn

eff or Bn
f,eff on

alkali-metal atomic spins, which could be much larger than
the applied oscillating field Ba. Due to the weak coupling
during collisions (Fermi-contact interactions) between alkali-
metal electron spins and noble-gas nuclear spins2, the nuclear
spins can function as an amplifier for the resonant magnetic
field and the electron spins act as an atomic magnetometer to
measure the enhanced field. To quantify the amplification ef-
fect, we define an amplification factor:

h = |Bn
eff/Ba|; h f = |Bn

f,eff/Ba|, (12)

for the inherent and Floquet systems, respectively.

A. Spin amplification

We first derive the amplification factor h on resonance for
the inherent system. When (gnBa/2)2T1nT2n ⌧ 1, the spin-

based amplifier works in the sensitive linear-response regime
and Bn

eff in Eq. 6 can be written as

Bn
eff(n = n0) =

1
2

bMn
0 Pn

0 gnT2n[cos(2pnt)x̂+ sin(2pnt)ŷ]Ba.

(13)
Thus the effective field Bn

eff is a circularly polarized field and

its amplitude is equal to
1
2

bMn
0 Pn

0 gnT2n ·Ba. As a result, the
amplification factor is

h =
1
2

bMn
0 Pn

0 gnT2n. (14)

From Eq. 14, there are various methods to increase the ampli-
fication factor, such as prolonging relaxation time T2n and im-
proving equilibrium polarization Pn

0 . Based on the calculation
in refs. 16,18,19, the amplification factor can be as large as 104

in a 3He-K system. The sensitivity of 3He-K magnetometer
can be improved by four orders of magnitude and potentially
reach a few aT/Hz1/2.

The amplification factor h is experimentally calibrated by
the following steps:

(i) A resonant oscillating field is applied along y. The out-
put signal of alkali-metal magnetometer is recorded and
its amplitude

A(Bn
eff) µ Pe

x (Bn
eff) µ h 1p

[(B0
z )

2 +(DB)2]
Ba. (15)

Due to the exact Larmor frequency is generally un-
known without prior calibration, an alternative way is
to scan the oscillating field frequency over a small fre-
quency range, corresponding to the narrow bandwidthp

3L of the spin-based amplifier from the on-resonant
effective field

|Bn
eff| µ L/2p

(dn)2 +(L/2)2
. (16)

(ii) A far-off-resonant oscillating field is applied along y.
Similarly, we record the amplitude A(Baŷ) of the output
signal of the alkali-metal magnetometer:

A(Baŷ) µ Pe
x (Baŷ) µ DB

[(B0
z )

2 +(DB)2]
Ba. (17)

Note that the frequency of the far-off-resonant field
should be within the bandwidth of the magnetometer.

(iii) By calculating the ratio of the above two amplitudes
F(n0) = A(Bn

eff)/A(Baŷ), we have

h = F(n0)/

s

1+
✓

n0

gnDB

◆2
. . (18)

Figure 6(a) shows the experimental results for the
frequency-response of the 87Rb magnetometer and the cali-
bration of the spin amplification factor in the 87Rb-129Xe sys-
tem. In the experiments, the bias field B0

z is set as ⇡ 759 nT

4

quency n :

(1) On-resonance case: when n ⇡ n0, the effective field Bn
eff

reaches a maximum and could be much larger than the
oscillating field amplitude Ba, as shown in Fig. 4(a).

(2) Near-resonance case: the effective field increases when
the frequency of the oscillating field frequency n be-
comes close to the Larmor frequency n0. Thus, there is
a frequency bandwidth for the spin-based amplifier.

(3) Far-off-resonance case: when dn � 0, the term
(2pdn)2T 2

2n is dominant in Eq. 6. In this situation,
the effective field Bn

eff generated by noble-gas nuclear
spins is negligible and the applied oscillating field
Ba cos(2pnt)ŷ is dominant, as shown in Fig. 4(b).

B. Spin dynamics with a periodically driven AC field along

z axis

When an additional magnetic field Bac cos(2pnact)ẑ along
z periodically driving the noble-gas spin system, the to-
tal magnetic field experienced by noble-gas nuclear spins
B = Ba cos(2pnt)ŷ+[B0

z +Bac cos(2pnact)]ẑ. This realizes
a Floquet system with time-dependent Hamitonians H (t +
T ) = H (t)28,29. The periodically driving makes the time-
independent system to be a dressed spin system17, which is
characterized by a series of time-independent Floquet states
and energy levels that are analogous to the Brillouin-zone ar-
tificial dimension30. Similarly, by solving the evolution of
noble-gas nuclear spins from Eq. 5 with the weak field approx-
imation gnBa/2 ⌧ 1/T1n, we obtain the steady-state effective
field experienced by alkali-metal atoms as16,18,19,24

Bn
f,eff = bMn

0 Ba{
+•

Â
l=�•

+•

Â
k=�•

Bk,l(u,n)cos[2p(n + lnac)t]

+Ak,l(u,n)sin[2p(n + lnac)t]},
(10)

where the coefficients Ak,l(u,n) and Bk,l(u,n) are

Ak,l(u,n)=
gnPn

0 T2nJk+l(u)Jk(u)
2

1
1+[2p (kvac �dn)T2n]

2 ,

Bk,l(u,n)=
gnPn

0 T2nJk+l(u)Jk(u)
2

2p (kvac �dn)T2n

1+[2p (kvac �dn)T2n]
2 ,

(11)

where the modulation index u = (gnBac)/nac and Jk is the
Bessel function of the first kind. The physical meaning of
these equations is that the transition amplitudes are propor-
tional to the products of the amplitudes of the initial and final
Floquet states and a resonant Lorentz factor.

Figure 5(a) shows that under a periodically driving, the in-
trinsic two-level nuclear spin system (e.g., 129Xe) is extended
to an infinite number of synthetic and time-independent en-
ergy levels. |±,ni = |±i ⌦ |ni is introduced as the basis
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FIG. 4. Relationship between the effective magnetic field Bn
eff and

the oscillating field frequency n . (a) When the oscillation frequency
n of an external magnetic field matches the 129Xe Larmor frequency,
the 129Xe spin magnetization is tilted away from the z axis and
generates an transverse effective field Bn

eff on 87Rb atoms. Due
to the Fermi-contact interaction, the amplification factor defined as
h = |Bn

eff/Ba � 1| enables significant amplification of the signal
from the external magnetic field. (b) In far-off-resonant case, 129Xe
spin magnetization is nearly unchanged along z and thus Bn

eff ⇡ 0.
Adapted and reprinted with permission from ref.16.

states, where n signifies the radio frequency photon number of
the driving field, and |±i denotes the eigenstates of the two-
level spin system sz. The Floquet transition between | "in
and | #im states correspond to an oscillating field with the fre-
quency of n0 +knac (here k = n�m), which forms a sideband
around the 129Xe Larmor frequency. Based on Eq. 10 and
the Lorentz factor in Eq. 11, the response of the Floquet sys-
tem reaches the local maximum in resonant case knac = dn ,
which indicates multiple resonance can be realized, as shown
in Fig. 5(b). Moreover, due to the feasibility to engineer the
inherent discrete states and transitions of quantum systems,
Floquet systems could be a promising platform to explore ad-
vanced quantum amplification beyond ordinary systems with
improved performance, for example, in operation bandwidth
and frequency tunability.
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driving field, and |±〉 denotes the eigenstates of the two-level spin system σz . The Floquet transition
between | ↑〉n and | ↓〉m states corresponds to an oscillating field with the frequency of ν0 + kνac (here
k = n−m), which forms a sideband around the 129Xe Larmor frequency. Based on (10) and the Lorentz
factor in (11), the response of the Floquet system reaches the local maximum in resonant case kνac = δν,
which indicates multiple resonance can be realized, as shown in Figure 5(b). Moreover, due to the
feasibility to engineer the inherent discrete states and transitions of quantum systems, Floquet systems
could be a promising platform to explore advanced quantum amplification beyond ordinary systems with
improved performance, for example, in operation bandwidth and frequency tunability.

3 Noble-gas amplification effect

Measuring weak electromagnetic and hypothetical fields assisted by quantum amplification are important
for fundamental physics and practical applications including low-noise masers [31,32], ultra-sensitive mag-
netic resonance spectroscopy [33], weak field and force measurements [34]. In the noble-gas system, the
resonant oscillating field can induce an oscillating noble-gas nuclear magnetization, which can generate
a considerable effective magnetic field Bn

eff or Bn
f,eff on alkali-metal atomic spins, which could be much

larger than the applied oscillating field Ba. Due to the weak coupling during collisions (Fermi-contact
interactions) between alkali-metal electron spins and noble-gas nuclear spins [2], the nuclear spins can
function as an amplifier for the resonant magnetic field and the electron spins act as an atomic magne-
tometer to measure the enhanced field. To quantify the amplification effect, we define an amplification
factor:

η = |Bn
eff/Ba|, ηf = |Bn

f,eff/Ba| (12)

for the inherent and Floquet systems, respectively.

3.1 Spin amplification

We first derive the amplification factor η on resonance for the inherent system. When (γnBa/2)2T1nT2n %
1, the spin-based amplifier works in the sensitive linear-response regime and Bn

eff in (6) can be written as

Bn
eff(ν = ν0) =

1

2
βMn

0 P
n
0 γnT2n[cos(2πνt)x̂+ sin(2πνt)ŷ]Ba. (13)

Thus the effective field Bn
eff is a circularly polarized field and its amplitude is equal to

1

2
βMn

0 P
n
0 γnT2n ·Ba.

As a result, the amplification factor is

η =
1

2
βMn

0P
n
0 γnT2n. (14)

From (14), there are various methods to increase the amplification factor, such as prolonging relaxation
time T2n and improving equilibrium polarization P n

0 . Based on the calculation in [16, 18, 19], the ampli-
fication factor can be as large as 104 in a 3He-K system. The sensitivity of 3He-K magnetometer can be
improved by four orders of magnitude and potentially reach a few aT/Hz1/2.
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characterized by a series of time-independent Floquet states
and energy levels that are analogous to the Brillouin-zone ar-
tificial dimension30. Similarly, by solving the evolution of
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where the modulation index u = (gnBac)/nac and Jk is the
Bessel function of the first kind. The physical meaning of
these equations is that the transition amplitudes are propor-
tional to the products of the amplitudes of the initial and final
Floquet states and a resonant Lorentz factor.

Figure 5(a) shows that under a periodically driving, the in-
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to an infinite number of synthetic and time-independent en-
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states, where n signifies the radio frequency photon number of
the driving field, and |±i denotes the eigenstates of the two-
level spin system sz. The Floquet transition between | "in
and | #im states correspond to an oscillating field with the fre-
quency of n0 +knac (here k = n�m), which forms a sideband
around the 129Xe Larmor frequency. Based on Eq. 10 and
the Lorentz factor in Eq. 11, the response of the Floquet sys-
tem reaches the local maximum in resonant case knac = dn ,
which indicates multiple resonance can be realized, as shown
in Fig. 5(b). Moreover, due to the feasibility to engineer the
inherent discrete states and transitions of quantum systems,
Floquet systems could be a promising platform to explore ad-
vanced quantum amplification beyond ordinary systems with
improved performance, for example, in operation bandwidth
and frequency tunability.
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driving field, and |±〉 denotes the eigenstates of the two-level spin system σz . The Floquet transition
between | ↑〉n and | ↓〉m states corresponds to an oscillating field with the frequency of ν0 + kνac (here
k = n−m), which forms a sideband around the 129Xe Larmor frequency. Based on (10) and the Lorentz
factor in (11), the response of the Floquet system reaches the local maximum in resonant case kνac = δν,
which indicates multiple resonance can be realized, as shown in Figure 5(b). Moreover, due to the
feasibility to engineer the inherent discrete states and transitions of quantum systems, Floquet systems
could be a promising platform to explore advanced quantum amplification beyond ordinary systems with
improved performance, for example, in operation bandwidth and frequency tunability.

3 Noble-gas amplification effect

Measuring weak electromagnetic and hypothetical fields assisted by quantum amplification are important
for fundamental physics and practical applications including low-noise masers [31,32], ultra-sensitive mag-
netic resonance spectroscopy [33], weak field and force measurements [34]. In the noble-gas system, the
resonant oscillating field can induce an oscillating noble-gas nuclear magnetization, which can generate
a considerable effective magnetic field Bn

eff or Bn
f,eff on alkali-metal atomic spins, which could be much

larger than the applied oscillating field Ba. Due to the weak coupling during collisions (Fermi-contact
interactions) between alkali-metal electron spins and noble-gas nuclear spins [2], the nuclear spins can
function as an amplifier for the resonant magnetic field and the electron spins act as an atomic magne-
tometer to measure the enhanced field. To quantify the amplification effect, we define an amplification
factor:

η = |Bn
eff/Ba|, ηf = |Bn

f,eff/Ba| (12)

for the inherent and Floquet systems, respectively.

3.1 Spin amplification

We first derive the amplification factor η on resonance for the inherent system. When (γnBa/2)2T1nT2n %
1, the spin-based amplifier works in the sensitive linear-response regime and Bn

eff in (6) can be written as

Bn
eff(ν = ν0) =

1

2
βMn

0 P
n
0 γnT2n[cos(2πνt)x̂+ sin(2πνt)ŷ]Ba. (13)

Thus the effective field Bn
eff is a circularly polarized field and its amplitude is equal to

1

2
βMn

0 P
n
0 γnT2n ·Ba.

As a result, the amplification factor is

η =
1

2
βMn

0P
n
0 γnT2n. (14)

From (14), there are various methods to increase the amplification factor, such as prolonging relaxation
time T2n and improving equilibrium polarization P n

0 . Based on the calculation in [16, 18, 19], the ampli-
fication factor can be as large as 104 in a 3He-K system. The sensitivity of 3He-K magnetometer can be
improved by four orders of magnitude and potentially reach a few aT/Hz1/2.



78

Magnetic field is 
amplified by a factor 

of more than 100!

Femtotesla-level 
sensitivity!

Jiang et al., Nature Physics 17, pages 1402–1407 (2021)
1fT=10-15T

Ultrasensitive magnetic field sensing

2pT/Hz1/2

2 orders of magnitude 

18 fT/Hz1/2



79

磁场测量新方法：自旋放大效应

混合原子气室

核
心
思
想

取
长
补
短

碱金属
电子自旋
磁矩大

自旋寿命短
（ms级别）

密度小
（1014cm-3）

极化、读出

惰性气体
核自旋

磁矩小（小103倍）
自旋寿命长
（100s级别）

密度大
（1019cm-3）

量子放大介质

1fT=10-15T 相当于地磁场的1000亿分之一！

!" = 1
%P '(T*+

基本灵敏度
!" = 1

,-% '(T*+
≫ 1

Su H W, et al. Sci China Inf Sci October 2022 Vol. 65 200501:6

Bias field

E
n
er

g
y
 (
ν ac

)

0

ν 0
+

(n
−
m

)ν
ac

ν 0
−

(n
−
m

)ν
ac

ν 0

n

m

n

n

m

m

… …Spin

Emit rf photons

Absorb rf photons

Resonance signal

ν=ν
0
+kν

ac

1 20−1−2

ν
0
+(k−2)ν

ac
ν

0
+(k−1)ν

ac
ν

0
+(k+1)ν

ac
ν

0
+(k+2)ν

ac
ν

0
+kν

ac

l =

ν
ac

ν
ac

2ν
ac

2ν
ac

(a) (b)

Figure 5 (Color online) (a) Energy levels of a periodically driven two-level system (the Floquet system). (b) The corresponding
Floquet states and multiple radio frequency (rf) photon transitions. Adapted and reprinted with permission from [17] Copyright
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driving field, and |±〉 denotes the eigenstates of the two-level spin system σz . The Floquet transition
between | ↑〉n and | ↓〉m states corresponds to an oscillating field with the frequency of ν0 + kνac (here
k = n−m), which forms a sideband around the 129Xe Larmor frequency. Based on (10) and the Lorentz
factor in (11), the response of the Floquet system reaches the local maximum in resonant case kνac = δν,
which indicates multiple resonance can be realized, as shown in Figure 5(b). Moreover, due to the
feasibility to engineer the inherent discrete states and transitions of quantum systems, Floquet systems
could be a promising platform to explore advanced quantum amplification beyond ordinary systems with
improved performance, for example, in operation bandwidth and frequency tunability.

3 Noble-gas amplification effect

Measuring weak electromagnetic and hypothetical fields assisted by quantum amplification are important
for fundamental physics and practical applications including low-noise masers [31,32], ultra-sensitive mag-
netic resonance spectroscopy [33], weak field and force measurements [34]. In the noble-gas system, the
resonant oscillating field can induce an oscillating noble-gas nuclear magnetization, which can generate
a considerable effective magnetic field Bn

eff or Bn
f,eff on alkali-metal atomic spins, which could be much

larger than the applied oscillating field Ba. Due to the weak coupling during collisions (Fermi-contact
interactions) between alkali-metal electron spins and noble-gas nuclear spins [2], the nuclear spins can
function as an amplifier for the resonant magnetic field and the electron spins act as an atomic magne-
tometer to measure the enhanced field. To quantify the amplification effect, we define an amplification
factor:

η = |Bn
eff/Ba|, ηf = |Bn

f,eff/Ba| (12)

for the inherent and Floquet systems, respectively.

3.1 Spin amplification

We first derive the amplification factor η on resonance for the inherent system. When (γnBa/2)2T1nT2n %
1, the spin-based amplifier works in the sensitive linear-response regime and Bn

eff in (6) can be written as

Bn
eff(ν = ν0) =

1

2
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0 P
n
0 γnT2n[cos(2πνt)x̂+ sin(2πνt)ŷ]Ba. (13)

Thus the effective field Bn
eff is a circularly polarized field and its amplitude is equal to
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0 P
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0 γnT2n ·Ba.

As a result, the amplification factor is

η =
1

2
βMn

0P
n
0 γnT2n. (14)

From (14), there are various methods to increase the amplification factor, such as prolonging relaxation
time T2n and improving equilibrium polarization P n

0 . Based on the calculation in [16, 18, 19], the ampli-
fication factor can be as large as 104 in a 3He-K system. The sensitivity of 3He-K magnetometer can be
improved by four orders of magnitude and potentially reach a few aT/Hz1/2.
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Figure 5 (Color online) (a) Energy levels of a periodically driven two-level system (the Floquet system). (b) The corresponding
Floquet states and multiple radio frequency (rf) photon transitions. Adapted and reprinted with permission from [17] Copyright
2021 American Association for the Advancement of Science.

driving field, and |±〉 denotes the eigenstates of the two-level spin system σz . The Floquet transition
between | ↑〉n and | ↓〉m states corresponds to an oscillating field with the frequency of ν0 + kνac (here
k = n−m), which forms a sideband around the 129Xe Larmor frequency. Based on (10) and the Lorentz
factor in (11), the response of the Floquet system reaches the local maximum in resonant case kνac = δν,
which indicates multiple resonance can be realized, as shown in Figure 5(b). Moreover, due to the
feasibility to engineer the inherent discrete states and transitions of quantum systems, Floquet systems
could be a promising platform to explore advanced quantum amplification beyond ordinary systems with
improved performance, for example, in operation bandwidth and frequency tunability.

3 Noble-gas amplification effect

Measuring weak electromagnetic and hypothetical fields assisted by quantum amplification are important
for fundamental physics and practical applications including low-noise masers [31,32], ultra-sensitive mag-
netic resonance spectroscopy [33], weak field and force measurements [34]. In the noble-gas system, the
resonant oscillating field can induce an oscillating noble-gas nuclear magnetization, which can generate
a considerable effective magnetic field Bn

eff or Bn
f,eff on alkali-metal atomic spins, which could be much

larger than the applied oscillating field Ba. Due to the weak coupling during collisions (Fermi-contact
interactions) between alkali-metal electron spins and noble-gas nuclear spins [2], the nuclear spins can
function as an amplifier for the resonant magnetic field and the electron spins act as an atomic magne-
tometer to measure the enhanced field. To quantify the amplification effect, we define an amplification
factor:

η = |Bn
eff/Ba|, ηf = |Bn

f,eff/Ba| (12)

for the inherent and Floquet systems, respectively.

3.1 Spin amplification

We first derive the amplification factor η on resonance for the inherent system. When (γnBa/2)2T1nT2n %
1, the spin-based amplifier works in the sensitive linear-response regime and Bn

eff in (6) can be written as

Bn
eff(ν = ν0) =

1

2
βMn

0 P
n
0 γnT2n[cos(2πνt)x̂+ sin(2πνt)ŷ]Ba. (13)

Thus the effective field Bn
eff is a circularly polarized field and its amplitude is equal to

1

2
βMn

0 P
n
0 γnT2n ·Ba.

As a result, the amplification factor is

η =
1

2
βMn

0P
n
0 γnT2n. (14)

From (14), there are various methods to increase the amplification factor, such as prolonging relaxation
time T2n and improving equilibrium polarization P n

0 . Based on the calculation in [16, 18, 19], the ampli-
fication factor can be as large as 104 in a 3He-K system. The sensitivity of 3He-K magnetometer can be
improved by four orders of magnitude and potentially reach a few aT/Hz1/2.
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the magnetization of alkali-metal (noble-gas) spins with unity polarization, T1n (T2n) is the longitudinal
(transverse) relaxation time of noble-gas spins, and T1e (T2e) is the longitudinal (transverse) relaxation
times of alkali-metal spins. Te (T1e ≈ T2e) can be regarded as the common relaxation time without
distinction here. The factor Q is the slowing-down factor of alkali-metal atoms depending on the polar-
ization. Because P e

z is much larger than the transverse components P e
x and P e

y , Q primarily depends on
P e
z ≈ P e

0 . Therefore, Q can be approximated as a constant.
Due to the Fermi-contact interactions between alkali-metal electrons and noble-gas nuclear spins, an

effective field βM e,n
0 P e,n is induced by the polarization P e,n, where β = 8πκ0/3 and κ0 is the Fermi-

contact factor. Due to βM e
0P

e ↑ βMn
0P

n, we thus neglect the βM e
0P

e term. As a result, the coupled
Bloch equations in (2) and (3) can be simplified to

∂P e

∂t
=

γe
Q
(B0

z ẑ +Ba+ βMn
0P

n)↓ P e +
P e
0 ẑ − P e

TeQ
, (4)

∂P n

∂t
= γn(B

0
z ẑ +Ba)↓ P n +

P n
0 ẑ − P n

{T2n, T2n, T1n}
. (5)

The solution of the coupled Bloch equations (4) and (5) gives the performance of the noble-gas spin
system. The evolution of P n in (5) is independent on P e and thus can be calculated independently.
In the following, we consider the response of noble-gas spins to a weak external oscillating field Ba =
Ba cos(2πνt)ŷ for two cases: without/with a periodically driven alternating current (AC) field parallel to
the bias field, i.e., along z axis (see details in [16, 18, 19, 24]).

2.1 Spin dynamics without a periodically driving field

We first solve the evolution of noble-gas nuclear spins under a bias field B0
z along z and an oscillating

magnetic field Ba = Ba cos(2πνt)ŷ from (5). With rotating-wave approximation and Bn
eff = βMn

0P
n, we

can derive the steady-state effective field experienced by alkali-metal atoms as [16, 18, 19, 24]

Bn
eff =

1

2
βMn

0 P
n
0 γnBa

{
T2n cos(2πνt) + 2πδνT 2

2n sin(2πνt)

1 + (γnBa/2)2T1nT2n + (2πδν)2T 2
2n

x̂ +
T2n sin(2πνt)− 2πδνT 2

2n cos(2πνt)

1 + (γnBa/2)2T1nT2n + (2πδν)2T 2
2n

ŷ

}

,

(6)

where δν = ν−ν0 is the detuning of the external oscillating field with respect to the Larmor frequency of
noble-gas nuclear spins ν0 = γnB0

z/(2π). The total magnetic field Btot on 87Rb detected can be written
as

Btot = Bn
eff +Ba cos(2πνt)ŷ. (7)

The alkali-metal spins actually experience the superposition of these two fields.
We now solve for the evolution of alkali-metal spins from (4). In the experimental configuration, the

x component of alkali-metal polarization P e
x is detected with a probe beam (see (1)). Thus, we only

need to obtain the explicit expression of P e
x . Under the quasi-static field condition, we can obtain the

steady-state solution:

P e
x ∝

BxBz −By∆B

|B|2 + (∆B)2
≈

BxBz −By∆B

(B0
z )2 + (∆B)2

, (8)

where ∆B = 1/(γeTe) and B ≈ B0
z for the large bias field applied along z. In experiments, the measured

Bx and By are from the total magnetic field in (7), where the effective field generated by nuclear transverse
magnetization in the xy plane is the dominant part [16–18,24].

Based on (6), the effective field Bn
eff induced by the magnetization of the noble-gas nuclear spins

depends on the amplitude of the applied oscillating field Ba. There are three different situations.
(1) Linear case. When Ba is weak enough to satisfy the condition (γnBa/2)2T1nT2n ↑ 1, i.e.,

Ba ↑
2

γn
√
T1nT2n

, (9)

the effective field Bn
eff is proportional to the amplitude of applied oscillating field Ba, as shown in Fig-

ure 3(a).
(2) Nonlinear case. When Ba is comparable to 2/(γn

√
T1nT2n), the (γnBa/2)2T1nT2n term becomes

significant and the response becomes nonlinear, as shown in Figure 3(b).

How about bidirectional coupling? 
Keep this term
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1. Experimental setup34

Here we describe the details of our experimental setup (see Fig. S1). The setup uses a 8⇥ 8⇥ 8 mm cubic vapor cell containing 20 torr35
129Xe, 250 torr N2 buffer gas and a droplet of isotopically enriched 87Rb. The vapor cell is heated to about 135�C with twisted wire wrapped36

around a boron nitride oven. 87Rb atoms are polarized along z with 30 mW circularly-polarized pump laser tuned to the D1 line. 129Xe37

spins are polarized and interacts with 87Rb by Fermi-contact spin exchange. Thus 129Xe spins encounter an effective field lM
a
z , while 87Rb38

atoms encounter an effective field lM
b
z . The bias magnetic field Bz is applied along z with a solenoid coil. A set of Helmholtz coil provides39

a transverse magnetic field, which determines the form of the measured field (ha,hb)
T. The x-direction spin M

a
x of 87Rb is probed with a40

linearly-polarized probe laser blue-detuned 110 GHz from the D2 line.41

2. Interacting spin gases42

This section presents the interacting dynamics between the overlapping alkali-metal and noble-gas spins. Due to the bidirectional Fermi-contact43

spin exchange, the noble-gas spins can be polarized by spin exchange optical pumping (SEOP), while the alkali-metal spins is optical pumping.44

Furthermore, the spins undergo Larmor precession in the magnetic field. The process can be described by the Bloch equations with interacting45

spins. We then use Holstein-Primakaff transformation to write the Bloch equations in the form of the linear dynamics equations. This form can46

conveniently exposes the influence of interaction interference on system dynamics parameters including Larmor frequencies and decoherence47

rates, which is the key to all subsequent calculations.48

A. Coupled Bloch equations of interacting spin gases. We start with the Bloch equations with interacting spins. The spin dynamics of
the overlapping 129Xe and 87Rb ensembles can be described by:

∂Me

∂ t
=

ge

Q
(B+lMn)⇥Me +

M
e

0zzz�Me

{T2e,T2e,T1e}Q
, [1a]

∂Mn

∂ t
= gn(B+lMe)⇥Mn +

M
n

0 zzz�Mn

{T2n,T2n,T1n}
. [1b]

Here ge ⇡ 2p ⇥28 Hz/nT and gn ⇡ 2p ⇥0.01178 Hz/nT denote the gyromagnetic ratio of a bare electron and 129Xe nuclear spin, respectively.49

The vectors Me and Mn represent the magnetization of 87Rb atoms and 129Xe atoms, while M
e

0 and M
n

0 correspond to the equilibrium50

magnetization of 87Rb and 129Xe along z. The coefficient l is equal to 8pk0/3, where k ⇡ 540 denotes the Fermi-contact enhancement factor51
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B. Holstein-Primakoff transformation. In order to simplify the Bloch equations, we use the Holstein-Primakoff transformation, which
establishes a connection between spin operators Ŝ and boson operators â, preserving their respective commutation relations, i.e., [Si,S j] = iei jkSk

and [â, â†] = 1. The transformation can be written as

S+ =
p

2s

s

1� â
†
â

2s
â, [7a]

S� =
p

2sâ
†

s

1� â
†
â

2s
, [7b]

Sz = s� â
†
â. [7c]

We find that using the boson operator reveals a clear physical picture, i.e., the interacting harmonic oscillators. In the case of small62

excitations s � â
†
â, the square roots can be expanded as Taylor series. Retaining the zeroth order term, we transform the Eq. (4) and (5) with63

â =
M

a

+p
2gaMa

z

, b̂ =
M

b

+p
2gbMb

z

and obtain the evolution equations64

∂t

✓
â

b̂

◆
= i

✓
wa + iGa �J

�J wb + iGb

◆✓
â

b̂

◆
+

✓
ha

hb

◆
, [8]65

where the frequencies wa and wb are given by:

wa = ga(Bz +lM
b

z ) , [9a]
wb = gb(Bz +lM

a

z ) [9b]

representing the Larmor frequency of the alkali-metal spin and noble-gas spin, respectively. The off-diagonal element66

J = l
q

gagbMa
z Mb

z [10]67

characterizes the bidirectional interacting strength between the alkali-metal spin and noble-gas spin. The excitation induced by the measured68

magnetic field is represented by the vector:69
✓

ha

hb

◆
=

�iB+p
2

 p
gaMa

zq
gbMb

z

!
. [11]70

Here we consider the normal magnetic field, but in Sec. 7, the form of the exotic field is different from Eq. (11).71

C. Interacting-spin eigenvalues. In the last section we present the physical picture of the interacting harmonic oscillator model. Here we72

derive the modified Larmor frequencies and decoherence of both spins because of the strength J. They can be obtained from the eigenvalues of73

the evolution matrix in Eq. (8) via the diagonalization :74

✓
ewa + ieGa 0

0 ewb + ieGb

◆
=

✓
w0 + ic +

p
J2 +G2 0

0 w0 + ic �
p

J2 +G2

◆
, [12]75

where intermediate parameters are

w0 = (wa +wb)/2, [13a]
c = (Ga +Gb)/2, [13b]
G = d + ib , [13c]
d = (wa �wb)/2, [13d]
b = (Ga �Gb)/2. [13e]

The real and imaginary parts of the eigenvalues correspond to the Larmor frequency and decoherence rate as functions of Bz, respectively. We76

demonstrate that they can be active controlled with the external magnetic field Bz. When the bias magnetic field Bz is large, the two spins77

appear to be decoupled, that is, the Larmor frequency and the decoherence rate are not affected by J. We take the decoherence rate of 129Xe as78

an example below.79

In general, the decoherence of the alkali-metal spin is much larger than the noble-gas spins, i.e., Ga � Gb. In our experiment, the80

decoherence time of 87Rb and 129Xe is Ga ⇡ 30 kHz and Gb ⇡ 7 mHz, respectively. Consequently, even a slight bidirectional interaction81

significantly affects on 129Xe decoherence time G�1
b

. According to Eq. (10), the strength J ⇡ 30 Hz is obtained by the effective field lM
b
z ⇡ 382

mG and lM
a
z ⇡ 0.01 mG. Therefore, our experiment satisfies the weak interaction condition:Ga � J � Gb, which means b ⇡ Ga/2 � J.83

According to Eq. (12), the concrete form of eGb is given by84

eGb = c � Im

p
J2 +(d + ib )2 = c � c, d 2 =

c
2
J

2

b 2 � c2 � c
2. [14]85
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According to Eq. (12), the concrete form of eGb is given by84

eGb = c � Im

p
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B. Holstein-Primakoff transformation. In order to simplify the Bloch equations, we use the Holstein-Primakoff transformation, which
establishes a connection between spin operators Ŝ and boson operators â, preserving their respective commutation relations, i.e., [Si,S j] = iei jkSk

and [â, â†] = 1. The transformation can be written as

S+ =
p

2s

s

1� â
†
â

2s
â, [7a]

S� =
p

2sâ
†

s

1� â
†
â

2s
, [7b]

Sz = s� â
†
â. [7c]

We find that using the boson operator reveals a clear physical picture, i.e., the interacting harmonic oscillators. In the case of small62

excitations s � â
†
â, the square roots can be expanded as Taylor series. Retaining the zeroth order term, we transform the Eq. (4) and (5) with63

â =
M

a

+p
2gaMa

z

, b̂ =
M

b

+p
2gbMb

z

and obtain the evolution equations64

∂t

✓
â
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�J wb + iGb
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â

b̂

◆
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◆
, [8]65

where the frequencies wa and wb are given by:

wa = ga(Bz +lM
b

z ) , [9a]
wb = gb(Bz +lM

a

z ) [9b]

representing the Larmor frequency of the alkali-metal spin and noble-gas spin, respectively. The off-diagonal element66

J = l
q

gagbMa
z Mb

z [10]67

characterizes the bidirectional interacting strength between the alkali-metal spin and noble-gas spin. The excitation induced by the measured68

magnetic field is represented by the vector:69
✓

ha

hb

◆
=

�iB+p
2

 p
gaMa

zq
gbMb

z

!
. [11]70

Here we consider the normal magnetic field, but in Sec. 7, the form of the exotic field is different from Eq. (11).71

C. Interacting-spin eigenvalues. In the last section we present the physical picture of the interacting harmonic oscillator model. Here we72

derive the modified Larmor frequencies and decoherence of both spins because of the strength J. They can be obtained from the eigenvalues of73

the evolution matrix in Eq. (8) via the diagonalization :74
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where intermediate parameters are

w0 = (wa +wb)/2, [13a]
c = (Ga +Gb)/2, [13b]
G = d + ib , [13c]
d = (wa �wb)/2, [13d]
b = (Ga �Gb)/2. [13e]

The real and imaginary parts of the eigenvalues correspond to the Larmor frequency and decoherence rate as functions of Bz, respectively. We76

demonstrate that they can be active controlled with the external magnetic field Bz. When the bias magnetic field Bz is large, the two spins77

appear to be decoupled, that is, the Larmor frequency and the decoherence rate are not affected by J. We take the decoherence rate of 129Xe as78

an example below.79

In general, the decoherence of the alkali-metal spin is much larger than the noble-gas spins, i.e., Ga � Gb. In our experiment, the80

decoherence time of 87Rb and 129Xe is Ga ⇡ 30 kHz and Gb ⇡ 7 mHz, respectively. Consequently, even a slight bidirectional interaction81

significantly affects on 129Xe decoherence time G�1
b

. According to Eq. (10), the strength J ⇡ 30 Hz is obtained by the effective field lM
b
z ⇡ 382

mG and lM
a
z ⇡ 0.01 mG. Therefore, our experiment satisfies the weak interaction condition:Ga � J � Gb, which means b ⇡ Ga/2 � J.83

According to Eq. (12), the concrete form of eGb is given by84

eGb = c � Im

p
J2 +(d + ib )2 = c � c, d 2 =
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2
J

2

b 2 � c2 � c
2. [14]85
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We first consider the range of the modified decoherence rate eGb as shown in Eq. (15)86

eGb =

8
<

:
c �

p
b 2 � J2 ⇡ Gb +

J
2

2b
, d = 0

c �b = Gb, d ! •.
[15]87

It can be seen that eGb reaches the maximum when d is equal to zero and the bias magnetic field satisfies88

Bz =
l (gbM

a
z � gaM

b
z )

ga � gb

. [16]89

On the other hand, we note that the dressed decoherence rate coincides with by that of noninteracting 129Xe spins, i.e., eGb = Gb, as d approaches90

infinity.91

3. Noble-gas spin decoherence model92

This section presents the decoherence model of noble gas, which consists of two aspects. One is the increased decoherence rate due to93

bidirectional interaction of alkali metal and noble gas, and the other is the inhomogeneity of the external magnetic field Bz. They are dominant94

in small and large Bz respectively.95

In Sec. C, we focus on the range of the modified decoherence rate eGb [Eq. (15)]. Afterward, we turn our attention to the line width of eGb. To96

illustrate this, we take97

c =
q

b 2 � J2/2 ⇡ b � J
2

4b
. [17]98

From this we can calculate the modified decoherence rate is99

eGb = c � c ⇡ Gb +
J

2

4b
, [18]100

and the detuning is101

d =
q

b 2 � J2/2 ⇡ b � J
2

4b
⇡ b ⇡ Ga

2
. [19]102

Note that Gb +
J

2

4b
is exactly half the sum of Gb and Gb +

J
2

2b
, thus the full width at half maximum is Ga.103

According to Eq. (15), the decoherence rate remains the same and is Gb when Bz is large enough. In our experiment, when further increasing104

Bz, the 129Xe decoherence time is unpredictably decreases. Therefore we consider the noble-gas decoherence caused by the inhomogeneity of105

the bias field, which is equivalent to a magnetic gradient along z. Its contribution to decoherence can be written as kB
2
z . Here k characterizes106

the magnitude of the magnetic-field gradient along z and the specific form is107

k =
g2

b

120D
L

2(
DBz

Bz

)2, [20]108

where D is the diffusion constant, L is the length of the cubic vapor cell (1). Moreover, the magnetic-field gradient should be proportional to109

the strength of the bias field. Thus, DBz/Bz should be a constant that only depends on the structure of the bias-field coil.110

Thus, we build a comprehensive model of noble-gas spin decoherence that considers both bidirectional interaction and magnetic-field111

gradient, i.e., adding the gradient term in Eq. (14):112

eGb = c � Im

q
J2 +(d + ib )2 + kB

2
z . [21]113

In Fig. S2, we simulate the decoherence time for various gradient parameters k. Our results reveal that when k = 0, the model degenerates to114

the modified noble gas model, and the larger k leads to the shorter decoherence time, especially in the large magnetic field case. We obtain k ⇡115

7.5⇥10�12 Hz/nT2 by fitting the experimental data by Eq. (21). Consequently, the magnetic inhomogeneity DBz/Bz is calculated to be 0.04%116

for D ⇡ 0.6 cm2/s and L ⇡ 0.8 cm in our experiment.117

4. Fano resonance118

This section presents the steady-state response of the interacting alkali-metal and noble-gas spins to the oscillating magnetic field. We119

demonstrate the Fano profile, which exhibits dependence on the measured field (ha,hb)
T. To clarify the point, we derive three cases of fields120

including rotating, y-direction or x-direction magnetic field.121

Fano resonance is a fascinating phenomenon that arises from the interference between discrete and continuum states in a system, leading to122

distinctive asymmetric spectral features. The most general Fano resonance formula is123

F(e) = A (e) (q+ e)2

1+ e2 +B(e), [22]124
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â =
M

a

+p
2gaMa

z

, b̂ =
M

b

+p
2gbMb

z

and obtain the evolution equations64

∂t

✓
â
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demonstrate that they can be active controlled with the external magnetic field Bz. When the bias magnetic field Bz is large, the two spins77

appear to be decoupled, that is, the Larmor frequency and the decoherence rate are not affected by J. We take the decoherence rate of 129Xe as78

an example below.79

In general, the decoherence of the alkali-metal spin is much larger than the noble-gas spins, i.e., Ga � Gb. In our experiment, the80

decoherence time of 87Rb and 129Xe is Ga ⇡ 30 kHz and Gb ⇡ 7 mHz, respectively. Consequently, even a slight bidirectional interaction81

significantly affects on 129Xe decoherence time G�1
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. According to Eq. (10), the strength J ⇡ 30 Hz is obtained by the effective field lM
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z ⇡ 382

mG and lM
a
z ⇡ 0.01 mG. Therefore, our experiment satisfies the weak interaction condition:Ga � J � Gb, which means b ⇡ Ga/2 � J.83
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Dressed decoherence rates

that the first part of the total response F (✏) can be described as
a product of these two factors, which quantitatively characterizes
the interference between interacting alkali-metal and noble-gas
spins. The factor B(✏) is the noninterference term, which
depends on both alkali metal and noble gas. B(✏) is relatively
symmetric compared to the factor (q + ✏)2/(1 + ✏2). As the
background of the profile, its amplitude relative to the first
term significantly affects the symmetry characteristics of the
profile (SI Appendix, Fano resonance). Consequently, two distinct
amplification phenomena emerge. Constructive interference at
✏ = 0, which corresponds to signal enhancement that reaches a
maximum amplitude of⇡|q|A 1/2(✏). We find the amplification
factor of the signal amplitude is |q|. Destructive interference at
✏ = �q, which corresponds to signal suppression. These phe-
nomena are referred to as “amplification” and “deamplification,”
respectively.

In our experiments, we verify the aforementioned asym-
metric Fano resonance and the corresponding amplifica-
tion/deamplification phenomena. As an example, the external
magnetic field is set as Bz ⇡ �8.59mG, corresponding to
!b/2⇡ ⇡ 10.11Hz. We apply an oscillating test field along
y and sweep its oscillation frequency around !b, and record the
frequency-response signal. The measurement duration of each
point in our experiment is 180 s. Fig. 2A shows the experimental
data, where each curve exhibits an asymmetric profile. Here, the
response of individual 87Rb atoms is flat near the 129Xe resonance
frequency and can therefore be taken as the normalization
amplitude. Taking the dark-blue line as an example, when the
oscillation frequency ⌫ is near e⌫b ⇡ 10.11Hz (corresponding
to ✏ ⇡ 0), the magnetic-field response amplitude [i.e., the
square root of the power F (✏)] is greatly enhanced by a factor of
|q| ⇡524. While at about 8.05Hz (corresponding to ✏ ⇡ �q),
the magnetic-field response is suppressed by at least one order of
magnitude.

The Fano parameter q reflects themagnitude of the interaction
between the discrete state 129Xe and the continuous state Rb in
the interacting gases. Since our system reads out the 87Rb spins
optically, the Fano parameter indicates the enhancement effect
of 129Xe on the 87Rb response, particularly the amplification at
the resonance frequency. The Fano parameter q can be derived
as (SI Appendix, Signal amplification),

q ⇡
�b�Mb

z
2e�b

, [3]

and its absolute value |q| represents the amplification factor.
This amplification relies on two factors: the decoherence rate
e�b of 129Xe, which is six orders of magnitude smaller than Rb,
and the magnitude of the effective field exerted by 129Xe on
87Rb. This effective field is proportional to the number density
and polarization of the noble gas, given a specific Fermi contact
enhancement factor for the spins. Furthermore, we can also
change the effective field at the 129Xe resonant frequency by
applying a z-direction AC field Bac cos!act. The effective field
is modulated as �Mb

z
0 = �Mb

z J
2
0 (�bBac/!ac), where J0 is the

Bessel function of the first kind of order zero (SI Appendix, Fano
parameter modification). Fig. 2B provides a magnified view of
the amplification regime in Fig. 2A, illustrating the amplification
behavior for different values of q ⇡ �b�Mb

z
0
/2e�b.

As a counterpart to amplification, deamplification with a
minimum response occurs at ✏ ⇡ �q, according to Eq. 2. Fig. 2C
shows that the frequency of maximum deamplification shifts �⌫
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Fig. 2. Demonstration of signal amplification and deamplification. (A)
Response profile as a function of the frequency of y-directed measured field.
Bz is set to about �8.59mG as an example. The response at 80Hz is taken as
thenormalization amplitude. Thedata arewell fit with theoretical Fanoprofile
with Fano parameter q, which is modified by applying a periodic magnetic
field (SI Appendix, Fano parameter modification). For each profile, there exists
an amplification regimewith large response above one and a deamplification
regime with response below one. (B) Amplification with varying Fano param-
eters q (Partial enlarged view of Fig. 2A). (C) Deamplification with respect to
Fano parameter. The deamplification frequency is linearly dependent on the
Fano parameter with the slope of 0.004 (see text).

from the 129Xe resonance linearly with the Fano parameter q,
i.e., �⌫ = ⌫ �e⌫b ⇡ q · 0.004Hz. A theoretical derivation gives
�⌫ ⇡ qe�b/2⇡ (SI Appendix, Signal amplification). Consequently,
the fit to the data givese�b ⇡ [40 s]�1, which is in good agreement
with independent measurements of the 129Xe spin-decoherence
rate. As discussed below, although the magnetic responsivity
deteriorates in the deamplification regime, this approach is well
suited for suppressing environmental magnetic noise by at least
one order of magnitude.

The amplification and deamplification depend on the noble-
gas decoherence rate e�b. We show below that the bidirectional
interaction and the external magnetic field can modify this rate.
By diagonalizing the matrix in Eq. 1, we obtain the dressed
Larmor frequencies e!a,b and decoherence rates e�a,b of the
interacting spins (SI Appendix, Interacting spin gases):

e!a,b + ie�a,b = !0 + i� ±

p
J2 + �2 , [4]

where !0 = (!a + !b)/2, � = (�a + �b)/2 and � = � + i�
with � = (!a�!b)/2, � = (�a��b)/2.We show that the joint
action of the magnetic Zeeman interaction and the alkali–noble-
gas bidirectional interaction dresses their Larmor frequencies and
decoherence rates. In the following, we focus on the decoherence
rate e�b of 129Xe spins. According to Eq. 4, the noble-gas
decoherence rate ise�b = �� Im

⇥
J2 + (� + i�)2

⇤1/2. As shown
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B. Holstein-Primakoff transformation. In order to simplify the Bloch equations, we use the Holstein-Primakoff transformation, which
establishes a connection between spin operators Ŝ and boson operators â, preserving their respective commutation relations, i.e., [Si,S j] = iei jkSk

and [â, â†] = 1. The transformation can be written as
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Sz = s� â
†
â. [7c]

We find that using the boson operator reveals a clear physical picture, i.e., the interacting harmonic oscillators. In the case of small62

excitations s � â
†
â, the square roots can be expanded as Taylor series. Retaining the zeroth order term, we transform the Eq. (4) and (5) with63

â =
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and obtain the evolution equations64
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where the frequencies wa and wb are given by:
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representing the Larmor frequency of the alkali-metal spin and noble-gas spin, respectively. The off-diagonal element66
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characterizes the bidirectional interacting strength between the alkali-metal spin and noble-gas spin. The excitation induced by the measured68

magnetic field is represented by the vector:69
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Here we consider the normal magnetic field, but in Sec. 7, the form of the exotic field is different from Eq. (11).71

C. Interacting-spin eigenvalues. In the last section we present the physical picture of the interacting harmonic oscillator model. Here we72

derive the modified Larmor frequencies and decoherence of both spins because of the strength J. They can be obtained from the eigenvalues of73
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The real and imaginary parts of the eigenvalues correspond to the Larmor frequency and decoherence rate as functions of Bz, respectively. We76

demonstrate that they can be active controlled with the external magnetic field Bz. When the bias magnetic field Bz is large, the two spins77

appear to be decoupled, that is, the Larmor frequency and the decoherence rate are not affected by J. We take the decoherence rate of 129Xe as78

an example below.79

In general, the decoherence of the alkali-metal spin is much larger than the noble-gas spins, i.e., Ga � Gb. In our experiment, the80

decoherence time of 87Rb and 129Xe is Ga ⇡ 30 kHz and Gb ⇡ 7 mHz, respectively. Consequently, even a slight bidirectional interaction81

significantly affects on 129Xe decoherence time G�1
b

. According to Eq. (10), the strength J ⇡ 30 Hz is obtained by the effective field lM
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mG and lM
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z ⇡ 0.01 mG. Therefore, our experiment satisfies the weak interaction condition:Ga � J � Gb, which means b ⇡ Ga/2 � J.83
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alkali noble
interference

noninterference

A. Fano profile of the rotating-field response. We first derive the simplest case of the rotating magnetic field. According to the previous
definition, we obtain the x-direction spin M

a
x

M
a

x =
p

2gaMa
z Re(aw+e

iwt) µ Re(aw+)cos(wt)� Im(aw+)sin(wt) = |aw+|cos(wt +f1(w)) [28a]

as the observable and its amplitude is
p

2gaMa
z |aw+|. Therefore, our focus lies in calculating |aw+|2 as follows:140

|aw+|2 =
B

2gaM
a
z

2
G2

b
+(w �wab)

2

[eG2
a +(w � ewa)2][eG2

b
+(w � ewb)2]

. [29]141

Consequently, the square of the amplitude of M
a
x is given by142

M
2
a = B

2g2
a M

a

z

2 G2
b
+(w �wab)

2

[eG2
a +(w � ewa)2][eG2

b
+(w � ewb)2]

. [30]143

We note that the denominator of Eq. (30) are modified Larmor frequencies and decoherence rates, which shows that the bias field Bz greatly144

affects the response features. Moreover, due to the interference between 87Rb and 129Xe, the spectrum of M
2
a exhibits asymmetry attributed to145

Fano resonance. This equation can be readily arranged as146

M
2
a = B

2g2
a M

a

z

2 G2
b
+(w �wab)

2

[eG2
a +(w � ewa)2][eG2

b
+(w � ewb)2]

=
B

2g2
a M

a
z

2

eG2
a +(w � ewa)2

G2
b
/eG2

b
+(q+ e)2

1+ e2 , [31]147

where e and q are

e =
w � ewb

eGb

, [32a]

q =
ewb �wab

eGb

. [32b]

Thus, we obtain A (e) and B(e) for rotating field:

A (e) = B
2g2

a M
a

z

2 1
eG2

a +(w � ewa)2
, [33a]

B(e) = B
2g2

a M
a

z

2 G2
b

[eG2
a +(w � ewa)2][eG2

b
+(w � ewb)2]

. [33b]

It can be discovered that A is the response of 87Rb spin to the rotating field. Assuming that the interaction has minimal impact on the Larmor148

frequencies of 129Xe and 87Rb, we approximate ewb ⇡ wb and ewa ⇡ wa. The Fano parameter q, specific to the rotating field, can then be149

expressed as:150

q =
�gblM

b
z

eGb

. [34]151

This indicates that the Fano parameter is proportional to the effecctive field and decoherence time of 129Xe for 87Rb, which is in line with152

physical intuition.153

B. Fano profile of the y-direction-field response. We next derive the case of the y-direction field. The superposition property of Eq. (8)154

for any time-varying magnetic field allows us to express the response of any transverse field as a combination of forward and reverse rotation155

fields. The following is a detailed calculation of the solution for the y-direction AC magnetic field case, i.e., we apply a field as Bcos(wt)ŷ.156

According to the previous definition, we have157

B+(t) = iBcos(wt) =
1
2

Be
i

p
2 e

iwt +
1
2

Be
i

p
2 e

�iwt . [35]158

By substituting q = p
2 in Eq. (27) and employing the principle of superposition, we can derive the expression for M

a
x :159

M
a

x =
p

2gaMa
z Re(â) =

p
2gaMa

z Re(aw+e
iwt +aw�e

�iwt), [36]160

Expanding Eq. (36), the amplitude is given by161

M
2
a = 2gaM

a

z {[Re(aw++aw�)]
2 +[Im(aw+�aw�)]

2}

= 2gaM
a

z {|aw+|2 + |aw�|2 +2[Re(aw+)Re(aw�)� Im(aw+)Im(aw�)]}.
[37]162
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Fano parameter

Fig. S2. The comprehensive decoherence model with diffreent gradient parameters k. The decoherence time eG�1
b

is only related to the bidirectional interaction at k = 0.
Larger k leads to the shorter decoherence time, especially in the large magnetic field case.

where q is the Fano parameter and its value affects the asymmetric profile and e is related to resonance frequency and decoherence rate. A (e)125

and B(e) depend on the two spins and the specific transverse magnetic field in this system. Furthermore, it can be proved that A (e) is 87Rb126

magnetometer response to a magnetic field. These are all given in this section.127

Before the specific calculation, we make some preparations. We apply a rotating field as Bcos(wt +q)x̂+Bsin(wt +q)ŷ, i.e., B+ =128

Be
iq

e
iwt . When solving for the steady-state solution, we assume that the solution takes the same form, i.e., â = aw+e

iwt , b̂ = bw+e
iwt . By129

substituting â and b̂ into Eq. (8), we can eliminate the common factor e
iwt and obtain the following linear equation system:130

iw
✓

aw+

bw+

◆
= i

✓
wa + iGa �J

�J wb + iGb

◆✓
aw+

bw+

◆
� iBe

iq
p

2

 p
gaMa

zq
gbMb

z

!
. [23]131

This can be equivalently written as132

✓
iw � iwa +Ga iJ

iJ iw � iwb +Gb

◆✓
aw+

bw+

◆
=� iBe

iq
p

2

 p
gaMa

zq
gbMb

z

!
. [24]133

The analytical expression for aw+ is134

aw+ =
iBe

iqpgaMa
zp

2
[Gb + i(w �wb)� igblM

b
z ]

[Ga + i(w �wa)][Gb + i(w �wb)]+ J2 =
iBe

iqpgaMa
zp

2
[Gb + i(w �wb)� igblM

b
z ]

[eGa + i(w � ewa)][eGb + i(w � ewb)]
. [25]135

The second equal sign uses the eigenvalue equation in the diagonalization process [Eq. (8) and Eq. (12)]. In order to form a complete basis for136

the transverse magnetic field, we also consider aw� for B+ = Be
iq

e
�iwt . For simplicity, we define137

wab = wb + gblM
b

z = gb(Bz +lM
a

z +lM
b

z ). [26]138

Consequently, the expressions for aw+ and aw� can be presented as:

aw+ =
iBe

iqpgaMa
z

2
p

2
Gb + i(w �wab)

[eGa + i(w � ewa)][eGb + i(w � ewb)]
, [27a]

aw� =
iBe

iqpgaMa
z

2
p

2
Gb + i(�w �wab)

[eGa + i(�w � ewa)][eGb + i(�w � ewb)]
. [27b]

The utilization of Eq. (27) facilitates subsequent calculations.139
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Amplification mechanism with interacting atomic gases

B. Holstein-Primakoff transformation. In order to simplify the Bloch equations, we use the Holstein-Primakoff transformation, which
establishes a connection between spin operators Ŝ and boson operators â, preserving their respective commutation relations, i.e., [Si,S j] = iei jkSk

and [â, â†] = 1. The transformation can be written as

S+ =
p

2s

s

1� â
†
â

2s
â, [7a]

S� =
p

2sâ
†

s

1� â
†
â

2s
, [7b]

Sz = s� â
†
â. [7c]

We find that using the boson operator reveals a clear physical picture, i.e., the interacting harmonic oscillators. In the case of small62

excitations s � â
†
â, the square roots can be expanded as Taylor series. Retaining the zeroth order term, we transform the Eq. (4) and (5) with63

â =
M

a

+p
2gaMa

z

, b̂ =
M

b

+p
2gbMb

z

and obtain the evolution equations64

∂t

✓
â

b̂

◆
= i

✓
wa + iGa �J

�J wb + iGb

◆✓
â

b̂

◆
+

✓
ha

hb

◆
, [8]65

where the frequencies wa and wb are given by:

wa = ga(Bz +lM
b

z ) , [9a]
wb = gb(Bz +lM

a

z ) [9b]

representing the Larmor frequency of the alkali-metal spin and noble-gas spin, respectively. The off-diagonal element66

J = l
q

gagbMa
z Mb

z [10]67

characterizes the bidirectional interacting strength between the alkali-metal spin and noble-gas spin. The excitation induced by the measured68

magnetic field is represented by the vector:69
✓

ha

hb

◆
=

�iB+p
2

 p
gaMa

zq
gbMb

z

!
. [11]70

Here we consider the normal magnetic field, but in Sec. 7, the form of the exotic field is different from Eq. (11).71

C. Interacting-spin eigenvalues. In the last section we present the physical picture of the interacting harmonic oscillator model. Here we72

derive the modified Larmor frequencies and decoherence of both spins because of the strength J. They can be obtained from the eigenvalues of73

the evolution matrix in Eq. (8) via the diagonalization :74

✓
ewa + ieGa 0

0 ewb + ieGb

◆
=

✓
w0 + ic +

p
J2 +G2 0

0 w0 + ic �
p

J2 +G2

◆
, [12]75

where intermediate parameters are

w0 = (wa +wb)/2, [13a]
c = (Ga +Gb)/2, [13b]
G = d + ib , [13c]
d = (wa �wb)/2, [13d]
b = (Ga �Gb)/2. [13e]

The real and imaginary parts of the eigenvalues correspond to the Larmor frequency and decoherence rate as functions of Bz, respectively. We76

demonstrate that they can be active controlled with the external magnetic field Bz. When the bias magnetic field Bz is large, the two spins77

appear to be decoupled, that is, the Larmor frequency and the decoherence rate are not affected by J. We take the decoherence rate of 129Xe as78

an example below.79

In general, the decoherence of the alkali-metal spin is much larger than the noble-gas spins, i.e., Ga � Gb. In our experiment, the80

decoherence time of 87Rb and 129Xe is Ga ⇡ 30 kHz and Gb ⇡ 7 mHz, respectively. Consequently, even a slight bidirectional interaction81

significantly affects on 129Xe decoherence time G�1
b

. According to Eq. (10), the strength J ⇡ 30 Hz is obtained by the effective field lM
b
z ⇡ 382

mG and lM
a
z ⇡ 0.01 mG. Therefore, our experiment satisfies the weak interaction condition:Ga � J � Gb, which means b ⇡ Ga/2 � J.83

According to Eq. (12), the concrete form of eGb is given by84

eGb = c � Im

p
J2 +(d + ib )2 = c � c, d 2 =

c
2
J

2

b 2 � c2 � c
2. [14]85

4 of 15 Min Jiang, Yushu Qin, Yuanhong Wang, Ying Huang, Xinhua Peng, Dmitry Budker

B. Holstein-Primakoff transformation. In order to simplify the Bloch equations, we use the Holstein-Primakoff transformation, which
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â

2s
, [7b]

Sz = s� â
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Fig. 3. Signal responsemodified with an external magnetic field. (A) 129Xe coherence time as a function of external magnetic field. The 129Xe decoherence rate
reaches a maximume�b ⇡ [28 s]�1 at Bz ⇡ �3mG and reaches a minimume�b ⇡ [130 s]�1 at Bz ⇡ ±70mG. After increasing external field, the coherence time
decreases due to magnetic field gradient. The solid line is the theoretical fit with our built noble-gas decoherence model. Based on our analysis (SI Appendix,
Noble-gas spin decoherence model), the magnetic field inhomogeneity is estimated to be about 0.04%. The dashed line represents the 129Xe decoherence after
numerically correcting the magnetic field gradient. (B and C) Response profiles for x, y-direction oscillating fields under di�erent bias fields.

in the Appendix, the maximum ofe�b can be theoretically given
by calculating the extreme value of e�b. In our 87Rb to 129Xe
experiment, we observe that J/� satisfies J/� ⇡ 6 ⇥ 10�3 ⌧ 1,
indicating that the alkali–noble-gas interaction strength is sig-
nificantly smaller than the alkali-metal decoherence rate. This
is commonly referred to as the weak coupling regime. In this
regime, e�b reaches a maximum e�b ⇡ �b + J2/2� at � = 0,
where the electron and nuclear spin precession frequencies are
nearly matched. Here, � = 0 corresponds to the external field
Bz = �(�bMa

z � �aMb
z )/(�a � �b) ⇡ ��Mb

z . As shown in
Fig. 3A, the experimental decoherence rate reaches a maximum
e�b ⇡ [28 s]�1 when the external applied field is Bz ⇡ �3mG.
These observations agree well with our theoretical analysis.

The 129Xe decoherence rate decreases rapidly as Bz deviates
from ��Mb

z . At a bias field of Bz ⇡ ±70mG, the decoherence
rate reaches a minimum e�b ⇡ [130 s]�1. This increase in
coherence time (the reciprocal of e�b) from 28 s to 130 s is an
important effect that should not be overlooked, even in the weak
coupling regime. This observation underscores the importance
of carefully setting the external magnetic field strength in
precision measurement experiments that aim for extended noble-
gas coherence times, such as comagnetometers (24, 25) and
nuclear gyroscopes (26). Specifically, it is essential to decouple
the two spin gases by deviating from Bz ⇡ ��Mb

z . Further
increases in Bz lead to a decrease in the 129Xe coherence time due
to the inhomogeneity of the Bz field. We numerically correct the
gradient effects and obtain the decoherence ratee�b (SI Appendix,
Noble-gas spin decoherence model), represented by the dashed
curve in Fig. 3A. We note that the decoherence rate could be
restored to that of uncoupled 129Xe spins, i.e., e�b ⇡ �b at the
bias field larger than about 70mG.

The deamplification depends on the external magnetic field.
As shown in Fig. 3B, the response profile for the measured field
along y gradually becomes symmetric as Bz increases. The reason
for this phenomenon is that the influence of the noninterference
term B(✏) in the Fano formula cannot be ignored. As a
symmetric background, it conceals the asymmetric features of
the Fano resonance profile. In contrast, using the same method

described above, we observe significant deamplification when an
x-direction oscillating field is applied at large Bz , for example,
Bz ⇡ ±150mG in our experiment (Fig. 3C ). The magnetic
responsivity is enhanced by a factor over 200 in the amplification
regime and suppressed by a factor over 10 in the deamplification
regime. It is worth noting that the Fano profile (for example, with
Bz ⇡ ±150mG) is reversed in Fig. 3C due to the sign change of
the Fano parameter q depending on the direction of the bias field.
A theoretical explanation of the aforementioned phenomena is
provided in the Appendix.

Summary and Outlook

The amplifier we developed, which can amplify magnetic fields
below 100Hz with exceptionally low noise, serves as a highly
sensitive magnetometer. As shown in Fig. 4A, the magnetic
sensitivity is improved to approximately 3.5 fT/Hz1/2 at the
129Xe Larmor frequency. This represents an improvement of
more than two orders of magnitude over the photon-shot
noise of the Rb probe laser. This technique opens up several
intriguing applications. For example, the amplifier can serve
as an ideal receiver for deep-sea communications. At hertz
frequencies, electromagnetic fields exhibit strong diffraction
and penetration capabilities, ensuring signal integrity over long
distances (27). Using 129Xe amplifiers as receivers may extend
subsea communication ranges to tens or even hundreds of meters
below sea level. Our work can also be applied to measure Schu-
mann waves (13, 28), which are characterized by an oscillation
frequency of approximately 7.83Hz and its harmonics, origi-
nating from the resonance between the Earth’s surface and the
ionosphere. Unlike previous Schumann-resonance detectors such
as SQUID magnetometers (28, 29), our approach could provide
more sensitive sensors for capturing higher-order harmonics,
thereby enriching our understanding of the Earth and its
surrounding atmospheric conditions.

Our work introduces a quantum-sensing technique for
measuring pseudomagnetic fields. A significant application of this
technique is in the search for hypothetical particles beyond the
standardmodel (30–32) such as ultralight axions or dark photons,
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B. Holstein-Primakoff transformation. In order to simplify the Bloch equations, we use the Holstein-Primakoff transformation, which
establishes a connection between spin operators Ŝ and boson operators â, preserving their respective commutation relations, i.e., [Si,S j] = iei jkSk

and [â, â†] = 1. The transformation can be written as
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We find that using the boson operator reveals a clear physical picture, i.e., the interacting harmonic oscillators. In the case of small62

excitations s � â
†
â, the square roots can be expanded as Taylor series. Retaining the zeroth order term, we transform the Eq. (4) and (5) with63
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and obtain the evolution equations64
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derive the modified Larmor frequencies and decoherence of both spins because of the strength J. They can be obtained from the eigenvalues of73

the evolution matrix in Eq. (8) via the diagonalization :74

✓
ewa + ieGa 0

0 ewb + ieGb

◆
=

✓
w0 + ic +

p
J2 +G2 0

0 w0 + ic �
p

J2 +G2

◆
, [12]75

where intermediate parameters are

w0 = (wa +wb)/2, [13a]
c = (Ga +Gb)/2, [13b]
G = d + ib , [13c]
d = (wa �wb)/2, [13d]
b = (Ga �Gb)/2. [13e]

The real and imaginary parts of the eigenvalues correspond to the Larmor frequency and decoherence rate as functions of Bz, respectively. We76

demonstrate that they can be active controlled with the external magnetic field Bz. When the bias magnetic field Bz is large, the two spins77

appear to be decoupled, that is, the Larmor frequency and the decoherence rate are not affected by J. We take the decoherence rate of 129Xe as78

an example below.79

In general, the decoherence of the alkali-metal spin is much larger than the noble-gas spins, i.e., Ga � Gb. In our experiment, the80

decoherence time of 87Rb and 129Xe is Ga ⇡ 30 kHz and Gb ⇡ 7 mHz, respectively. Consequently, even a slight bidirectional interaction81

significantly affects on 129Xe decoherence time G�1
b

. According to Eq. (10), the strength J ⇡ 30 Hz is obtained by the effective field lM
b
z ⇡ 382

mG and lM
a
z ⇡ 0.01 mG. Therefore, our experiment satisfies the weak interaction condition:Ga � J � Gb, which means b ⇡ Ga/2 � J.83

According to Eq. (12), the concrete form of eGb is given by84

eGb = c � Im

p
J2 +(d + ib )2 = c � c, d 2 =

c
2
J

2

b 2 � c2 � c
2. [14]85
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A. Fano profile of the rotating-field response. We first derive the simplest case of the rotating magnetic field. According to the previous
definition, we obtain the x-direction spin M

a
x

M
a

x =
p

2gaMa
z Re(aw+e

iwt) µ Re(aw+)cos(wt)� Im(aw+)sin(wt) = |aw+|cos(wt +f1(w)) [28a]

as the observable and its amplitude is
p

2gaMa
z |aw+|. Therefore, our focus lies in calculating |aw+|2 as follows:140

|aw+|2 =
B

2gaM
a
z

2
G2

b
+(w �wab)

2

[eG2
a +(w � ewa)2][eG2

b
+(w � ewb)2]

. [29]141

Consequently, the square of the amplitude of M
a
x is given by142

M
2
a = B

2g2
a M

a

z

2 G2
b
+(w �wab)

2

[eG2
a +(w � ewa)2][eG2

b
+(w � ewb)2]

. [30]143

We note that the denominator of Eq. (30) are modified Larmor frequencies and decoherence rates, which shows that the bias field Bz greatly144

affects the response features. Moreover, due to the interference between 87Rb and 129Xe, the spectrum of M
2
a exhibits asymmetry attributed to145

Fano resonance. This equation can be readily arranged as146

M
2
a = B

2g2
a M

a

z

2 G2
b
+(w �wab)

2

[eG2
a +(w � ewa)2][eG2

b
+(w � ewb)2]

=
B

2g2
a M

a
z

2

eG2
a +(w � ewa)2

G2
b
/eG2

b
+(q+ e)2

1+ e2 , [31]147

where e and q are

e =
w � ewb

eGb

, [32a]

q =
ewb �wab

eGb

. [32b]

Thus, we obtain A (e) and B(e) for rotating field:

A (e) = B
2g2

a M
a

z

2 1
eG2

a +(w � ewa)2
, [33a]

B(e) = B
2g2

a M
a

z

2 G2
b

[eG2
a +(w � ewa)2][eG2

b
+(w � ewb)2]

. [33b]

It can be discovered that A is the response of 87Rb spin to the rotating field. Assuming that the interaction has minimal impact on the Larmor148

frequencies of 129Xe and 87Rb, we approximate ewb ⇡ wb and ewa ⇡ wa. The Fano parameter q, specific to the rotating field, can then be149

expressed as:150

q =
�gblM

b
z

eGb

. [34]151

This indicates that the Fano parameter is proportional to the effecctive field and decoherence time of 129Xe for 87Rb, which is in line with152

physical intuition.153

B. Fano profile of the y-direction-field response. We next derive the case of the y-direction field. The superposition property of Eq. (8)154

for any time-varying magnetic field allows us to express the response of any transverse field as a combination of forward and reverse rotation155

fields. The following is a detailed calculation of the solution for the y-direction AC magnetic field case, i.e., we apply a field as Bcos(wt)ŷ.156

According to the previous definition, we have157

B+(t) = iBcos(wt) =
1
2

Be
i

p
2 e

iwt +
1
2

Be
i

p
2 e

�iwt . [35]158

By substituting q = p
2 in Eq. (27) and employing the principle of superposition, we can derive the expression for M

a
x :159

M
a

x =
p

2gaMa
z Re(â) =

p
2gaMa

z Re(aw+e
iwt +aw�e

�iwt), [36]160

Expanding Eq. (36), the amplitude is given by161

M
2
a = 2gaM

a

z {[Re(aw++aw�)]
2 +[Im(aw+�aw�)]

2}

= 2gaM
a

z {|aw+|2 + |aw�|2 +2[Re(aw+)Re(aw�)� Im(aw+)Im(aw�)]}.
[37]162
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5. Signal amplification230

This section presents the details of magnetic-field amplification and deamplification originating from the Fano resonance of interacting231

alkali-metal and noble-gas spins. In experiments, we demonstrate that the response amplitude in the Fano profile is greatly enhanced when the232

measured frequency is near the resonant frequency, on the other hand, the response is suppressed by at least one order of magnitude in the233

deamplification regime. They are denoted as amplification and deamplification, respectively. Based on the theory of Fano resonance described234

in Sec. 4, we note that amplification corresponds to e ⇡ 0 and deamplification corresponds to q+ e ⇡ 0. In this section we will specifically235

study the following: in amplification, we prove that the amplification factor q is equal to Fano parameter; in deamplification, we explain the236

disconnection of the deamplification frequency at a small field range and besides that, we calculate the suppression ratio.237

In Fano resonance, the frequency response achieves its maximum value when e ⇡ 0 is satisfied. According to Eq. (44), the amplification238

frequency is w = ewb. On the other hand, the minimum value at q+ e ⇡ 0 corresponds to the deamplification point w = wF . Since the239

decoherence rate of 129Xe is small relative to the Larmor frequency, i.e., Gb,eGb ⌧ ewb,wab, it can be ignored in Eq. (42). Thus, wF can be240

written as241

wF =
1
2

q
4wab ewb � (Gb �eGb)2 ⇡

p
wabwb = gb

q
(Bz +lMa

z )(Bz +lMa
z +lMb

z ). [59]242

We demonstrate that the frequency distance between the demplification point wF and the 129Xe resonance frequency ewb remains constant243

when Bz is sufficiently large. By performing a Taylor expansion of Eq. (59) to the first order, we obtain:244

wF ⇡ gb(Bz +lM
a

z )[1+
lM

b
z

2(Bz +lMa
z )

] = wb +
1
2

gblM
b

z . [60]245

The frequency distance Dw is246

Dw = wF � ewb ⇡
1
2

gblM
b

z , [61]247

which is only concerned with the effective field of 129Xe. It should be noted that the sign of the effective field here depends on the relative248

directions of the effective field and the bias field Bz. Thus, Dw is positive if they are in the same direction and negative if they are opposite.249

A. Amplification. We now consider the amplification factor and prove that it is equal to Fano parameter q. As previous discussed, the250

response reaches its maximum at e ⇡ 0. Consequently, Eq. (22) is written as F(0) = A (0)q2 if B(0) is ignored. Since A (e) represents the251

response of 87Rb spin to the magnetic field, from the physical picture, it is Fano resonance between 87Rb and 129Xe that amplifies the 87Rb252

signal amplitude by a factor of q at e ⇡ 0, i.e., w ⇡ ewb. The amplification factor h is253

h = q =
�Dw
eGb

⇡�
gblM

b
z

2eGb

, [62]254

which is consistent with Ref. (2). For example, the amplification factor is h ⇡ 518 for lM
b
z =�3.5 mG and eGb = 40 s. In addition, it can be255

seen from this equation that the relative orientation of the effective field lM
b
z and the bias field Bz affects the sign of the Fano parameter q.256

B. Deamplification. In the case of deamplification, we first explain the disconnection of the deamplification frequency wF . To clarify this257

point, we begin by examining the form of the deamplification point described in Eq. (59). We notice that the value range of the bias field258

Bz is Bz  �lM
a
z �lM

b
z and Bz � �lM

a
z . Considering the condition lM

a
z ⌧ lM

b
z , we can disregard �lM

a
z , simplifying the expression259

to Bz �lM
b
z and Bz � 0. Now, let’s explore the scenario where Bz ranges from �lM

a
z to 0, leading to a negative value inside the square260

root of 4wab ewb � (Gb �eGb)
2 is negative. Returning to Eq. (41), in this case, Qy1 cannot be decomposed into the product of these two factors.261

However, an alternative representation is possible:262

Qy1 = w4 +(G2
b
+eG2

b
�2wab ewb)w2 +(Gb

eGb +wab ewb)
2

= [w2 +
1
2
(G2

b
+eG2

b
�2wab ewb)]

2 +
1
4
(Gb +eGb)

2[4wab ewb � (Gb �eGb)
2].

[63]263

According to the concept of deamplification point, we need to look for the extreme point of Qy1 in this case. Considering264

1
2
(G2

b
+eG2

b
�2wab ewb) =�1

4
[4wab ewb � (Gb �eGb)

2]+
1
4
(Gb +eGb)

2 > 0, [64]265

the frequency corresponding to the minimum point is w = 0. This can also be understood as the deamplification point of Fano resonance266

moved to negative frequency, but it cannot be observed, hence the minimum value of Qy1 corresponds to a frequency of zero.267

Next we discuss the possible suppression ratio. We still take the magnetic field in the y-direction as an example. Based on our prior analysis,268

we know that the term affecting the Fano suppression ratio in Eq. (39) is ew2
a Qy2 + ewaQy3. However, we can make ewa zero by precisely selecting269

a suitable bias field Bz, so that the term ew2
a Qy2 + ewaQy3 vanishes. Thus, the optimal suppression ratio is270

s
B(e =�q)

A (e =�q)
⇡

vuut (Gb +eGb)
2/4

eG2
b
+(wF � ewb)2

⇡ Gb +eGb

gblMb
z

. [65]271

In our experiment, the theoretical optimal suppression ratio is estimated to be 2⇥ 10�3, where the data are G�1
b

⇡ 145 s, eG�1
b

⇡ 28 s and272

lM
b
z ⇡ 3 mG. The approximation in Eq. (65) relies on Eq. (46) and Eq. (60). If the approximation conditions are not met, the achieved273

suppression ratio may be lower.274
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Amplification factor

Strong coupling regime

C. Amplification in strong-coupling regime. In deriving the amplification factor for the strong coupling regime, we utilize the results of275

the Fano response in a rotating field. In our previous results, the amplification factor |q| without approximation is given by:276

|q|=
����
ewb �wab

eGb

����, [66]277

where ewb and eGb are the eigenfrequency and decoherence rate of the interacting noble gas, respectively, and wab = wb + gblM
b
z . Under the278

weak coupling approximation, ewb ⇡ wb, hence the amplification factor is equal to gblM
b
z (G̃b)

�1. However, in the strong coupling regime,279

ewa,b significantly deviates from wa,b, necessitating a more rigorous expression:280

ewa,b = (wa +wb)/2±Re
q

J2 +(d + ib )2. [67]281

Since the maximum bandwidth of the noble gas occurs at the detuning d = 0, leading to wa = wb. We substitute the frequency ewb =282

wb �Re
p

J2 �b 2 with the maximum system response into Eq. (66) and obtain the amplification factor:283

|q|=

�����
gblM

b
z +Re

p
J2 �b 2

eGb

�����. [68]284

For the strong coupling regime (J > b ), the amplification factor is presented as285

|q|=
gblM

b
z +

p
J2 �b 2

eGb

. [69]286

We show that there is an additional coupling term
p

J2 �b 2 in addition to the previously identified term gblM
b
z . In the strong coupling regime287

where the coupling strength J is slightly greater than b , this term can be neglected. However, in the very strong coupling regime where J � b288

, this effect can lead to additional amplification due to strong coupling. For instance, by selecting the K-3He system, we set the effective289

field of 3He to lM
a
z ⇠ 100 mG and that of K to lM

b
z ⇠ 1 mG, with the dressed decohenrence rate of 3He being eGb/2p ⇠5 Hz, thus achieving290

J/b ⇠ 100. In this strong coupling case, the contributions from these two components are roughly the same, resulting in an amplification291

factor for the rotating field of approximately 160.292

6. Comparison between deamplification and self-compensated effect293

This section presents the comparison between the previous self-compensated comagnetometer scheme (3) with the deamplification effect294

demonstrated in our work. The deamplification effect can be viewed as an extension of the self-compensation effect. While there are295

differences between the two, they also share some close connections. Both the self-compensation effect and our deamplification approach296

involve the bidirectionally coupled Bloch equations, yet they differ in their implementations. Previous self-compensated comagnetometers297

provide a solution to the bidirectionally coupled Bloch equations at a specific bias magnetic field, known as the self-compensation point,298

Bz = �lM
a
z �lM

b
z . At this point, the comagnetometer effectively suppresses magnetic noise with frequencies near DC. In contrast, our299

work addresses the response of the bidirectionally coupled Bloch equations under a general bias magnetic field. From the derivation of these300

general-case responses, we demonstrate that the deamplification effect can suppress magnetic noise across a broader frequency range, including301

frequencies from near-DC to higher frequencies, such as 180 Hz. In the following, we detail the main differences and connections between our302

work and the existing self-compensated comagnetometers.303

A. The differences between our work and existing self-compensated comagnetometers. First, we summarize the response of304

previous self-compensated magnetometers, which consider the case of a particular bias field Bz =�lM
a
z �lM

b
z (i.e., the self-compensated305

point). According to existing work (4) the amplitude response S(w) of the self-compensated comagnetometer is306

S(w) =
BgaM

a
z w

gblMb
z Ga

+O(w2), [70]307

where the signal magnetic field is Bcos(wt). Importantly, the comagnetometer response S(w) is proportional to the frequency w of the308

magnetic field. Consequently, the previous self-compensated comagnetometer is insensitive to near-DC magnetic field, which can be used309

to suppress the low-frequency magnetic-field noise (commonly less than 1 Hz). In contrast, we explore a general self-compensation effect,310

i.e., the deamplification effect, where the bias field Bz is general instead of a particular point Bz =�lM
a
z �lM

b
z . In our work, we uncover311

the deamplification effect operating at higher frequencies, such as 180 Hz. In the following, we explain it in detail. Based on our detailed312

derivation in Sec. 4, the response of the bidirectional alkali-noble gases is characterized by the Fano profile313

SF (w) =

"
A (e) (w �wF )2

eG2
b
+(w � ewb)2

+B(e)

#1/2

, [71]314

where A (e) in Eq. (46) can be simplified under the condition w ⌧ ewa,eGa as:315

A (e)⇡ B
2g2

a M
a

z

2 1
eG2

a + ew2
a

, [72]316
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additional amplification
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provide a solution to the bidirectionally coupled Bloch equations at a specific bias magnetic field, known as the self-compensation point,298
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z . At this point, the comagnetometer effectively suppresses magnetic noise with frequencies near DC. In contrast, our299

work addresses the response of the bidirectionally coupled Bloch equations under a general bias magnetic field. From the derivation of these300

general-case responses, we demonstrate that the deamplification effect can suppress magnetic noise across a broader frequency range, including301

frequencies from near-DC to higher frequencies, such as 180 Hz. In the following, we detail the main differences and connections between our302

work and the existing self-compensated comagnetometers.303
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point). According to existing work (4) the amplitude response S(w) of the self-compensated comagnetometer is306
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magnetic field. Consequently, the previous self-compensated comagnetometer is insensitive to near-DC magnetic field, which can be used309

to suppress the low-frequency magnetic-field noise (commonly less than 1 Hz). In contrast, we explore a general self-compensation effect,310

i.e., the deamplification effect, where the bias field Bz is general instead of a particular point Bz =�lM
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z . In our work, we uncover311

the deamplification effect operating at higher frequencies, such as 180 Hz. In the following, we explain it in detail. Based on our detailed312

derivation in Sec. 4, the response of the bidirectional alkali-noble gases is characterized by the Fano profile313
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Fig. 3. Signal responsemodified with an external magnetic field. (A) 129Xe coherence time as a function of external magnetic field. The 129Xe decoherence rate
reaches a maximume�b ⇡ [28 s]�1 at Bz ⇡ �3mG and reaches a minimume�b ⇡ [130 s]�1 at Bz ⇡ ±70mG. After increasing external field, the coherence time
decreases due to magnetic field gradient. The solid line is the theoretical fit with our built noble-gas decoherence model. Based on our analysis (SI Appendix,
Noble-gas spin decoherence model), the magnetic field inhomogeneity is estimated to be about 0.04%. The dashed line represents the 129Xe decoherence after
numerically correcting the magnetic field gradient. (B and C) Response profiles for x, y-direction oscillating fields under di�erent bias fields.

in the Appendix, the maximum ofe�b can be theoretically given
by calculating the extreme value of e�b. In our 87Rb to 129Xe
experiment, we observe that J/� satisfies J/� ⇡ 6 ⇥ 10�3 ⌧ 1,
indicating that the alkali–noble-gas interaction strength is sig-
nificantly smaller than the alkali-metal decoherence rate. This
is commonly referred to as the weak coupling regime. In this
regime, e�b reaches a maximum e�b ⇡ �b + J2/2� at � = 0,
where the electron and nuclear spin precession frequencies are
nearly matched. Here, � = 0 corresponds to the external field
Bz = �(�bMa

z � �aMb
z )/(�a � �b) ⇡ ��Mb

z . As shown in
Fig. 3A, the experimental decoherence rate reaches a maximum
e�b ⇡ [28 s]�1 when the external applied field is Bz ⇡ �3mG.
These observations agree well with our theoretical analysis.

The 129Xe decoherence rate decreases rapidly as Bz deviates
from ��Mb

z . At a bias field of Bz ⇡ ±70mG, the decoherence
rate reaches a minimum e�b ⇡ [130 s]�1. This increase in
coherence time (the reciprocal of e�b) from 28 s to 130 s is an
important effect that should not be overlooked, even in the weak
coupling regime. This observation underscores the importance
of carefully setting the external magnetic field strength in
precision measurement experiments that aim for extended noble-
gas coherence times, such as comagnetometers (24, 25) and
nuclear gyroscopes (26). Specifically, it is essential to decouple
the two spin gases by deviating from Bz ⇡ ��Mb

z . Further
increases in Bz lead to a decrease in the 129Xe coherence time due
to the inhomogeneity of the Bz field. We numerically correct the
gradient effects and obtain the decoherence ratee�b (SI Appendix,
Noble-gas spin decoherence model), represented by the dashed
curve in Fig. 3A. We note that the decoherence rate could be
restored to that of uncoupled 129Xe spins, i.e., e�b ⇡ �b at the
bias field larger than about 70mG.

The deamplification depends on the external magnetic field.
As shown in Fig. 3B, the response profile for the measured field
along y gradually becomes symmetric as Bz increases. The reason
for this phenomenon is that the influence of the noninterference
term B(✏) in the Fano formula cannot be ignored. As a
symmetric background, it conceals the asymmetric features of
the Fano resonance profile. In contrast, using the same method

described above, we observe significant deamplification when an
x-direction oscillating field is applied at large Bz , for example,
Bz ⇡ ±150mG in our experiment (Fig. 3C ). The magnetic
responsivity is enhanced by a factor over 200 in the amplification
regime and suppressed by a factor over 10 in the deamplification
regime. It is worth noting that the Fano profile (for example, with
Bz ⇡ ±150mG) is reversed in Fig. 3C due to the sign change of
the Fano parameter q depending on the direction of the bias field.
A theoretical explanation of the aforementioned phenomena is
provided in the Appendix.

Summary and Outlook

The amplifier we developed, which can amplify magnetic fields
below 100Hz with exceptionally low noise, serves as a highly
sensitive magnetometer. As shown in Fig. 4A, the magnetic
sensitivity is improved to approximately 3.5 fT/Hz1/2 at the
129Xe Larmor frequency. This represents an improvement of
more than two orders of magnitude over the photon-shot
noise of the Rb probe laser. This technique opens up several
intriguing applications. For example, the amplifier can serve
as an ideal receiver for deep-sea communications. At hertz
frequencies, electromagnetic fields exhibit strong diffraction
and penetration capabilities, ensuring signal integrity over long
distances (27). Using 129Xe amplifiers as receivers may extend
subsea communication ranges to tens or even hundreds of meters
below sea level. Our work can also be applied to measure Schu-
mann waves (13, 28), which are characterized by an oscillation
frequency of approximately 7.83Hz and its harmonics, origi-
nating from the resonance between the Earth’s surface and the
ionosphere. Unlike previous Schumann-resonance detectors such
as SQUID magnetometers (28, 29), our approach could provide
more sensitive sensors for capturing higher-order harmonics,
thereby enriching our understanding of the Earth and its
surrounding atmospheric conditions.

Our work introduces a quantum-sensing technique for
measuring pseudomagnetic fields. A significant application of this
technique is in the search for hypothetical particles beyond the
standardmodel (30–32) such as ultralight axions or dark photons,
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which are also well-motivated dark matter candidates. These
particles can couple with standard-model particles (for example,
to nuclei interacting with their spins) (33, 34) or act as force
mediators to induce exotic interactions between two standard-
model particles (16, 35). As a result, these particles generate
an oscillating pseudomagnetic field on the spins. Here, the
hypothetical particles are assumed to couple with only one of the
alkali-metal and noble-gas spins. The amplifier presented in this
work can in effect convert the pseudomagnetic field into an ef-
fective magnetic field that can be measured (SI Appendix,Normal
and pseudomagnetic response). For example, the pseudomagnetic
field on noble-gas spins can be effectively magnified by almost
three orders of magnitude, achieving a sensitivity of 3.5 fT/Hz1/2
(Fig. 4B). With our current experimental parameters, the
sensitivity in searching for axions and dark photons could surpass
the most stringent astrophysical constraints obtained from the
supernova SN1987A cooling (36, 37). On the other hand, when
magnetic noise is the dominant factor, it is preferable to choose
the deamplification operation rather than amplification. In this
scenario, the system’s response to the pseudomagnetic field
does not undergo destructive interference and its sensitivity is
equal to the alkali-metal sensitivity (SI Appendix, Normal and
pseudomagnetic response). In our experiment, this sensitivity is
about 1 pT/Hz1/2 with 87Rb to 129Xe system (Fig. 4A).However,
using the K-3He system may further improve this sensitivity, as
the K magnetometer has already demonstrated sub-fT/Hz1/2-
level sensitivity, typically limited by magnetic noise from
magnetic shields (22, 23). Consequently, deamplification can
potentially overcome the magnetic noise limit, achieving sub-fT/
Hz1/2-level sensitivity for pseudomagnetic field measurements.

The aforementioned experiments are confined to scenarios
where the alkali-metal and noble-gas spins are weakly coupled,
specifically with J/� ⇡ 6⇥ 10�3. In this regime, the interaction
strength between alkali-metal and noble-gas spins is significantly
smaller than the decoherence rate of the alkali-metal spins. This
weak interaction imposes constraints on quantum sensing, such
as limiting the measurement bandwidth of our amplifier, i.e.,
e�b/2⇡ ⇡ 5.7mHz. We further investigate how the performance
of amplification evolves as the interaction strength increases
and the two spin gases enter into the strong-coupling regime,
unveiling previously unexplored amplification effects that are
beneficial to precision measurements. In particular, we find that

much broader amplification bandwidths are achievable with
strong bidirectional interactions. To illustrate this, we discuss
how the decoherence of noble gas changes as the interaction
between alkali-metal and noble gases increases. When setting the
detuning � = 0, the noble gas decoherence ratee�b is determined
by (see Eq. 4)

e�b = � � �Im[(J/�)2 � 1]1/2, [5]

which directly determines the measurement bandwidth. By
increasing the interaction J until reaching J/� = 1, the
decoherence rate e�b can attain a maximum of e�b = � ⇡ �a/2
(SI Appendix, Interacting spin gases), allowing the measurement
bandwidth to be half that of alkali-metal spins. Notably, further
increasing J beyond J/� = 1 does not lead to additional
improvements in the measurement bandwidthe�b because, when
J/� > 1, Im[(J/�)2 � 1]1/2 = 0.

Unfortunately, achieving J/� = 1 remains unattainable in
our 87Rb to 129Xe system because of the alkali-spin relaxation in
collisions with xenon. As presented in the Appendix, we estimate
the interaction strengths of existing pairs of alkali-metal and
noble gases (SI Appendix, Interaction strength of existing interacting
atomic gases). Our analysis indicates that one promising approach
to achieving J/� � 1 is using theK-3He system,which has a spin-
destruction cross-section five orders of magnitude smaller than
that of the 87Rb to 129Xe system. Consequently, the decoherence
rate �a ⇡ 2� of K spins can be significantly reduced. In fact,
J/� ⇡ 10 has already been successfully demonstrated in the
K-3He system (19). By further increasing the atomic number
density of K and the pressure of 3He (19, 38), it is anticipated
that achieving J/� > 100 should be possible.

Although we have shown that increasing J/� beyond unity
does not help to improve the bandwidth, we next show that
it can enhance the magnetic amplification factor. According to
SI Appendix, Signal amplification, the magnetic amplification in
the strong-coupling regime |q| ⇡ (�b�Mb

z +
p
J2 � �2)/e�b,

indicating that improvements in bandwidth would inevitably
deteriorate the amplification. Fortunately, entering the strong-
coupling regime (J/� > 1) does not continue to increase e�b,
thereby preventing a reduction in q. Instead, we can focus
solely on increasing J by raising the effective field �Mb
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Fig. 4. Enhanced sensing assistedwith amplification and deamplification. (A and B), the sensitivity to normalmagnetic field and pseudomagnetic field (see text).
The frequency of amplification and deamplification point is 10.11Hz and 8.05Hz, respectively. At the amplification point, the achieved normal magnetic-field
sensitivity and the theoretical pseudomagnetic sensitivity is about 3.5 fT/Hz1/2. At the deamplification point, the normal magnetic field is suppressed resulting
in a deteriorated sensitivity, while the pseudomagnetic sensitivity is equal to the alkali-metal sensitivity that is about 1pT/Hz1/2.
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Measurement bandwidth to be half 
that of alkali-metal spins

Advantage: much broader 
amplification bandwidths with a 
suitable amplification factor



Amplification mechanism with interacting atomic gases

Jiang et al., PNAS 122, e2419683122 (2025)

Fano profile

Interference enhancement

Quantum amplification

Amplification

that the first part of the total response F (✏) can be described as
a product of these two factors, which quantitatively characterizes
the interference between interacting alkali-metal and noble-gas
spins. The factor B(✏) is the noninterference term, which
depends on both alkali metal and noble gas. B(✏) is relatively
symmetric compared to the factor (q + ✏)2/(1 + ✏2). As the
background of the profile, its amplitude relative to the first
term significantly affects the symmetry characteristics of the
profile (SI Appendix, Fano resonance). Consequently, two distinct
amplification phenomena emerge. Constructive interference at
✏ = 0, which corresponds to signal enhancement that reaches a
maximum amplitude of⇡|q|A 1/2(✏). We find the amplification
factor of the signal amplitude is |q|. Destructive interference at
✏ = �q, which corresponds to signal suppression. These phe-
nomena are referred to as “amplification” and “deamplification,”
respectively.

In our experiments, we verify the aforementioned asym-
metric Fano resonance and the corresponding amplifica-
tion/deamplification phenomena. As an example, the external
magnetic field is set as Bz ⇡ �8.59mG, corresponding to
!b/2⇡ ⇡ 10.11Hz. We apply an oscillating test field along
y and sweep its oscillation frequency around !b, and record the
frequency-response signal. The measurement duration of each
point in our experiment is 180 s. Fig. 2A shows the experimental
data, where each curve exhibits an asymmetric profile. Here, the
response of individual 87Rb atoms is flat near the 129Xe resonance
frequency and can therefore be taken as the normalization
amplitude. Taking the dark-blue line as an example, when the
oscillation frequency ⌫ is near e⌫b ⇡ 10.11Hz (corresponding
to ✏ ⇡ 0), the magnetic-field response amplitude [i.e., the
square root of the power F (✏)] is greatly enhanced by a factor of
|q| ⇡524. While at about 8.05Hz (corresponding to ✏ ⇡ �q),
the magnetic-field response is suppressed by at least one order of
magnitude.

The Fano parameter q reflects themagnitude of the interaction
between the discrete state 129Xe and the continuous state Rb in
the interacting gases. Since our system reads out the 87Rb spins
optically, the Fano parameter indicates the enhancement effect
of 129Xe on the 87Rb response, particularly the amplification at
the resonance frequency. The Fano parameter q can be derived
as (SI Appendix, Signal amplification),

q ⇡
�b�Mb

z
2e�b

, [3]

and its absolute value |q| represents the amplification factor.
This amplification relies on two factors: the decoherence rate
e�b of 129Xe, which is six orders of magnitude smaller than Rb,
and the magnitude of the effective field exerted by 129Xe on
87Rb. This effective field is proportional to the number density
and polarization of the noble gas, given a specific Fermi contact
enhancement factor for the spins. Furthermore, we can also
change the effective field at the 129Xe resonant frequency by
applying a z-direction AC field Bac cos!act. The effective field
is modulated as �Mb

z
0 = �Mb

z J
2
0 (�bBac/!ac), where J0 is the

Bessel function of the first kind of order zero (SI Appendix, Fano
parameter modification). Fig. 2B provides a magnified view of
the amplification regime in Fig. 2A, illustrating the amplification
behavior for different values of q ⇡ �b�Mb

z
0
/2e�b.

As a counterpart to amplification, deamplification with a
minimum response occurs at ✏ ⇡ �q, according to Eq. 2. Fig. 2C
shows that the frequency of maximum deamplification shifts �⌫
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Fig. 2. Demonstration of signal amplification and deamplification. (A)
Response profile as a function of the frequency of y-directed measured field.
Bz is set to about �8.59mG as an example. The response at 80Hz is taken as
thenormalization amplitude. Thedata arewell fit with theoretical Fanoprofile
with Fano parameter q, which is modified by applying a periodic magnetic
field (SI Appendix, Fano parameter modification). For each profile, there exists
an amplification regimewith large response above one and a deamplification
regime with response below one. (B) Amplification with varying Fano param-
eters q (Partial enlarged view of Fig. 2A). (C) Deamplification with respect to
Fano parameter. The deamplification frequency is linearly dependent on the
Fano parameter with the slope of 0.004 (see text).

from the 129Xe resonance linearly with the Fano parameter q,
i.e., �⌫ = ⌫ �e⌫b ⇡ q · 0.004Hz. A theoretical derivation gives
�⌫ ⇡ qe�b/2⇡ (SI Appendix, Signal amplification). Consequently,
the fit to the data givese�b ⇡ [40 s]�1, which is in good agreement
with independent measurements of the 129Xe spin-decoherence
rate. As discussed below, although the magnetic responsivity
deteriorates in the deamplification regime, this approach is well
suited for suppressing environmental magnetic noise by at least
one order of magnitude.

The amplification and deamplification depend on the noble-
gas decoherence rate e�b. We show below that the bidirectional
interaction and the external magnetic field can modify this rate.
By diagonalizing the matrix in Eq. 1, we obtain the dressed
Larmor frequencies e!a,b and decoherence rates e�a,b of the
interacting spins (SI Appendix, Interacting spin gases):

e!a,b + ie�a,b = !0 + i� ±

p
J2 + �2 , [4]

where !0 = (!a + !b)/2, � = (�a + �b)/2 and � = � + i�
with � = (!a�!b)/2, � = (�a��b)/2.We show that the joint
action of the magnetic Zeeman interaction and the alkali–noble-
gas bidirectional interaction dresses their Larmor frequencies and
decoherence rates. In the following, we focus on the decoherence
rate e�b of 129Xe spins. According to Eq. 4, the noble-gas
decoherence rate ise�b = �� Im

⇥
J2 + (� + i�)2

⇤1/2. As shown
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Deamplification

Interference destructive

Quantum Suppression

that the first part of the total response F (✏) can be described as
a product of these two factors, which quantitatively characterizes
the interference between interacting alkali-metal and noble-gas
spins. The factor B(✏) is the noninterference term, which
depends on both alkali metal and noble gas. B(✏) is relatively
symmetric compared to the factor (q + ✏)2/(1 + ✏2). As the
background of the profile, its amplitude relative to the first
term significantly affects the symmetry characteristics of the
profile (SI Appendix, Fano resonance). Consequently, two distinct
amplification phenomena emerge. Constructive interference at
✏ = 0, which corresponds to signal enhancement that reaches a
maximum amplitude of⇡|q|A 1/2(✏). We find the amplification
factor of the signal amplitude is |q|. Destructive interference at
✏ = �q, which corresponds to signal suppression. These phe-
nomena are referred to as “amplification” and “deamplification,”
respectively.

In our experiments, we verify the aforementioned asym-
metric Fano resonance and the corresponding amplifica-
tion/deamplification phenomena. As an example, the external
magnetic field is set as Bz ⇡ �8.59mG, corresponding to
!b/2⇡ ⇡ 10.11Hz. We apply an oscillating test field along
y and sweep its oscillation frequency around !b, and record the
frequency-response signal. The measurement duration of each
point in our experiment is 180 s. Fig. 2A shows the experimental
data, where each curve exhibits an asymmetric profile. Here, the
response of individual 87Rb atoms is flat near the 129Xe resonance
frequency and can therefore be taken as the normalization
amplitude. Taking the dark-blue line as an example, when the
oscillation frequency ⌫ is near e⌫b ⇡ 10.11Hz (corresponding
to ✏ ⇡ 0), the magnetic-field response amplitude [i.e., the
square root of the power F (✏)] is greatly enhanced by a factor of
|q| ⇡524. While at about 8.05Hz (corresponding to ✏ ⇡ �q),
the magnetic-field response is suppressed by at least one order of
magnitude.

The Fano parameter q reflects themagnitude of the interaction
between the discrete state 129Xe and the continuous state Rb in
the interacting gases. Since our system reads out the 87Rb spins
optically, the Fano parameter indicates the enhancement effect
of 129Xe on the 87Rb response, particularly the amplification at
the resonance frequency. The Fano parameter q can be derived
as (SI Appendix, Signal amplification),

q ⇡
�b�Mb

z
2e�b

, [3]

and its absolute value |q| represents the amplification factor.
This amplification relies on two factors: the decoherence rate
e�b of 129Xe, which is six orders of magnitude smaller than Rb,
and the magnitude of the effective field exerted by 129Xe on
87Rb. This effective field is proportional to the number density
and polarization of the noble gas, given a specific Fermi contact
enhancement factor for the spins. Furthermore, we can also
change the effective field at the 129Xe resonant frequency by
applying a z-direction AC field Bac cos!act. The effective field
is modulated as �Mb

z
0 = �Mb

z J
2
0 (�bBac/!ac), where J0 is the

Bessel function of the first kind of order zero (SI Appendix, Fano
parameter modification). Fig. 2B provides a magnified view of
the amplification regime in Fig. 2A, illustrating the amplification
behavior for different values of q ⇡ �b�Mb

z
0
/2e�b.

As a counterpart to amplification, deamplification with a
minimum response occurs at ✏ ⇡ �q, according to Eq. 2. Fig. 2C
shows that the frequency of maximum deamplification shifts �⌫
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Fig. 2. Demonstration of signal amplification and deamplification. (A)
Response profile as a function of the frequency of y-directed measured field.
Bz is set to about �8.59mG as an example. The response at 80Hz is taken as
thenormalization amplitude. Thedata arewell fit with theoretical Fanoprofile
with Fano parameter q, which is modified by applying a periodic magnetic
field (SI Appendix, Fano parameter modification). For each profile, there exists
an amplification regimewith large response above one and a deamplification
regime with response below one. (B) Amplification with varying Fano param-
eters q (Partial enlarged view of Fig. 2A). (C) Deamplification with respect to
Fano parameter. The deamplification frequency is linearly dependent on the
Fano parameter with the slope of 0.004 (see text).

from the 129Xe resonance linearly with the Fano parameter q,
i.e., �⌫ = ⌫ �e⌫b ⇡ q · 0.004Hz. A theoretical derivation gives
�⌫ ⇡ qe�b/2⇡ (SI Appendix, Signal amplification). Consequently,
the fit to the data givese�b ⇡ [40 s]�1, which is in good agreement
with independent measurements of the 129Xe spin-decoherence
rate. As discussed below, although the magnetic responsivity
deteriorates in the deamplification regime, this approach is well
suited for suppressing environmental magnetic noise by at least
one order of magnitude.

The amplification and deamplification depend on the noble-
gas decoherence rate e�b. We show below that the bidirectional
interaction and the external magnetic field can modify this rate.
By diagonalizing the matrix in Eq. 1, we obtain the dressed
Larmor frequencies e!a,b and decoherence rates e�a,b of the
interacting spins (SI Appendix, Interacting spin gases):

e!a,b + ie�a,b = !0 + i� ±

p
J2 + �2 , [4]

where !0 = (!a + !b)/2, � = (�a + �b)/2 and � = � + i�
with � = (!a�!b)/2, � = (�a��b)/2.We show that the joint
action of the magnetic Zeeman interaction and the alkali–noble-
gas bidirectional interaction dresses their Larmor frequencies and
decoherence rates. In the following, we focus on the decoherence
rate e�b of 129Xe spins. According to Eq. 4, the noble-gas
decoherence rate ise�b = �� Im

⇥
J2 + (� + i�)2

⇤1/2. As shown
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where ε ¼ ðω − jωbjÞ=Γb varies with the scanning fre-
quency ω and q denotes Fano parameter that satisfies
ðqΓb − jωbjÞ2 ¼ γ2bBzðBz þ λMb

zÞ [44].
Here, A0ðωÞ represents the individual K response to the

oscillating field and the second factor ½ðqþ εÞ2=ð1þ
ε2Þ&1=2 only depends on noble gas. We surprisingly find
that the total response AðωÞ of the K-3He comagnetometer
is the product of these two terms. As shown in Eq. (2),
when qþ ε ≈ 0 is satisfied, the destructive interference
occurs and the response AðωÞ is minimal. Under this
condition, our comagnetometer can automatically self-
compensate magnetic noise whose amplitude satisfies the
linearization approximation [44], regardless of their
unknown magnitudes. Consequently, we obtain the fre-
quency where the response is minimized, corresponding to
the aforementioned self-compensation frequency ωsc [44],

ωsc ≈ γb
!
Bz

"
Bz þ λMb

z
#$

1=2: ð3Þ

Additionally, the response-enhanced frequency corresponds
to ε ¼ 0, i.e.,ω ¼ jωbj [see the peaks in Figs. 2(a) and 2(b)].
This enhanced effect has been studied in our recent works
[7,12,13], which is outside the scope of this work.
The self-compensation frequency ωsc can be controlled

by adjusting the bias field Bz. Figure 2(c) illustrates the
measured ωsc as a function of Bz, which agrees well with
the corresponding theoretical curves obtained from Eq. (3).
Each curve, for a specific value of λMb

z , consists of two
branches separated by a gap. Taking the case of λMb

z ≈
120 nT as an example, when jBzj ≫ 120 nT (e.g.,
Bz ≈'323 nT), a linear relationship between ωsc and Bz
is observed. This linearity can be seen from the simplified
form of Eq. (3): ωsc ≈ jωbjþ ðBz=jBzjÞγbλMb

z=2 when jBzj
significantly exceeds λMb

z . Negative values of Bz corre-
spond to the left branch, where ωsc is lower than the Larmor
frequency of 3He [e.g., see Fig. 2(a)], while positive values
of Bz correspond to the right branch, where ωsc is higher
than the Larmor frequency of 3He [e.g., see Fig. 2(b)].
When Bz approaches 0 or −λMb

z , the dependence between
ωsc and Bz becomes nonlinear. It is noteworthy that when
Bz is tuned to approximately cancel the 3He effective field
(i.e., Bz ≈ −λMb

z ), our comagnetometer operates similarly
to existing comagnetometers [38,39] that only suppress
near-dc magnetic noise. In the range of−120 nT < Bz < 0,
ωsc becomes purely imaginary according to Eq. (3), lacking
physical significance. By taking the real part of ωsc, we
obtain ReðωscÞ ¼ 0 Hz, at which the noise is expected to be
mostly suppressed. This expected phenomenon is con-
firmed in our experiment. By adjusting Bz, our comagne-
tometer can accomplish an extended frequency range for
suppressing magnetic noise, encompassing frequencies
from near-dc to high frequency, for example, 160 Hz.
Similar patterns are observed under varying λMb

z and we
present three measured curves with different λMb

z by
adjusting the vapor cell temperature. Here, λMb

z is cali-
brated by applying a magnetic pulse along y and measuring
the K Larmor frequency ωa [44].
We demonstrate that the capability of suppressing mag-

netic noise depends on the azimuth angle θ of the field. This
is due to the fact that the measured quantity in experiments,
denoted as Ma

x , can be influenced by both the rotating and
counterrotating components of the oscillating field. When
the frequency of the oscillating noise field matches the self-
compensation frequency ωsc, these two components con-
tribute equally in magnitude but with a phase difference of
about π þ 2ðθ − arccotωa=ΓaÞ [44]. To compensate for this
phase difference, we can adjust the azimuth angle to

θsc ≈ arccot
!
γa
"
Bz þ λMb

z
#
=Γa

$
; ð4Þ
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FIG. 2. Demonstration of self-compensation effect. (a),(b)
Responses and corresponding Fano profile fits under a negative
or positive bias field as a function of the oscillation frequency ω
of the test field Bþ. Both responses are suppressed by over 2
orders of magnitude near the self-compensation frequency. Each
magnetic response is measured at its own self-compensation
angle θsc of 163° and 36°, respectively (as discussed below).
(c) Self-compensation frequencies as a function of Bz. Each curve
consists of two branches corresponding to negative and positive
Bz, respectively.
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higher frequencies up to 160 Hz. We also observe that the
capability of noise suppression depends on the direction of
magnetic noise and can be conveniently controlled by
adjusting bias magnetic field. We develop a comprehensive
theory to explain these magnetic noise self-compensation
effects, notable for its capacity to suppress normal magnetic
noise while maintaining sensitivity to pseudomagnetic
fields, holding the potential applications in searches for
various anomalous spin-dependent interactions [5–15].
Our investigation into magnetic noise self-compensation

employs an overlapping spin ensemble comprising potas-
sium and 3He gases. The experimental setup and spin
dynamics are shown schematically in Fig. 1. A spherical
GE180 glass cell with a diameter of 2 cm encloses a droplet
of K, 2.5 amagat of 3He and 200 torr of nitrogen. The 3He
nuclear spins are polarized along z via spin-exchange
collisions with optically pumped K atoms [42–44]. The
frequent spin-exchange collisions between K and 3He result
in an effectivemagnetic field λMa experienced by 3Hedue to
K and λMb experienced by K due to 3He [38,45]. Here, “a”
denotes alkali metal and “b” denotes noble gas. The
direction of the projection of λMb along z (λMb

z ) is defined
as the positive z axis. The bias fieldBz is along z. It is defined
as positive when it is consistent with the direction of λMb

z ,
otherwise it is negative. Both species of spins precess around
the sumof the applied bias field and their respective effective
fields. In the linearization approximation, we express the
evolution of the complex transverse magnetization Ma;b

þ ¼
Ma;b

x þ iMa;b
y using a matrix representation [44]:
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!
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whereωa ¼ γaðBz þ λMb
z Þ andωb ¼ γbðBz þ λMa

z Þ denote
the Larmor frequencies ofK and 3He, respectively.Here, γa;b
and Γa;b are the gyromagnetic ratios and decoherence rates
of K and 3He, respectively; λ ¼ 8πκ0=3 with the Fermi-
contact enhancement factor κ0 ≈ 5.9 for K and 3He [42]. The
nondiagonal elements signify the spin-exchange coupling
between these two spin species. Additionally, the last term
accounts for the perturbation introduced by the complex
ambient noise field Bþ ¼ Bx þ iBy in the xy plane. This
noise field acts simultaneously on both spins. In the case of
an oscillating magnetic noise, Bþ ¼ Beiθ cosωt, where θ is
the azimuth angle characterizing the orientation of the noise
field relative to the þx axis. The magnetic response of our
comagnetometer is measured by optically detecting the K
magnetization along x (i.e., Ma

x) with a linearly polarized
laser (Fig. 1) [44].
The magnetic self-compensation mechanism of the

comagnetometer is essentially the destructive interference
of two species. According to Eq. (1), the interference arises
between 3He response to magnetic noise, which is trans-
mitted to K spins via the effective field λMb

þ, and K
response to magnetic noise. By carefully selecting appro-
priate values for experimental parameters, such as Bz, λMa

z ,
λMb

z , the interference can be made destructive, resulting in
the emergence of magnetic noise self-compensation of the
measured K response Ma

x .
Figure 2 shows the magnetic response of our comagne-

tometer at various oscillation frequencies. During the
experiment, the effective field of noble gas λMb

z is adjusted
to approximately 120 nT, which is achieved by changing
the vapor-cell temperature and thus controlling the degree
of polarization of 3He. We apply a transverse magnetic field
along the azimuth angle θ ¼ θsc (see below) as a test field,
scan its frequency from 1–25 Hz, and record the corre-
sponding response. When Bz ≈ −323 nT, the comagne-
tometer response is suppressed by a factor of η ≈ 286 in the
vicinity of 8.3 Hz [Fig. 2(a)], compared with the individual
K response which is calibrated using a signal deviating
from the 3He Larmor frequency and used as a normalized
amplitude [44]. The frequency where the response is
significantly suppressed is referred to as the “self-compen-
sation frequency” and denoted by ωsc, e.g., ωsc=2π ≈
8.3 Hz in Fig. 2(a). When Bz ≈ 323 nT, the response is
suppressed by a factor of about 582 around ωsc=2π ≈
12.2 Hz [Fig. 2(b)]. We also observe an enhancement at the
3He Larmor frequency jωbj=2π ≈ 10.5 Hz (away from
ωsc=2π), corresponding to the large peaks in Figs. 2(a)
and 2(b). As detailed in Supplemental Material [44], our
comagnetometer response can be well described by a Fano
profile [46] defined as

AðωÞ ≈ A0ðωÞ
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bbbbbbbbbbbbbbbbbbbbM Mba

Pump

Ma
x

FIG. 1. Schematic of magnetic noise self-compensation experi-
ment. Alkali-metal and noble-gas atoms are initially polarized
along z. Alkali spins are probed along x. The spin-exchange
coupling leads to an effective field experienced by alkali spins. The
noble-gas response to magnetic noise interferes with the alkali-
metal response via the effective field. The magnetic noise is self-
compensated when such interference is destructive. LP, linearly
polarizer; λ=4, quarter-wave plate; PEM, photoelastic modulator.
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and the second term B(e) is expressed as317
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The deamplification frequency wF is presented as
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It can be seen that this Fano response SF (w) is different from the response S(w) presented in Eq. (70). In the above Fano response and319

deamplification frequency formula, SF (w) can be insensitive to magnetic noise near wF and the deamplification frequency wF can be adjusted320

by the bias field Bz. Therefore, we can regulate the value of wF across a much broad frequency range. For example, when we set Bz ⇡ 150mG,321

the response to magnetic field is significantly suppressed near wF/2p ⇡ 180Hz. Therefore, our work significantly expands the operation322

frequency range of the self-compensated comagnetometer.323

B. The connections between our work and existing self-compensated comagnetometers. Although the responses presented in324

Eqs. (70) and (71) are different, we discover an intriguing connection between them. Specifically, the response formula SF (w) transforms into325
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a
z �lM

b
z . We explain the details as follows. When the bias field is326

set to the self-compensation field Bz =�lM
a
z �lM

b
z , the deamplification frequency is327

wF ⇡ gb[(Bz +lM
a

z +lM
b

z )(Bz +lM
a

z )]
1/2 = 0, [74]328

the alkali-metal Larmor frequency is329

|ewa|⇡
���ga(Bz +lM

b

z )
���=
��galM

a

z

��⌧ eGa ⇡ Ga, [75]330

and the noble-gas Larmor frequency is331

|ewb|⇡
��gb(Bz +lM

a

z )
��=
���gblM

b

z

���. [76]332

In this case B(e) can also be ignored because B(e)/A (e) is333

B(e)
A (e)

⇡ (Gb +eGb)
4

16ew4
b

+
ew2

a

eG2
a + ew2

a

G2
b

ew2
b

�2
ewa
eGa

eG2
a + ew2

a

eGbG2
b

ew3
b

⇠ 10�10, [77]334

where ewa/eGa ⇠ 10�2 and eGb/ewb ⇠ 10�3 in our experiment. As a result, the response shown in Eq. (71) can be simplified into335
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In comparison with Eq. (70), we observe that the response SF (w) transforms into the response S(w) found in previous self-compensated337

comagnetometers.338

7. Normal and pseudo magnetic response339

This section presents the details of Fano resonance under different types of magnetic field, including normal magnetic field and non-magnetic340

exotic magnetic field. The Fano profile of normal magnetic field is discussed in the above sections. Here we mainly focus on the Fano profile341

of exotic fields. Recently, numerous theories have predicted the existence of hypothetical particles beyond the standard model of the particles,342

such as axions, axion-like particles, and dark photons. Such hypothetical particles are predicted to couple with nuclear spins, for example,343

noble-gas nuclear spins, and behave as an oscillating magnetic field, while they do not interact with alkali-metal electron spins. In contrast to344

the normal magnetic fied response, the exotic field response can be described as345
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Due to the interference essence of Fano resonance, the exotic field exhibits no interaction with alkali-metal spins, thereby leading to the absence347

of Fano resonance. Therefore, the response of exotic field is quite different from the case of normal magnetic field. According to the same348

method in Sec. 4, the response to the exotic field in the y direction can be calculated as349
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which does not exhibit asymmetry near the resonance frequency of 129Xe. Furthermore, we emphasize that the measurement of the exotic351

field lacks the Fano resonance, because there is no interference between the exotic field and the effective field of 129Xe. As a result, when the352

frequency deviate from the resonant frequency of 129Xe, the magnetic sensitivity displays a flat sensitivity, whereas the theoretical exotic-field353

sensitivity experiences a deterioration.354
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can be adjusted by the bias field Bz

higher frequencies up to 160 Hz. We also observe that the
capability of noise suppression depends on the direction of
magnetic noise and can be conveniently controlled by
adjusting bias magnetic field. We develop a comprehensive
theory to explain these magnetic noise self-compensation
effects, notable for its capacity to suppress normal magnetic
noise while maintaining sensitivity to pseudomagnetic
fields, holding the potential applications in searches for
various anomalous spin-dependent interactions [5–15].
Our investigation into magnetic noise self-compensation

employs an overlapping spin ensemble comprising potas-
sium and 3He gases. The experimental setup and spin
dynamics are shown schematically in Fig. 1. A spherical
GE180 glass cell with a diameter of 2 cm encloses a droplet
of K, 2.5 amagat of 3He and 200 torr of nitrogen. The 3He
nuclear spins are polarized along z via spin-exchange
collisions with optically pumped K atoms [42–44]. The
frequent spin-exchange collisions between K and 3He result
in an effectivemagnetic field λMa experienced by 3Hedue to
K and λMb experienced by K due to 3He [38,45]. Here, “a”
denotes alkali metal and “b” denotes noble gas. The
direction of the projection of λMb along z (λMb

z ) is defined
as the positive z axis. The bias fieldBz is along z. It is defined
as positive when it is consistent with the direction of λMb

z ,
otherwise it is negative. Both species of spins precess around
the sumof the applied bias field and their respective effective
fields. In the linearization approximation, we express the
evolution of the complex transverse magnetization Ma;b

þ ¼
Ma;b

x þ iMa;b
y using a matrix representation [44]:
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þ
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¼
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whereωa ¼ γaðBz þ λMb
z Þ andωb ¼ γbðBz þ λMa

z Þ denote
the Larmor frequencies ofK and 3He, respectively.Here, γa;b
and Γa;b are the gyromagnetic ratios and decoherence rates
of K and 3He, respectively; λ ¼ 8πκ0=3 with the Fermi-
contact enhancement factor κ0 ≈ 5.9 for K and 3He [42]. The
nondiagonal elements signify the spin-exchange coupling
between these two spin species. Additionally, the last term
accounts for the perturbation introduced by the complex
ambient noise field Bþ ¼ Bx þ iBy in the xy plane. This
noise field acts simultaneously on both spins. In the case of
an oscillating magnetic noise, Bþ ¼ Beiθ cosωt, where θ is
the azimuth angle characterizing the orientation of the noise
field relative to the þx axis. The magnetic response of our
comagnetometer is measured by optically detecting the K
magnetization along x (i.e., Ma

x) with a linearly polarized
laser (Fig. 1) [44].
The magnetic self-compensation mechanism of the

comagnetometer is essentially the destructive interference
of two species. According to Eq. (1), the interference arises
between 3He response to magnetic noise, which is trans-
mitted to K spins via the effective field λMb

þ, and K
response to magnetic noise. By carefully selecting appro-
priate values for experimental parameters, such as Bz, λMa

z ,
λMb

z , the interference can be made destructive, resulting in
the emergence of magnetic noise self-compensation of the
measured K response Ma

x .
Figure 2 shows the magnetic response of our comagne-

tometer at various oscillation frequencies. During the
experiment, the effective field of noble gas λMb

z is adjusted
to approximately 120 nT, which is achieved by changing
the vapor-cell temperature and thus controlling the degree
of polarization of 3He. We apply a transverse magnetic field
along the azimuth angle θ ¼ θsc (see below) as a test field,
scan its frequency from 1–25 Hz, and record the corre-
sponding response. When Bz ≈ −323 nT, the comagne-
tometer response is suppressed by a factor of η ≈ 286 in the
vicinity of 8.3 Hz [Fig. 2(a)], compared with the individual
K response which is calibrated using a signal deviating
from the 3He Larmor frequency and used as a normalized
amplitude [44]. The frequency where the response is
significantly suppressed is referred to as the “self-compen-
sation frequency” and denoted by ωsc, e.g., ωsc=2π ≈
8.3 Hz in Fig. 2(a). When Bz ≈ 323 nT, the response is
suppressed by a factor of about 582 around ωsc=2π ≈
12.2 Hz [Fig. 2(b)]. We also observe an enhancement at the
3He Larmor frequency jωbj=2π ≈ 10.5 Hz (away from
ωsc=2π), corresponding to the large peaks in Figs. 2(a)
and 2(b). As detailed in Supplemental Material [44], our
comagnetometer response can be well described by a Fano
profile [46] defined as

AðωÞ ≈ A0ðωÞ
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FIG. 1. Schematic of magnetic noise self-compensation experi-
ment. Alkali-metal and noble-gas atoms are initially polarized
along z. Alkali spins are probed along x. The spin-exchange
coupling leads to an effective field experienced by alkali spins. The
noble-gas response to magnetic noise interferes with the alkali-
metal response via the effective field. The magnetic noise is self-
compensated when such interference is destructive. LP, linearly
polarizer; λ=4, quarter-wave plate; PEM, photoelastic modulator.
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and the second term B(e) is expressed as317
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The deamplification frequency wF is presented as
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It can be seen that this Fano response SF (w) is different from the response S(w) presented in Eq. (70). In the above Fano response and319

deamplification frequency formula, SF (w) can be insensitive to magnetic noise near wF and the deamplification frequency wF can be adjusted320

by the bias field Bz. Therefore, we can regulate the value of wF across a much broad frequency range. For example, when we set Bz ⇡ 150mG,321

the response to magnetic field is significantly suppressed near wF/2p ⇡ 180Hz. Therefore, our work significantly expands the operation322

frequency range of the self-compensated comagnetometer.323

B. The connections between our work and existing self-compensated comagnetometers. Although the responses presented in324

Eqs. (70) and (71) are different, we discover an intriguing connection between them. Specifically, the response formula SF (w) transforms into325
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where ewa/eGa ⇠ 10�2 and eGb/ewb ⇠ 10�3 in our experiment. As a result, the response shown in Eq. (71) can be simplified into335
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In comparison with Eq. (70), we observe that the response SF (w) transforms into the response S(w) found in previous self-compensated337

comagnetometers.338

7. Normal and pseudo magnetic response339

This section presents the details of Fano resonance under different types of magnetic field, including normal magnetic field and non-magnetic340

exotic magnetic field. The Fano profile of normal magnetic field is discussed in the above sections. Here we mainly focus on the Fano profile341

of exotic fields. Recently, numerous theories have predicted the existence of hypothetical particles beyond the standard model of the particles,342

such as axions, axion-like particles, and dark photons. Such hypothetical particles are predicted to couple with nuclear spins, for example,343

noble-gas nuclear spins, and behave as an oscillating magnetic field, while they do not interact with alkali-metal electron spins. In contrast to344

the normal magnetic fied response, the exotic field response can be described as345
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Due to the interference essence of Fano resonance, the exotic field exhibits no interaction with alkali-metal spins, thereby leading to the absence347

of Fano resonance. Therefore, the response of exotic field is quite different from the case of normal magnetic field. According to the same348

method in Sec. 4, the response to the exotic field in the y direction can be calculated as349
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which does not exhibit asymmetry near the resonance frequency of 129Xe. Furthermore, we emphasize that the measurement of the exotic351

field lacks the Fano resonance, because there is no interference between the exotic field and the effective field of 129Xe. As a result, when the352

frequency deviate from the resonant frequency of 129Xe, the magnetic sensitivity displays a flat sensitivity, whereas the theoretical exotic-field353

sensitivity experiences a deterioration.354
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Self-compensation at near-DC (< 1Hz)



where u = gbBac
wac

is the modified index and Jk is the Bessel function of the first kind of order k. This result is very interesting, indicating398

that the presence of an oscillating magnetic field Bac cos(wact) leads to many sideband peaks at wb + kwac. However, we only care about the399

solution near the resonant frequency wb, that is, consider the case of k = 0 and l = 0. Then, Eq. (86) can be simplified as400
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e
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. [87]401

In the second step, we ignore the time-dependent term in Eq. (83), since the resonance and sideband frequencies of 87Rb are generally much402

larger than wb. Then we can easily obtain the relation M
a
+(t) µ B++lM

b
+(t). It is the same as without modulation except that the effective403

field is multiplied by a Bessel function factor J 2
0 (u). As a result of the modulated field, denoted as Bac cos(wact), the Fano parameter q404

undergoes multiplication by the factor J 2
0 (u).405

In our experiment, we employ a frequency of wac/2p = 3 Hz and vary the modulation factor u by adjusting the amplitude Bac in order to406

effectively control the Fano parameters q. It should be noted that the modulation frequency wacneeds to be large enough to avoid the influence407

of other sideband peaks on the Fano profile of the central peak, especially the deamplification point.408

9. Interaction strength of existing interacting atomic gases409

This section presents the typical interaction strengths found in existing studies that utilize interacting gas systems, encompassing various pairs410

of alkali-metal and noble-gas atoms. These studies indicate that higher interaction strengths and lower decoherence rates are more readily411

achieved in the K-3He system. We use the formula J =
q

gagbl 2Ma
z Mb

z to estimate the interaction strength of the system, where ga and gb412

represent the gyromagnetic ratios of the alkali-metal atoms and noble-gas nuclei, respectively, while lM
a
z and lM

b
z denote the effective fields413

arising from the interactions between the alkali-metal atoms and the noble-gas atoms, respectively. We summarize the gyromagnetic ratios of414
3He, 21Ne, and 129Xe as g3He/2p ⇡ 3.32⇥107Hz/T, g21Ne/2p ⇡ 3.36⇥106Hz/T and g129Xe/2p ⇡ 1.18⇥107Hz/T. The specific results are415

shown in Table.S1. According to our analysis, we find that the large decoherence rate b of Rb or Cs systems usually limits these systems to the416

regime where J/b ⌧ 1. In the K-3He system, where the interaction strength is relatively large and decoherence is minimal, achieving J/b > 1417

is more feasible.418

Table S1. List of interaction strengths in interacting-gas systems in existing works. We summarize a series of works on K-
3
He, Rb-

21
Ne,

Rb-
129

Xe, and Cs-
129

Xe systems, covering different types such as comagnetometers, spin amplifiers, and NMR gyroscopes. We specifically

count the effective magnetic field and the decoherence rate of the system in previous work to obtain J/b . The results show that K-
3
He is

more likely to reach the J/b > 1 regime.

Spin System Operation Types lM
a
z

lM
b
z

J/2p b/2p J/b

K-3He (5) Comagnetometer 24 nT 1094 nT 78 Hz 3.65 Hz 21

K-3He (6) Comagnetometer 14 nT 500 nT 38 Hz 60 Hz 0.64

K-3He (3) Comagnetometer 2 nT 100 nT 6.7 Hz 4 Hz 1.6

K-3He (7) Comagnetometer 1.4 nTa 100 nT 5.6 Hz 1.6 Hz 3.5

Rb-21Ne (8) Comagnetometer 110.6 nT 579.4 nT 40 Hz 74 Hz 0.54

Rb-21Ne (9) Comagnetometer 104 nTb 250 nT 25 Hz 80 Hz 0.31

Rb-129Xe (10) Comagnetometer 0.33 nT 53 nT 1.2 Hz 37 Hz 3⇥10�2

Rb-129Xe (2) Spin Amplifier 20 nT 200 nT 18 Hz 10 kHz 1.8⇥10�3

Cs-129Xe (11) Comagnetometer 4 nT 340 nTc 11 Hz 680 Hz 1.6⇥10�2

Cs-129Xe (12) NMR Gyroscope 18 nTd 100 nT 12 Hz 300 Hz 4.0⇥10�2

Rb-129Xe This work 1 nT 300 nT 4.8 Hz 1.6 kHz 6⇥10�3

aThe effective field is estimated using the number density calculated at a temperature of 453 K and a typical K polarization degree of 50%.
bThe effective field is estimated using the number density calculated at a temperature of 468 K and a typical Rb polarization degree of 50%.
cThe effective field is estimated using a typical 129Xe polarization degree of 10%.
dThe Cs polarization is estimated to be about 10% based on the system temperature, number density, and optical power, with the corresponding
effective field estimated accordingly.
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Interaction strengths of existing experiments with hybrid atomic gases

B. Holstein-Primakoff transformation. In order to simplify the Bloch equations, we use the Holstein-Primakoff transformation, which
establishes a connection between spin operators Ŝ and boson operators â, preserving their respective commutation relations, i.e., [Si,S j] = iei jkSk

and [â, â†] = 1. The transformation can be written as

S+ =
p

2s

s

1� â
†
â

2s
â, [7a]

S� =
p

2sâ
†

s

1� â
†
â

2s
, [7b]

Sz = s� â
†
â. [7c]

We find that using the boson operator reveals a clear physical picture, i.e., the interacting harmonic oscillators. In the case of small62

excitations s � â
†
â, the square roots can be expanded as Taylor series. Retaining the zeroth order term, we transform the Eq. (4) and (5) with63

â =
M

a

+p
2gaMa

z

, b̂ =
M

b

+p
2gbMb

z

and obtain the evolution equations64

∂t

✓
â

b̂

◆
= i

✓
wa + iGa �J

�J wb + iGb

◆✓
â

b̂

◆
+

✓
ha

hb

◆
, [8]65

where the frequencies wa and wb are given by:

wa = ga(Bz +lM
b

z ) , [9a]
wb = gb(Bz +lM

a

z ) [9b]

representing the Larmor frequency of the alkali-metal spin and noble-gas spin, respectively. The off-diagonal element66

J = l
q

gagbMa
z Mb

z [10]67

characterizes the bidirectional interacting strength between the alkali-metal spin and noble-gas spin. The excitation induced by the measured68

magnetic field is represented by the vector:69
✓

ha

hb

◆
=

�iB+p
2

 p
gaMa

zq
gbMb

z

!
. [11]70

Here we consider the normal magnetic field, but in Sec. 7, the form of the exotic field is different from Eq. (11).71

C. Interacting-spin eigenvalues. In the last section we present the physical picture of the interacting harmonic oscillator model. Here we72

derive the modified Larmor frequencies and decoherence of both spins because of the strength J. They can be obtained from the eigenvalues of73

the evolution matrix in Eq. (8) via the diagonalization :74

✓
ewa + ieGa 0

0 ewb + ieGb

◆
=

✓
w0 + ic +

p
J2 +G2 0

0 w0 + ic �
p

J2 +G2

◆
, [12]75

where intermediate parameters are

w0 = (wa +wb)/2, [13a]
c = (Ga +Gb)/2, [13b]
G = d + ib , [13c]
d = (wa �wb)/2, [13d]
b = (Ga �Gb)/2. [13e]

The real and imaginary parts of the eigenvalues correspond to the Larmor frequency and decoherence rate as functions of Bz, respectively. We76

demonstrate that they can be active controlled with the external magnetic field Bz. When the bias magnetic field Bz is large, the two spins77

appear to be decoupled, that is, the Larmor frequency and the decoherence rate are not affected by J. We take the decoherence rate of 129Xe as78

an example below.79

In general, the decoherence of the alkali-metal spin is much larger than the noble-gas spins, i.e., Ga � Gb. In our experiment, the80

decoherence time of 87Rb and 129Xe is Ga ⇡ 30 kHz and Gb ⇡ 7 mHz, respectively. Consequently, even a slight bidirectional interaction81

significantly affects on 129Xe decoherence time G�1
b

. According to Eq. (10), the strength J ⇡ 30 Hz is obtained by the effective field lM
b
z ⇡ 382

mG and lM
a
z ⇡ 0.01 mG. Therefore, our experiment satisfies the weak interaction condition:Ga � J � Gb, which means b ⇡ Ga/2 � J.83

According to Eq. (12), the concrete form of eGb is given by84

eGb = c � Im

p
J2 +(d + ib )2 = c � c, d 2 =

c
2
J

2

b 2 � c2 � c
2. [14]85
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K-3He system: more readily to achieve strong-coupling regime



Ongoing experiments for strong coupling regime
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提出自旋放大频梳技术，实现多频段探测

Jiang et al., PRL 128, 233201 (2022)

提 出 Floquet spin
amplification概念，
给出理论放大增益

挑战：放大频率带宽有限，仅在共振频率附近才能实现放大

提高放大带宽～10倍，均
达到fT/Hz1/2灵敏度

PRL: Editors’suggestion
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A feedback mechanism 
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Noble-gas Masing Effect

9

0 2 4 6 8 10
Time (s)

A
m

pl
itu

de
 (a

.u
.)

0 5 10 15
Time (s)

-0.05

0.05

0

Read-out
~ʌ

Read-out
ʌ
15~

A
m

pl
itu

de
 (V

)

Td §�����V

Td §�����V

Td ĺ�

Feedback OFF

1 2 3 4

Spin-exchange pumping
(P  >0, Ȥ<0 or P  <0, Ȥ>0)b

0 50 100 150

0

-0.5

-1.0

0.5

1.0

146 147 148 ���

A
m

pl
itu

de
 (V

)

7.0 8.0 ��� 10.0
Frequency (Hz)

11.0

Ȟ0 spectra

Time (s)

n n 
z z

Spin-exchange pumping
(P  >0, Ȥ<0 or P  <0, Ȥ>0)n n 

z z
a

c

FIG. 9. Experimental test for damping feedback mechanism in
129Xe-87Rb system. (a) Measured free decay 129Xe signals for dif-
ferent feedback gains (corresponding to different Td). Here the spin
population Pz and the feedback gain c are initially set as Pz> 0, c<0
or Pz< 0, c>0. Td is well determined by corresponding decay time
T2 with ⇠ p

15 excitation angle. (b) Transient maser operations after
flipping ⇠ p angle, inducing the inversion of 129Xe spins popula-
tion. The decay signal can be fitted with a hyperbolic secant function
shown in the inset. (c) Time-domain signal and spectrum of 129Xe
maser (i.e., nac = 0). The lower inset is zoom-in plots for the signal.
The upper inset is the corresponding amplitude spectra of the maser
signal after eliminating the transient. Adapted and reprinted from
ref.17, Copyright @ 2021 American Association for the Advance-
ment of Science.

maximum at t = t0 and then decreases to be zero, which can
be described by a hyperbolic secant function, as shown in
Fig. 9(b). As first reported in ref.40, this is a transient maser
when the threshold of the damping time Td/T2n ⌧ 1 is ful-

filled. However, the transient maser cannot oscillate continu-
ously because the population inversion is transient. In order
to generate stationary maser dynamics31,37,42, we can reverse
the circular polarization of pump laser, or alternatively reverse
the sign of the feedback gain c , and simultaneously set the
damping time smaller than the intrinsic decoherence time (i.e.,
Td/T2n < 1).

(2) When Pn
z > 0, c > 0 or Pn

z < 0, c < 0 and Td/T2n < 1,
stationary maser dynamics is generated. Under these condi-
tions, coupling of the spins to the damping feedback circuit
can produce a self-sustained masing signal33,41. The station-
ary solution of equation 24 can be obtained as

Pn
x =

s

(1/T1n + gse)

✓
1
Td

� 1
T2n

◆
TdPn

0 cos2pn0t,

Pn
y =

s

(1/T1n + gse)

✓
1
Td

� 1
T2n

◆
TdPn

0 sin2pn0t.

(27)

Equation 27 represents that the noble-gas nuclear spins pro-
cess at the frequency n0 with a non-attenuating amplitude and
forms a steady maser. Figure 9(c) shows the time-domain
masing signal and spectrum of the 129Xe maser measured in
129Xe-87Rb system. Based on numerical simulations, we find
that small transverse polarization component caused by mis-
alignment or quantum fluctuation is sufficient for activating
the maser.

B. Floquet spin maser

We now consider the spin dynamics of the Floquet spin sys-
tem, i.e., Bac 6= 0, under the damping feedback field. The Flo-
quet system can be treated as a time-independent one with an
infinite set of energy levels, shown in Fig. 5(a). The key to a
maser based on Floquet systems is the preparation of spin pop-
ulation between those Floquet states. In our experiments, pop-
ulations between Floquet states (|+in and |�im) of the Floquet
nuclear spins can be continuously prepared through the noble-
gas spin-exchange collisions. The threshold of Td/T2n < 1 is
satisfied by adjusting the feedback gain c . When the feedback
circuit is suddenly on, a feedback Bf(t) is induced by the Flo-
quet system itself and oscillates with the frequencies of Flo-
quet sidebands. The feedback field produces a torque on the
spins that changes spin polarization33,41. This self-coupling
can lead to stimulated Rabi oscillations between the Floquet
states |+in and |�im and a steady-state maser oscillation is
build up. For different Floquet states pair n,m, the maser os-
cillation frequency is En,m/2p = (n�m)nac +n0.

Recently, the first experimental demonstration of a “Flo-
quet maser” is successfully achieved with periodically driven
129Xe spins17. The experimental results are shown in
Fig. 10(a) and (b). In contrast to conventional masers exploit-
ing inherent transitions28,33, the Floquet maser oscillates at
the frequencies of transitions between Floquet states. Multi-
frequency ultrahigh-resolution spectra of the maser are ob-
served with the bandwidth 0.3 mHz, which is two orders
of magnitude narrower than the decoherence-limited resolu-
tion. Compared to conventional masers, the Floquet maser

Radiation Damping

Spin amplification combines with a feedback

feedback



Measurement-feedback spin amplification
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C. Townes G.Basov M. Prokhorov N. F. Ramsey

Radio
frequency

（feedback Coils）

Microwave
frequency
（Cavity）

Optical
frequency

（Optical cavity）

Nobel Prize: Maser and atomic clock
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传统
maser

Floquet
maser

M. Jiang et al. Floquet maser, Science Advances 7，eabe0719（2021）

“Floquet maser”：周期性系统

C. Floquet

周期性系统可以用
一系列的Floquet

能级表示
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Weak
Floquet
driving

Strong
Floquet
driving

Floquet maser：首次使用Floquet介质作为增益介质

M. Jiang et al. Science Advances 7，eabe0719（2021）

Jiang et al., Sci. Adv. 2021; 7 : eabe0719     17 February 2021
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energy levels ∣ ± ⟩n (see Fig. 2A), and these energy levels are time 
independent.

Masing effect on Floquet system
We first measure the feedback-induced damping of 129Xe spins, because 
damping plays an important role in realizing masers (9, 16, 38). For 
simplicity, the periodic driving field is turned off when we measure 
damping. The measurement process is shown in Fig. 1B. The 129Xe 
spins are initially polarized along +z and the feedback gain is set as 
c<0, or the spins are initially polarized along −z and the feedback 
gain is set as c>0. The spins are tilted by a small angle   q  0   ≈   p _ 15   
with a magnetic field pulse along the x axis, and then the free decay 
of 129Xe signals is measured under self-induced feedback. In this case, 
the free decay signal can be fitted with a single-exponential decay 
with a decay rate given by   T 2,0  −1   +  T d  −1   (see Materials and Methods), 
where the intrinsic decoherence time T2,0 ≈ 13.65(1) s and Td (the 
damping time) depends on feedback gain c. By fitting the experi-
mental data, we can find the decay rate and then calculate the corre-
sponding Td under different feedback gains c, as shown in Fig. 1B. The 
results show that, by coupling nuclear spins to the feedback circuit, 
a regime can be reached in which damping constitutes the domi-
nant mechanism of spin relaxation, e.g., Td = 1.08(1)s ≪ T2,0, and 
spin relaxation can be controlled by adjusting the feedback gain 
(Fig. 1C). This also suggests a method for active fast reset of long-
lived spins [for example, 3He noble gas (41)] to their equilibrium 
state, improving the repetition rate of an experiment.

We next measure the spin dynamics when the 129Xe spin popu-
lation is suddenly inverted, corresponding to the case of q0 ≈ p. 
Figure 1D gives the observed free decay signals with designed Td ≈ 
3.18 s and 0.94 s, respectively. Unlike the exponential decay, the 
observed 129Xe spin signal first increases to a maximum value at a 
certain time and then decays to zero, which can be described by a 
hyperbolic secant function (see Materials and Methods, Eq. 8). As 
first reported in (38), this is a transient maser when the threshold of 
the damping time Td/T2,0 ≪ 1 is fulfilled. However, the demonstrated 
maser cannot oscillate continuously because the population inver-
sion is transient. To generate stationary maser dynamics (1, 4, 12), 
we can reverse the circular polarization of pump laser or alternatively 
reverse the sign of the feedback gain c (see Materials and Methods) 
and simultaneously set the damping time smaller than the intrinsic 
decoherence time (i.e., Td/T2,0 < 1). Under these conditions, cou-
pling of the spins to the damping feedback circuit can produce a 
self-sustained masing signal (9, 16).

We now consider the spin dynamics of the Floquet 129Xe system 
under the damping feedback field. As discussed above, the Floquet 
system can be treated as a time-independent one with an infinite set 
of energy levels, shown in Fig. 2A. The key to a maser based on Floquet 
systems is the preparation of spin population between those Floquet 
states. In our experiments, population between Floquet states (∣ + ⟩n 
and ∣ − ⟩m) of the Floquet 129Xe spins can be continuously prepared 
through 129Xe−87Rb spin- exchange collisions. Moreover, building 
on our demonstration of damping, the damping time is set to Td 
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Fig. 2. Demonstration of Floquet maser. (A) Floquet states of a periodically driven two-level system (Floquet system). The energy gap between the upper and lower 
Floquet states ∣ + ⟩n and ∣ − ⟩m is En,m/2p = (n − m)nac + n0. The spin population Pz and the feedback gain c are set as Pz > 0, c > 0 or Pz < 0, c < 0. (B) Signal of 129Xe Floquet 
maser. The insets are zoom-in plots for the signal and the simulated spin population (Pz). (C and D) The corresponding amplitude spectra of the maser signal after elimi-
nating the transient [nac = 0 for (C); 0.9 Hz for (D)].
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磁场精密测量（via量子振荡器）：超低频率段

边带测磁灵敏度：
!" ∝ $%&

世界上最佳的超低频灵敏度！
突破低频噪声极限和磁

屏蔽约束！

S( ∝ J((
γB-.
υ-.

) ≈ γ
2υ-.

B-.
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《Science》Perspectives reports：

“… demonstrate a new type of maser…
Conceivable applications of this work include 

precision clocks and detection of ultralight dark 
matter particles such as axions”



Spin-based amplification
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fT/Hz1/2 magnetic sensing

Simultaneous fT/Hz1/2

magnetic sensing in 
multiple frequencies

fT/Hz1/2 magnetic 
sensing in the mHz
frequency range



Alkali-metal 
spin gas

NMOR effect
SERF effect

Nuclear spin amplification
Fano resonance effect

Correlated alkali-
noble gas

Entangled spin 
gases

Noble
gas

Entangl
ement

Nuclear spin squeezing
Memory-based sensing

Opportunity: Interaction, Correlation, and Entanglement
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给定一个物理装置, 对于一个物理可观察量能够
得到的测量精度是什么?

测量极限

海森堡极限 (Heisenberg limit)：量子力学的基本性质—海森堡不确
定原理为量子精密测量理论设置了下限 ⁄1 #，是量子测量理论中可能
实现的最高精度。

标准量子极限 (standard quantum limit)：通过经典的重复测量方法
不可突破的极限 ⁄1 #

超海森堡极限 (Super-Heisenberg Limit)：非线性量子精密测量（粒
子之间的相互作用）最佳精度能够突破海森堡极限 ⁄1 #。

测量是一个物理过程, 测量的精度是由物理规律所限定.

N 是重复测量的次数
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量子精密测量：利用量子力学基本原理

量子体系分立能级

测量精度受限于标准量子极限

单电子晶体管
光力传感器等

量子相干叠加 量子纠缠（关联）特性

原子磁力仪、
金刚石缺陷等

有望突破经典物理极限

压缩态、NOON态

!1 N !1 N
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著名案例：引力波探测

2015年4月
LIGO首次直接探测

到引力波

2019年4月
利用压缩光降低量子噪声，
引力波探测数增加20%至50%

2017年8月
LIGO与VIRGO共同探

测到引力波



量子压缩自旋噪声
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!" !"!# !#

!$ !$

标准量子极限 海森堡极限

atN
1

atN
1利用光与原子的相互作用，

实现了原子自旋散粒噪声压缩

利用量子压缩技术有望实现aT级别的灵敏度
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电子顺磁共振谱仪

核磁共振谱仪
自旋数

基于系综探测的商用自旋磁共振谱仪

商用磁共振谱仪面向自旋系综样品，通过探测自旋系综(大
于百亿个自旋)的空间及时间平均信号，获取统计平均下的
物质组成和结构的信息。这一技术已被广泛应用于前沿科学
和经济生活的诸多领域，对人类社会产生了意义深远的影响
。 医学 化学 生物 能源

1017-1010

1012-1010



微观尺度磁共振探测
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传统磁共振 √

10微米10毫米 10纳米 1纳米

大脑组织轮廓 单个红细胞 单个艾滋病毒 单个富勒烯分子

Ø 在不破坏研究对象的前提下提供微观物质内部三维结构信息，对于前
沿科学领域具有极其重要的意义

力探测磁共振 √
看得清 看不清 看不见

单核自旋探测手段
Ø 现有磁共振尚不具备对物质进行微观尺度的灵敏探测和空间分辨能力



• 原子尺度：高空间分辨率
• 室温下的长量子相干时间结合动力学解耦技
术：高灵敏度

• 被测磁信号可转化为自旋量子干涉仪的相位
信息，光学手段读出

由一个替位的氮(Nitrogen)和
一个邻位空位(Vacancy)组成(简称NV色心)

氮-空位缺陷中心单自旋

637nm

3E

1A

3A

0
2.87 
GHz

t=300ns

-1
1

3E

637nm
1A

3A

0
2.87 
GHz bright

dark
-1
1
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NV 单自旋量子传感器

Diamond nanoscale magnetometry

Nat. Nanotechnol. 3, 643(2008) Nat. Phys. 9, 215 (2013)



NV 单自旋量子干涉仪

将微弱的核自旋信号µn转化为单电子量子干
涉仪的相位信息，利用量子测量加以读出

124



Sensing using NV center

2025
/12/3

SCIENCE ( 2015) 347, 1135
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单蛋白质分子顺磁共振谱

n 世界上首张单分子顺磁共振谱
n 与传统电子顺磁共振相比

分辨率： 10-3米 -> 10-9米
灵敏度：1010分子 -> 单分子

n 具备室温大气的宽松实验环境，
尤为适合开展活体研究

n 与超高分辨荧光显微技术（2014
年诺贝尔奖）相比，不仅同样能
够提供纳米分辨率的空间定位信
息，还可进一步解析出单个分子
的结构信息和构象变化
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单蛋白质分子顺磁共振谱
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谢 谢！

(1) 为什么需要测量极弱磁场？

(2) 如何实现高精度的极弱磁场测量？

(3) 有什么前沿科学应用？


