
第三章：实验统计分析工具ROOT

授课人：董燎原
中国科学院高能物理研究所

https://root.cern.ch/courses

https://root.cern.ch/courses

Histograms 直方图

2

Outline

• We have seen:
– what is a histogram;
– how to create a one-dimensional histogram;
– how to draw the histogram

• We will see and work on with the exercises
– how to extract information from an histogram
– how to manipulate histograms
– histograms in multi-dimension
– what is a profile histogram
– weighted histograms
– sparse histograms

• More detailed on the ROOT Graphics Pad and the Canvas
• Visualization techniques in ROOT

3

What is Histogram

4

• In statistics, a graphical representation, showing a visual impression of the
distribution of data.

• An estimate of the probability distribution of a variable
• Each rectangle erected over discrete intervals (bins)
• Area of a rectangle equals to the frequency of the observations in the interval (bin).
• Height of a rectangle also equals to the frequency density of the interval, i.e., the

frequency divided by the width of the interval.
• The total area of the histogram is equal to the number of data.
• A histogram may also be normalized displaying relative frequencies, with the total

area equaling 1.

Shows distribution of ages：
total number: 57 participants;
average: 27 years 10 months 6 days

Example:

What Histogram Tells

• Presenting data to determine which causes dominate
• Understanding the distribution of occurrences of different problems,

causes, consequences, etc.

5

• What is the most
common system
response?

• What distribution
(center, variation and
shape) does the data
have?

• Does the data look
symmetric or is it
skewed to the left or
right?
右图有什么地方需要改进？

Histogram Classes

• TH1 is the base class for all Histogram classes.
• TH1,TH2,TH3 are generic. Specialized should be used for

constructing the objects.
• Most used classes are TH1(2,3)F and TH1(2,3)D. 6

1-D histograms:
TH1C: one byte (255) per channel.
TH1S: one short (65535) per channel.
TH1I: one integer (2147483647) per channel.
TH1F: one float (7 digits) per channel.
TH1D: one double (14 digits) per channel.

ROOT supports the following histogram types:

2-D histograms: …
3-D histograms: …
Profile histograms

TProfile: one dimensional profiles
TProfile2D: two dimensional profiles
…

7

Creating Histograms

TH1 constructor: the name of the histogram (name), the title
(title), the number of bins (nbinsx), the x minimum (xlow), x
maximum (xup) and array of low-edges for each bin (xbins).

For non-equidistant bins:
TH1D * h1 = new TH1D("h1","Example histogram",nbins,xbins);

• xbins: array of (nbins+1) values with the bin-edges

For equidistant bins:
TH1F * h1 = new TH1F("h1","h1 title",100,0,4.4);
TH2F * h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

TH1F();
TH1F(const TVectorF& v);
TH1F(const TH1F& h1f);
TH1F(const char* name, const char* title, Int_t nbinsx,

const Float_t* xbins);
TH1F(const char* name, const char* title, Int_t nbinsx,

const Double_t* xbins);
TH1F(const char* name, const char* title, Int_t nbinsx,

Double_t xlow, Double_t xup);
virtual ~TH1F();

8

Filling Histograms

 A histogram is typically filled with statements like:

 Increment a bin number by calling
TH1::AddBinContent()

replace the existing content via
TH1::SetBinContent()

access the bin content of a given bin:
TH1::GetBinContent()

Double_t binContent = h->GetBinContent(bin);

h1->Fill(x);
h1->Fill(x,w); //with weight
h2->Fill(x,y);
h2->Fill(x,y,w);
h3->Fill(x,y,z);
h3->Fill(x,y,z,w);

root[] TH1F h1("h1","Histo from a Gaussian",100,-3,3);
root[] h1.FillRandom("gaus",5000);
root[] h1.Draw();

9

Drawing Histograms

 call the Draw method of a histogram (TH1::Draw) to draw the histogram

 it creates a THistPainter object and saves a pointer to painter as a data
member of the histogram

 By default, the TH1::Draw clears the pad before drawing the new image
of the histogram. You can use the "SAME" option to leave the previous
display in tact and superimpose the new histogram.

 The same histogram can be drawn with different graphics options

 Most options can be concatenated without spaces or commas

 The options are not case sensitive

 You can also set the default drawing option with TH1::SetOption. To
see the current option use TH1::GetOption.

Try examples in tutorials: hist/draw2dopt.C

Axis and Bins

• The histogram class has an axis class which contains the bins

– one can query the number of bins, lower/upper bin edge from the axis :

– for the corresponding bin number given x value use

– one can set the axis range (e.g. for zooming the histogram)

– N.B. : axis bin number starts from 1
• bin number 0 is the Underflowbin
• bin number nbin+1 is the Overflowbin

TAxis * axis = h1->GetXaxis();

axis->GetNbins();

axis->GetBinLowEdge(bin_number);

axis->GetBinCenter(bin_number);

axis->GetBinUpEdge(bin_number);

axis->SetRange(firstbin,lastbin);

bin_number = axis->FindBin(x_value);

10

11

Giving Titles to the X, Y and Z Axis

Because the axis title is an attribute of the axis,
you have to get the axis first and then call TAxis::SetTitle.

The histogram title and the axis titles can be any TLatex string.

specify the histogram title and the axis titles at creation time given
in the "title" parameter. They must be separated by ";":

h->GetXaxis()->SetTitle("X axis title");
h->GetYaxis()->SetTitle("Y axis title");

h->GetXaxis()->SetTitle("E_{T}");

TH1F* h=new TH1F("h","Histogram title;X Axis;Y Axis;Z Axis",100,0,1);

TH1F* h=new TH1F("h","Histogram title;;Y Axis",100,0,1);

TH1F* h=new TH1F("h",";;Y Axis",100,0,1);

h->SetTitle("Histogram title;Another X title Axis");

12

Setting Axis Attributes

Use TH1::GetXaxis() to get the pointer to the TAxis object to set the Axis attributes

See Methods in
Taxis class

TAxis* TH1::GetXaxis() const
TAxis* TH1::GetYaxis() const
TAxis* TH1::GetZaxis() const

h->GetXaxis()->SetLabelColor(color)
SetLabelFont(font)
SetLabelOffset(offset)
SetLabelSize(size)
SetTickLength(length)
SetTitleOffset(offset)
SetTitleSize(size)
SetTitleColor(color)
SetTitleFont(font)

Getting Data From an Histogram

• To extract content and error from bin number ibin of the
histogram h1:

• By default histograms have a bin error equal to √N, where N is
the bin content.
– It is assumed that the observed bin content follows a Poisson

distribution.
• One can set a different error for each bin:

• N.B: when setting the error in each bins, the histogram will store them in an
internal array and will change its default style when drawn

root [1] h1->GetBinContent(ibin)

(const Double_t)1.10000000000000000e+01

root [2] h1->GetBinError(ibin)

(const Double_t)3.31662479035539981e+00

root [1] h1->SetBinError(ibin,error)

13

Histogram Operations (1)

• Histogram scaling (normalization)
–useful for plotting histograms in the same pad
（归一化到同一积分可直观比较两种分布之间的差别）

–useful for seeing histogram as an estimate of a probability
density function (PDF) （可直观估计几率密度函数）

归一化到1后，
每个bin的值为
probability of
observing
an event in a
given bin

N.B. : After scaling the error will not be correct. We will see later how to have correct errors
归一化后，BinContent变了，BinError也变化了，需要确保误差运算正确无误。 14

Method 2:
h->DrawNormalized("option_t", norm);

Method 1:
Double_t scale = norm/h->Integral();
h->Scale(scale); //归一化到norm（=1.0）

直方图的归一化

Histogram Operations (2)

• Add Histograms:
– merge two histograms which have same axis:

– can also be used to subtract histograms

TH1::SetDefaultSumw2();

TH1D *h3 = new TH1D("h3","h1+h2",nbin,xmin,xmax);

h3->Add(h1,h2,a,b); //h3 = a*h1+b*h2 (一般a=b=1)

h3->Add(h1,h2,a,-b); //h3 = a*h1-b*h2 (一般a=b=1)

15

直方图的相加和相减

相加：常用于实验数据的叠加。

相减：常用于实验中本底的扣除。

注意：
1. 两个直方图的区间大小和区间数必须相同，才能操作。
2. 在归一化和加减乘除中，要正确得到统计误差，需要调用： TH1::SetDefaultSumw2();

或对每个直方图（如his）调用 his->Sumw2();

静态函数SetDefaultSumw2中的注释：
// static function. When this static function is called with sumw2=kTRUE,
// all new histograms will automatically activate the storage of the sum of squares of errors,
// ie TH1::Sumw2 is automatically called.

https://root.cern.ch/root/html522/TH1.html#TH1:SetDefaultSumw2
https://root.cern.ch/root/html522/ListOfTypes.html#Bool_t
https://root.cern.ch/root/html522/TH1.html
https://root.cern.ch/root/html522/TH1.html#TH1:Sumw2

Histogram Operations (3)

• Divide Histograms:

– if h1 is a subset of h2, the bin content of h3 is binomially
distributed ➠use option "B" to get the correct bin errors
(h1和h2不独立：如h1包含于h2)

TH1D *h3 = new TH1D("h3","h1/h2",nbin,xmin,xmax);

h3->Sumw2();

h3->Divide(h1,h2,a,b);

H3->Multiply(h1,h2,a,b);

h3->Divide(h1,h2,a,b,"B");

16

直方图相除和相乘

相除：常用于实验中的效率的估计。
相乘：常用于实验中的对分布的修正（如效率修正等）。

二项分布误差：

17

Miscellaneous Operations

TH1::Smooth() - smoothes the bin contents of a 1D histogram.
TH1::Integral(Option_t *opt)- returns the integral of bin contents in a

given bin range. If the option "width" is specified, the integral is the sum
of the bin contents multiplied by the bin width in x.

TH1::GetMean(int axis) - returns the mean value along axis.
TH1::GetRMS(int axis) - returns the Root Mean Square along axis.
TH1::GetEntries() - returns the number of entries.
TH1::Add(const TH1* h1, Double_t c1 = 1)

TH1::Add(TF1* h1, Double_t c1 = 1, Option_t* option = "")

TH1::Add(const TH1* h1, const TH1* h2, Double_t c1 = 1,
Double_t c2 = 1) - add histograms weighted by c1 and c2.

TH1F *h1 = new TH1F("h1","my histogram",100,-3,3);
... //（填高斯分布）
h1->Draw();
TH1F *hint1 = new TH1F("hint1",“my histogram",100,-3,3);
... //（填积分值）
//scale hint1 to the pad coordinates
Float_t rightmax = 1.1*hint1->GetMaximum();
Float_t scale = gPad->GetUymax()/rightmax;
hint1->SetLineColor(kRed);
hint1->Scale(scale);
hint1->Draw("same");
... //（draw an axis on the right side 看下面例子的代码在右边画一个轴）

18

Superimposing Histograms with Different Scales

example:
$ROOTSYS/tutorials/hist/twoscales.C

Histogram Stacks
• THStack

– Collection of 1D or 2D histograms.
– Allow to draw several histograms in one go, on top of each other.
– The frame is computed automatically.
– Often better than doing several plots with option "SAME"

19

20

Histogram Stacks

A THStack is a collection of TH1 (or derived) objects. Use
THStack::Add(TH1 *h) to add a histogram to the stack.

example: $ROOTSYS/tutorials/hist/hstack.C

常用于实验数据中不同类型本底的叠加。

TCanvas c1("c1","stacked hists",10,10,700,900);
THStack hs("hs","test stacked histograms");
hs.Add(h1); \\red
hs.Add(h2); \\blue
hs.Add(h3); \\green
c1.Divide (1,2);
c1.cd(1);
hs.Draw();
c1.cd(2);
hs->Draw("nostack");

Histogram Stacks：example

21

Hist_data->Draw("E1");
Hist_others->SetFillColor(kBlue);
Hist_opencharm->SetFillColor(kGreen);
Hist_qqbar->SetFillColor(kRed);
Hist_DsSTDs_DsDs->SetFillColor(7);
THStack *hs = new THStack("hs","Stacked");
hs->Add(Hist_others);
hs->Add(Hist_qqbar);
hs->Add(Hist_opencharm);
hs->Add(Hist_DsSTDs_DsDs);
hs->Draw("same");
Hist_data->Draw("sameE1");

一个显示本底成分的例子：

leg = new TLegend(0.55,0.60,0.85,0.9);
leg->AddEntry(Hist_data,"Data","lep");
leg->AddEntry(Hist_others,"other bg","f");
leg->AddEntry(Hist_qqbar,"qqbar bg","f");
leg->AddEntry(Hist_opencharm,"opencharm bg","f");
leg->AddEntry(Hist_DsSTDs_DsDs,"D*_{s}D_{s}&D_{s}D_{s} bg","f");
leg->SetTextSize(0.06);
leg->SetLineColor(10);
leg->SetFillColor(10);
leg->Draw();

为何还要再画一次数据的图？

Histogram Re-Binning

• Rebin: merge bins together.
– Possible to merge adjacent bins in a given group,

• e.g. an histogram with 100 bins can be re-binned in a histogram with 25 bins .

– Possible to merge bins using new bin edges provided by the user, i.e
making a new a variable bin histograms.

• the new bin edges must corresponds to existing bin edges. It is not possible to split
bins.

– Histogram errors and statistics are re-computed according to the
new binning.

TH1 * hrb = h1->Rebin(4,"hrebinned");

Rebin original
histogram (40 bins)
in a new one with
10 bins grouping 4
bins together
(ngroup =4)

22

物理分析软件ROOT

23

Statistics Display

By default, a histogram drawing includes the statistics box.
Use TH1::SetStats(kFALSE) to eliminate the statistics box.
gStyle->SetOptStat(mode) allow you to set displayed information.

The parameter mode has up to nine digits that can be set OFF (0) or ON as follows:
mode = ksiourmen (default = 000001111 or nemr)

n= 1 the name of histogram ---------------------n
e= 1 the number of entries ---------------------e
m= 1 the mean value ----------------------------m
m= 2 the mean and mean error values-------------M
r= 1 the root mean square (RMS)-----------------r
r= 2 the RMS and RMS error----------------------R
u= 1 the number of underflows ------------------u
o= 1 the number of overflows -------------------o
i= 1 the integral of bins ----------------------i
s= 1 the skewness ------------------------------s
s= 2 the skewness and the skewness error--------S
k= 1 the kurtosis-------------------------------k
k= 2 the kurtosis and the kurtosis error--------K

Statistical Issues in Histogram

24

• Mean
• Minimum / Maximum
• Standard Deviation (RMS)
• Bin width / Bin number

• 偏度

• 峰度：

The binning issue: no "best" number of bins, and different bin sizes can
reveal different features of the data. It requires some judgment, and
perhaps some experimentation, based on the analyst's experience.

正态分布

2D Histograms

• Frequency distribution of (X,Y) observations.
– Construct 2D histogram specifying the number of bins in X axis, the

minimum and maximum of axis range and the same for the Y axis

– fill 2D histogram with 10000 x,y normal data

– use h2->Draw() for drawing, several options are available
• Color, Contour, lego, surface and box plots

TH2D * h2 = new TH2D("h2","Example 2D Hist",40,-4.,4.,40,-4.,4);

for (int i = 0; i<10000; ++i) {
double x = gRandom->Gaus(0,1);
double y = gRandom->Gaus(1,2);
h2->Fill(x,y);

}

25

orking with Histograms

Drawing 2D histograms

• Color plots:

• Contour plots:

• Lego plots:

h2->Draw("COLZ");

h2->Draw("CONTZ");

h2->Draw("LEGO");

"Z" means drawing the
color palette for the bin
content (i.e. the Z axis)

26

2-D drawing options (hist/draw2dopt.C)

27

root hist/draw2dopt.C

2-D drawing options (hist/draw2dopt.C) (2)

28

root hist/draw2dopt.C

2-D drawing options (hist/draw2dopt.C) (3)

29

root hist/draw2dopt.C

2-D drawing options (hist/draw2dopt.C) (4)

30

root hist/draw2dopt.C

Other Histogram Types

• THnSparse
–multi-dimensional sparse histogram useful to save

memory only when a small fractions of the bins are filled
–often more effective than using a TH3

• THn
–non-sparse multi-dimensional histogram (NDim > 3)

• TH2Poly
–2D histogram

with polygons shapes

31

example:
$ROOTSYS/tutorials/hist/th2polyBoxes.C
$ROOTSYS/tutorials/hist/sparsehist.C

More on Graphs

• TMultiGraph
– Graphs collection
– Equivalent to THStack but for

graphs
– Allow to Draw several graphs in

one go

• 2-Dimensional Graphs
–TGraph2D, TGraph2DErrors

• classes for storing and drawing (X,Y,Z)
data and (for TGraph2DErrors) with
error in both X,Y and Z

– X,Y are independent variables and Z the
dependent variable

32

Profile Histograms

• A 2D Histogram can be projected into a 1D histogram

– when projecting on the X axis the bins with the same x value are all
summed together.

• A Profile histogram is a different way of projecting 2D data.
– for each bin in x the sample mean of the y values is plotted

– various options for displaying errors
– default uses error in the sample mean (RMS/√N)

TH1 * hX = h2->ProjectionX();

33

TProfile * hp = new TProfile("hp","hp",40,-4.0,4.0);
for (int i = 0; i<10000; ++i) {

double x = gRandom->Gaus(0,1);
double y = gRandom->Gaus(1,2);
hp->Fill(x,y);

}
hp->Draw();

34

Projections

 One can make:
 a 1-D projection of a 2-D histogram or profile.

See
TH2::ProfileX, TH2::ProfileY, TProfile::ProjectionX,
TProfile2D::ProjectionXY, TH2::ProjectionX,
TH2::ProjectionY.
 a 1-D, 2-D or profile out of a 3-D histogram

see TH3::ProjectionZ, TH3::Project3D.
 These projections can be fit via:

TH2::FitSlicesX, TH2::FitSlicesY, TH3::FitSlicesZ.

hist/ DynamicSlice.C

35

TProfile2D
Profile2D(){
gStyle->SetPalette(1);
TCanvas *c1 = new TCanvas("c1","Profile histogram example",200,10,700,500);
hprof2d = new TProfile2D("hprof2d","TProfile2D;px;py;pz",40,-4,4,40,-4,4,0,20);
Float_t px, py, pz;
for (Int_t i=0; i<25000; i++) {
gRandom->Rannor(px,py);
pz = px*px + py*py;
hprof2d->Fill(px,py,pz,1);

}
hprof2d->Draw("SURF3ZE");

}

root Profile2D.C

Return 2 numbers distributed following
a gaussian with mean=0 and sigma=1

Weighted Histograms

• Histogram can be filled with a "weight"
–observations do not contribute equally, but some of them

contribute more or less than others;
–the weight expresses how much an observation

contributes.
• Filling a 1D histogram with observation x and weight w:

• Filling a 2D histogram with observation x,y and weight w:

–A weighted histogram will have and display as:
• bin content = sum of all the weights accumulated in the bin;
• bin error = √W2 : W2 = sum of the weight square in the bin.
• (in ROOT versions <= 5.34, if one has called TH1::Sumw2() before filling the histogram)

h1->Fill(x,w);

h2->Fill(x,y,w);

36

37

Histograms in Files

The following statements create a ROOT file and store a histogram on the file

To read this histogram in another ROOT session, do:

One can save all histograms in memory to the file by:

TFile f("histos.root","new");
TH1F h1("hgaus","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);
h1->Write();

TFile f("histos.root");
TH1F *h = (TH1F*)f.Get("hgaus");

file->Write();

The Graphics Pad (1/2)
The ROOT graphics is build around the Graphics Pad concept (class TPad). A Graphics
Pad is a linked list of primitives of any type (graphs, histograms, shapes, tracks, etc.). It is
a kind of display list as shown on the following picture:

Adding an element into a Graphics Pad is done by the Draw() method of each classes.

On the previous picture the Draw() method has been called on: a 1D histogram, a 2D
histogram, a graph and finally a pie chart.

All these objects are now stored in the Graphics Pad's display list.

38

The Graphics Pad (2/2)

A Graphics Pad is painted by calling sequentially the Paint() method of each object in the
list of primitives, as shown on the following picture:

The Graphics Pad's (re)painting does not need to be done explicitly by the ROOT user. It
is done automatically at the end of a macro execution or when a Graphics Pad has been
modified.
In some cases a pad need to be painted during a macro execution. To force the pad
painting gPad->Update()should be performed. 17

The Graphics Canvas

A canvas is the graphics window in which the ROOT graphics will be displayed. It can
be created using the class TCanvas. One can create as many canvases as needed
during a ROOT session.

ATCanvas usually contains at least one TPad. Most of the time it contains several,
each of them having its own coordinate system. A simple way to quickly make several
pads in a canvas is to use the method Divide() like in the following example:

TCanvas *c = new TCanvas("c","my canvas",
600,400);

c->Divide(2,1);

c->cd(1);

hpx->Draw();

c->cd(2);

hpxpy->Draw("lego");

c->cd(1);

TText *T = new TText(-1.,400.,"Hello !");

T->Draw();

29

Visualization Techniques
in ROOT

How ROOT visualize
2, 3, 4 and N data variables

41

Visualization Techniques

The ROOT framework provides many techniques to visualize multi-variable
data sets from 2 until N variables.

-2 variables visualization techniques are used to display Trees, Ntuples, 1D
histograms, functions y=f(x), graphs .

-3 variables visualization techniques are used to display Trees, Ntuples, 2D
histograms, 2D Graphs, 2D functions ...

-4 variables visualization techniques are used to display Trees, Ntuples, 3D
histograms, 3D functions ...

-N variables visualization techniques are used to display Trees and
Ntuples ...

The next slides present them all, highlighting the best use one can do of
each of them.

42

2 Variables Techniques (1/3)
Bar charts and lines are a
common way to represent
1D histograms.

43

2 Variables Techniques (2/3)
Errors can be
represented as bars,
band, rectangles. They
can be symmetric,
asymmetric or bent. 1D
histograms and graphs
can be drawn that way

Pie charts can be used to visualize 1D
histograms. They also can be created from a
simple mono dimensional vector.

44

2 Variables Techniques (3/3)
Graphs can be drawn as
simple lines, like functions.
They can also visualize
exclusion zones or be
plotted in polar coordinates.

45

3 Variables Techniques (1/2)

Several techniques are
available to visualize 3
variables data sets in 2D.
Two variables are
mapped on the X and Y
axis and the 3rd one on
some graphical attributes
like the color or the size
of a box, a density of
points (scatter plot) or
simply by writing the
value of the bin content.

The 3rd variable can also
be represented using
contour plots.

Some special projections
(like Aitoff) are available
to display such contours.

46

3 Variables Techniques (2/2)

Lego and surface plots are a
common way to display 3 variables
data sets in 3D.

They can be combined with color
or light effects and displayed in
non Cartesian coordinate systems
like polar, cylindrical or spherical.

2D graphs can be drawn using the
Delaunay triangulation technique.

47

4 Variables Techniques (1/2)
The 4 variables data set representations are extrapolations of the 3 variables ones.

Rectangles become boxes or spheres, contour plots become iso-surfaces. The scatter plots
(density plots) are drawn in boxes instead of rectangles. The 4th variable can also be mapped
on colors. The use of OpenGL allows to enhance the plots’ quality and the interactivity.

48

4 Variables Techniques (2/2)

Functions like t= f(x,y,z)
and 3D histograms are 4
variables objects.

ROOT can render using
OpenGL.

It allows to enhance the
plots’ quality and the
interactivity.

Cutting planes, projection
and zoom allow to better
understand the data set or
function.

49

50

N Variables Techniques

Above 4 variables more specific
visualization techniques are required;
ROOT provides three of them. The parallel
coordinates (above) the candle plots (right)
which can be combined with the parallel
coordinates. And the spider plot (top right).
These three techniques, and in particular
the parallel coordinates, require a high level
of interactivity to be fully efficient.

Feynman diagram

51

$ROOTSYS/tutorials/graphics/feynman.C

52

Summary

• We have learned more about ROOT Histograms
– how to access their information
– how to perform operations on histograms

• Multi-dimensional histograms and projections
– what is a profile histogram

• Remember:
– all graphics options for plotting all histogram types are documented

in the THistPainter class:
• http://root.cern.ch/root/html/THistPainter.html

• Next we will look on
– what is fitting
– how to fit histograms (and graphs) in ROOT

http://root.cern.ch/root/html/THistPainter.html

53

Dig $ROOTSYS/tutorials/hist

 Run the example macros
 Try to understand the codes of the example macros:

references: http://root.cern.ch/drupal/content/reference-guide
class header descriptions

 "grep" those macros to find what you need

	幻灯片编号 1
	Histograms 直方图
	Outline
	What is Histogram
	What Histogram Tells
	Histogram Classes
	Creating Histograms
	Filling Histograms
	Drawing Histograms
	Axis and Bins
	Giving Titles to the X, Y and Z Axis
	Setting Axis Attributes
	Getting Data From an Histogram
	Histogram Operations (1)
	Histogram Operations (2)
	Histogram Operations (3)
	Miscellaneous Operations
	Superimposing Histograms with Different Scales
	Histogram Stacks
	Histogram Stacks
	Histogram Stacks：example
	Histogram Re-Binning
	Statistics Display
	Statistical Issues in Histogram
	2D Histograms
	Drawing 2D histograms
	2-D drawing options (hist/draw2dopt.C)
	2-D drawing options (hist/draw2dopt.C) (2)
	2-D drawing options (hist/draw2dopt.C) (3)
	2-D drawing options (hist/draw2dopt.C) (4)
	Other Histogram Types
	More on Graphs
	Profile Histograms
	Projections
	TProfile2D
	Weighted Histograms
	Histograms in Files
	The Graphics Pad (1/2)
	The Graphics Pad (2/2)
	The Graphics Canvas
	Visualization Techniques in ROOT
	Visualization Techniques
	2 Variables Techniques (1/3)
	2 Variables Techniques (2/3)
	2 Variables Techniques (3/3)
	3 Variables Techniques (1/2)
	3 Variables Techniques (2/2)
	4 Variables Techniques (1/2)
	4 Variables Techniques (2/2)
	N Variables Techniques
	Feynman diagram
	Summary
	Dig $ROOTSYS/tutorials/hist

