
第三章：实验统计分析工具ROOT

授课人：董燎原
中国科学院高能物理研究所

https://root.cern.ch/courses

https://root.cern.ch/courses

2

Fitting

Outline

• Introduction to Fitting:
– what is fitting,
– how to fit a histogram in ROOT,
– how to retrieve the fit result.

• Building complex fit functions in ROOT.
• Interface to Minimization.
• Common Fitting problems.
• Using the ROOT Fit GUI (Fit Panel).
• Random number generations in ROOT.
• How to generate random numbers from distributions.

3

What is Fitting ?
• What is Fitting ?

– It is the process used to estimate parameters of an
hypothetical distribution from the observed data distribution

Example
Higgs search in CMS

(H ➞ γγ)
Fit for the expected number of
Higgs events
and for the Higgs mass

4

https://arxiv.org/pdf/1207.7235.pdf

What is Fitting (2)

• A histogram (or a graph) represents an estimate of an underlying
distribution (or a function).

• The histogram or the graph can be used to infer the parameters
describing the underlying distribution.

• Assume a relation between the observed variables y and x:
y = f (x, θ)

• f (x, θ) is the fit (model) function, θ 为待拟合的参数

• for an histogram y is the bin content

• One typically minimizes the deviations between the observed y and the
predicted function values:
– Least square fit () :

• minimize square deviation
• weighted by the observed errors
σ =√N for the histograms

5

A well known estimator – the fit

6

2χ

• The Likelihood for a histogram is obtained by assuming a Poisson distribution in
every bin:

ML Fit of an Histogram

• Maximum Likelihood (ML) Fit:
– The parameters are estimated by finding the maximum of the likelihood

function (or minimum of the negative log-likelihood function).
– Likelihood:

– Poisson(nobs | nexp)

• nobs is the observed bin content.

•nexp is the expected bin content, which can be obtained from the fit model
function (the underlying distribution of the histogram)

– nexp = f(xc|θ) , where xc is the bin center, assuming a linear function within
the bin. Otherwise it is obtained from the integral of the function in the bin.

• The least-square fit and the maximum likelihood fit are equivalent when the
distribution of observed events in each bin is normal.
– This is true only for large histogram statistics (large bin contents).

• For low histogram statistics the ML method is the correct one !
7

The Likelihood estimator

8

• Definition of Likelihood

– given D(x) and F(x;p)

– For convenience the negative log of the Likelihood is often used

• Parameters are estimated by minimizing –log(L):

• Estimator for the parameter variance is

• Visual interpretation of variance estimate

Functions used in likelihoods must
be Probability Density Functions:

ML or – What should you use?

9

2χ

Fitting in ROOT

• How do we do fit in ROOT:
– Create first a parametric function object, TF1, which represents our

model, i.e. the fit function.
– Set the initial values of the function parameters.
– Fit the data object (Histogram or Graph):

• call the Fit method on the Histogram or Graphs passing the function
object as parameter

– various options are possibles (see the TH1::Fit documentation)
» e.g select type of fit : least-square (default) or likelihood (option "L")

– the resulting fit function is then drawn on top of the Histogram or the Graph.

– Examine result:
• get parameter values;
• get parameter errors (e.g. their confidence level);
• get parameter correlation;
• get fit quality.

10

Fitting

11

12

Fitting - Interface

• Minimization packages: Minuit and Fumili
• Fitting can be done

through the general interface of
 TH1::Fit (binned data)

Chisquare and Loglikelihood methods
 TGraph::Fit

unbinned data
 TGraphErrors::Fit

data with errors
 TGraphAsymmErrors::Fit

taking into account asymmetry of errors
 TTree::Fit and TTree::UnbinnedFit

• RooFit for object-oriented data modeling (下节课介绍).
---- Distributed with ROOT starting from version 5.02-00

13

the Fit Method

• Use the TH1::Fit method

• *fname - the name of the fitted function. This name may be one of
ROOT pre-defined function names or a user-defined function.
Predefined functions:
 gaus: Gaussian function with 3 parameters: p0*exp(-0.5*((x-p1)/p2)^2))
 expo: an Exponential with 2 parameters: exp(p0+p1*x)
 polN: a polynomial of degree N:p0 + p1*x + p2*x2 +...
 landau: Landau function with mean and sigma.

• *option - fitting option
• *goption - graphics option which is the same as in the TH1::Draw()
• xxmin, xxmax - specify the range over which to apply the fit.

void Fit(const char *fname, Option_t *option, Option_t *goption,
Axis_t xxmin, Axis_t xxmax)

14

the Fitting Option
"W" Set all weights to 1 for non empty bins; ignore error bars
"WW" Set all weights to 1 including empty bins; ignore error bars
"I" Use integral of function in bin instead of value at bin center
"L" Use log likelihood method (default is chi-square method)
"U" Use a user specified fitting algorithm
"Q" Quiet mode (minimum printing)
"V" Verbose mode (default is between Q and V)
"E" Perform better errors estimation using the Minos technique
"M" Improve fit results
"R" Use the range specified in the function range
"N" Do not store the graphics function, do not draw
"0" Do not plot the result of the fit. By default the fitted function

is drawn unless the option "N" above is specified.
"+" Add the new fitted function to the list of fitted functions (by

default, the previous function is deleted and only the last one is kept)
"B" Use this option when you want to fix one or more parameters and the

fitting function is like polN, expo, landau, gaus.
"LL" An improved Log Likelihood fit in case of very low statistics and when

bin contents are not integers.
"C" In case of linear fitting, don't calculate the chisquare (saves time).
"F" If fitting a polN, switch to Minuit fitter (by default, polN functions

are fitted by the linear fitter).

 Empty bins are excluded in the fit when using the Chi-square fit method. When
fitting the histogram with the low statistics, it is recommended to use the Log-
Likelihood method (RooFit is recommended!!!).

#include "TH1.h"
#include "TF1.h"
#include "TRandom3.h"
void p(){
TH1D * h1 = new TH1D("h1","Example",40,-4.,4.);
for (int i = 0; i < 1000; ++i) {
double x = gRandom->Gaus(0,1);
h1->Fill(x);

}
h1->Draw();
}

Simple Gaussian Fitting

• Recalling our previous histogram:
– suppose we do not know how it was generated;
– we want to estimate the mean and sigma of the underlying

gaussian distribution.

15

root draw.C

Creating the Fit Function

• To create a parametric function object (a TF1) :
• we can use the available functions in ROOT library

• or we can use pre-defined functions defined in TFormula
(see TFormula documentation for the list of them):

– using pre-defined functions we have the parameter name automatically set
to meaningful values.

– initial parameter values are estimated whenever possible.
• We will see later in general how to build a more complex function

objects
– e.g. by using other functions

TF1 * f1 = new TF1("f1","gaus");

TF1 * f1 = new TF1("f1","[0]*TMath::Gaus(x,[1],[2])");

16

#include "TMath.h"
#include "TH1.h"
#include "TF1.h"
#include "TRandom3.h"
#include "TStyle.h"

void fitexample1() {
TH1D * h1 = new TH1D("h1","Example",40,-4.,4.);
for (int i = 0; i < 1000; ++i) {
double x = gRandom->Gaus(0,1);
h1->Fill(x);

}

TF1 *func= new TF1("func","gaus");
func->SetParameters(1,0,1);
// set the parameters to 1, 0, 1
gStyle->SetOptFit(1111);
h1->Fit("func");

}

Fitting Histogram

• How to fit the histogram (use a predefined function):
– after creating the function one needs to set the initial value of the parameters
– then we can call the Fit method of the histogram class

17

For displaying the fit parameters:

gStyle->SetOptFit(1111);

运行：
root fitexample1.C

可用下面的命令编译，以检查错误：
root [1] .L fitexample1.C+

Fitting Histogram (2)
• How to fit the histogram (use a user-defined Function):

For displaying the fit parameters:

18

#include "TMath.h"
#include "TH1.h"
#include "TF1.h"
#include "TRandom3.h"
#include "TStyle.h"

// define a function with 3 parameters
Double_t fitf(Double_t *x,Double_t *par){
Double_t arg = 0;
if (par[2] != 0) arg = (x[0] - par[1])/par[2];
Double_t fitval = par[0]*TMath::Exp(-0.5*arg*arg);
return fitval;

}

void fitexample2() {
TH1D * h1 = new TH1D("h1","Example",40,-4.,4.);
for (int i = 0; i < 1000; ++i) {
double x = gRandom->Gaus(0,1);
h1->Fill(x);

}
TF1 *func= new TF1("func",fitf,-3,3,3);
// set the parameters to mean and RMS of the histogram
func->SetParameters(500,h1->GetMean(),h1->GetRMS());
// give the parameters meaningful names
func->SetParNames ("Constant","Mean_value","Sigma");
gStyle->SetOptFit(1111);
h1->Fit("func");

} $ROOTSYS/tutorials/fit/myfit.C

TF1 * f = new
TF1("f",fobj,xmin,xmax,npar);
// create TF1 class with n-parameters and
range [xmin,xmax]

gStyle->SetOptFit(1111);

 Parameters must be initialized to some value as close as
possible to the expected values before invoking the Fit method.

 To set bounds for one parameter, use TF1::SetParLimits:

 To fix a parameter to 0, one must call the FixParameter function:

Fixing and Setting Parameters

19

func->SetParLimits(0, -1, 1); //parameter 0 varies from -1 to 1
func->SetParameter(4, 10); //initialize parameter 4 to 10
func->SetParLimits(4, 10, 10); //parameter 4 is fixed

func->SetParameters(3.1, 1.e-6, -1.5, 0, 100);
func->SetParLimits(3, -10, 4);
func->FixParameter(4, 0);

20

Retrieving The Fit Result
• The main results from the fit are stored in the fit function, which is

attached to the histogram; it can be saved in a file (except for
customized C/C++ functions).

• The fit function can be retrieved using its name:

• The parameter values using their indices (or their names):

• The parameter errors:

• It is also possible to access the TFitResult class which has all
information about the fit, if we use the fit option "S":

TF1 * fitFunc = h1->GetFunction("f1");

fitFunc->GetParameter(par_index);

fitFunc->GetParError(par_index);

TFitResult r = h1->Fit(f1,"S");
r->Print();
TMatrixDSym C = r->GetCorrelationMatrix();

• The Chisquare:
fitFunc->GetChisquare();;

Access to the Fit Covariance Matrix

21

Example1:

Example2:

TH1F h("h", "test", 100, -2, 2);
h.FillRandom("gaus", 1000);
h.Fit("gaus");
Double_t matrix[3][3];
gMinuit->mnemat(&matrix[0][0], 3);

TH1F h("h", "test", 100, -2, 2);
h.FillRandom("gaus", 1000);
h.Fit("gaus");
TVirtualFitter *fitter = TVirtualFitter::GetFitter();
TMatrixD matrix(3, 3, fitter->GetCovarianceMatrix());
Double_t errorFirstPar = fitter->GetCovarianceMatrixElement(0,0);

Some Fitting Options

• Fitting in a Range
–

• Fitting more functions to an
histogram (option "+")
–

• Quite / Verbose:
– option "Q"/"V".

• Likelihood fit:
– option "L" for count histograms;
– option "LW" in case of weighted counts.

• Return a fit result class:
– option "S"

• Plotting options for the histogram can be
passed as well:

h1->Fit("gaus","","",-1.5,1.5);

h1->Fit("expo","+","",2.,4);

h1->Fit("gaus","L","E");

22

Fitting Multiple Sub Ranges

23

g1 = new TF1("m1","gaus",85,95);
g2 = new TF1("m2","gaus",98,108);
g3 = new TF1("m3","gaus",110,121);
// The total is the sum of the three, each has 3 parameters
total = new TF1("mstotal","gaus(0)+gaus(3)+gaus(6)",85,125);
// Create a histogram and set it's contents
h = new TH1F("g1","Example",np,85,134);
h->SetMaximum(7);
for (int i=0; i<np; i++) h->SetBinContent(i+1,x[i]);
// Define the parameter array
//for the total function
Double_t par[9];
// Fit each function
h->Fit(g1,"R");
h->Fit(g2,"R+");
h->Fit(g3,"R+");
// Get the parameters from the fit
g1->GetParameters(&par[0]);
g2->GetParameters(&par[3]);
g3->GetParameters(&par[6]);
// Use the parameters on the sum
total->SetParameters(par);
h->Fit(total,"R+");

complete code in $ROOTSYS/tutorials/fit/multifit.C

Combining Functions

24

 The combination function of a background and Lorentzian
peak. Each function contributes 3 parameters:

// Quadratic background function
Double_t background(Double_t *x, Double_t *par) {
return par[0]+par[1]*x[0]+par[2]*x[0]*x[0];
}
// Lorentzian Peak function
Double_t lorentzianPeak(Double_t *x,Double_t *par){
return (0.5*par[0]*par[1]/TMath::Pi()) /
TMath::Max(1.e-10,(x[0]-par[2])*
(x[0]-par[2])+.25*par[1]*par[1]));
}
// Sum of background and peak function
Double_t fitFunction(Double_t *x, Double_t *par) {
return
background(x,par) + lorentzianPeak(x,&par[3]);
}

()
()

2
2

2
321

2

2







+−









+++=
GmE

GA
EaEaaEy

P π

par[0]: Ap
par[1]: G
par[2]: m

Combining Function Fit and Plot

25

TH1F *histo = new TH1F("example_9_1","Lorentzian",
60,0,3);
TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,6);
// first set each parameter to 1
fitFcn->SetParameters(1,1,1,1,1,1);
histo->Fit("fitFcn","0");
// second try: set start values for some parameters
fitFcn->SetParameter(4,0.2);// width
fitFcn->SetParameter(5,1);// peak
histo->Fit("fitFcn","V+","ep");
...
TF1 *backFcn = new TF1("backFcn",background,0,3,3);
TF1 *signalFcn = new TF1("signalFcn",lorentzianPeak,0,3,3);
Double_t par[6];
// writes the fit results into the par array
fitFcn->GetParameters(par);
backFcn->SetParameters(par);
backFcn->Draw("same");
signalFcn->SetParameters(&par[3]);
signalFcn->Draw("same");

$ROOTSYS/tutorials/fit/FittingDemo.C

运行
root FittingDemo.C
root> .x FittingDemo.C
root> .x FittingDemo.C+

Building More Complex Functions

• It is possible to write some complex formulae and pass as string in
the constructor of TF1
– but difficult and prone to error

• Better to write directly the functions in C/C++
• A parametric TF1 can be constructed from

– a general free function with parameters:

– any C++ object implementing double operator() (double *x, double *p)

double function(double *x, double *p){

return p[0]*TMath::Gaus(x[0],p[0],p[1]);

}

TF1 * f1 = new TF1("f1",function,xmin,xmax,npar);

struct Function {

double operator()(double *x, double *p){

return p[0]*TMath::Gaus(x[0],p[0],p[1]);}

};

Function func;

TF1 * f1 = new TF1("f1",&func,xmin,xmax,npar,"Function");

26

The Fit Panel

• The fitting in ROOT using the FitPanel
GUI
– GUI for fitting all ROOT data objects

(histogram, graphs, trees)
• Using the GUI we can:

– select data object to fit
– choose (or create) fit model function
– set initial parameters
– choose:

• fit method (likelihood, chi2)
• fit options (e.g Minos errors)
• drawing options

– change the fit range

2027

Fit Panel (2)

• The Fit Panel provides also extra functionality:
Control the minimization Advanced drawing tools

Contour plot

Scan plot of
minimization function

28

Access to the Fitter Information

29

TH1::Fit function calls the abstract fitter TVirtualFitter. The
default fitter is TFitter (calls TMinuit).

The default fitter can be set via TVirtualFitter::SetDefaultFitter.
For example, to call the "Fumili" fitter:

During the fitting process, the objective function: chisquare,
likelihood or any user-defined algorithm is called.

By default, the fitter TMinuit is initialized with a maximum of 25
parameters.

TVirtualFitter *fitter = TVirtualFitter::GetFitter();//the current fitter
TH1 *hist = (TH1*)fitter->GetObjectFit(); //the histogram being fitted
TF1 *f1 = (TF1*)fitter->GetUserFunction(); //the user theoretical function

TVirtualFitter::SetDefaultFitter("Fumili");

Minimization

• The fit is done by minimizing the least-square or likelihood
function.

• A direct solution exists only in case of linear fitting
– it is done automatically in such cases (e.g fitting polynomials).

• Otherwise an iterative algorithm is used:
– Minuit is the minimization algorithm used by default

• ROOT provides two implementations: Minuit and Minuit2
• other algorithms exists: Fumili, or minimizers based on GSL, genetic

and simulated annealing algorithms
– To change the minimizer:

– Other commands are also available to control the minimization:

ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");

ROOT::Math::MinimizerOptions::SetDefaultTolerance(1.E-6);

30

Minimization Algorithm

31

MIGRAD: almost applicable to all the functions, but heavily
reliant on the knowledge of first derivative

MINIMIZE: equivalent to MIGRAD, except to call SIMPLEX
when MIGRAD fails

 SCAN: scan one parameter at a time
 SEEK: a Monte-Carlo search for minima (nearly obsolete)
 SIMPLEX: multi-dimensional, robust precision, slow, not

reliable error matrix

Minimization Techniques

• Methods like Minuit based on gradient can get stuck easily in local
minima.

• Stochastic methods like simulated annealing or genetic algorithms
can help to find the global minimum.

Example: Fitting 2 peaks in a spectrum
Quadratic Newton Simulated Annealing

32

Parameter Errors

• Errors returned by the fit are computed from the second derivatives
of the likelihood function
– Asymptotically the parameter estimates are normally distributed. The

estimated correlation matrix is then:

• A better approximation to estimate the confidence level in the parameter
is to use directly the log-likelihood function and look at the difference
from the minimum.

– Method of Minuit/Minos (Fit option "E")
– obtain a confidence interval which is in general not

symmetric around the best parameter estimate

TFitResultPtr r = h1->Fit(f1,"E S");

r->LowerError(par_number);

r->UpperError(par_number);

33

Interface to Minimization

• A common interface for all ROOT Minimizer algorithms
exists: class ROOT::Math::Minimizer

• All minimizers in ROOT (Minuit, Minuit2, Fumili, GSL
minimizers, simulated annealing, genetic) implement
this interface

• Using the ROOT plug-in manager it is possible to
change the implementation at run-time

• The interface can be used for fitting user defined
likelihood or least-square functions
– see ROOT tutorial fit/NumericalMinimization.C on how

to use this interface

34

Under the Print-Out: MIGRAD

35

Under the Print-Out: MIGRAD

36

Under the Print-Out: MIGRAD

37

Under the Print-Out: HESSE

38

Error matrix
(Covariance Matrix) calculated
from 1

2)ln(
−










 −
=

ji
ij dpdp

LdV

Correlation matrix ρij
calculated from

ijjiijV ρσσ=

Global correlation vector:
correlation of each parameter with all other

parameters

Under the Print-Out: MINOS

39

Comments on Minimization

• Sometimes fits converge to a wrong solution
– Often is the case of a local minimum which is not the global one.
– This is often solved with better initial parameter values. A minimizer like Minuit is

able to find only the local best minimum using the function gradient.
– Otherwise one needs to use a genetic or simulated annealing minimizer (but it

can be quite inefficient, e.g. many function calls).
• Sometimes fit does not converge :

– can happen because the Hessian matrix is not positive defined
• e.g. there are no minimum in that region ➞wrong initial parameters;

– numerical precision problems in the function evaluation
• need to check and re-think on how to implement better the fit model function;

– highly correlated parameters in the fit. In case of 100% correlation the point
solution becomes a line (or an hyper-surface) in parameter space. The
minimization problem is no longer well defined.

Warning in <Fit>: Abnormal termination of minimization.

40

Mitigating fit stability problems

• When using a polynomial parametrization:
– a0+a1x+a2x2+a3x3 nearly always results in strong correlations

between the coefficients.
• problems in fit stability and inability to find the right solution at high order

• This can be solved using a better polynomial parametrization:
– e.g. Chebychev polynomials

41

To Get the Truth from fitting

42

To Get the Right Answer from Minuit

43

 Limits on variable parameters should be used only when needed in
order to prevent from taking on unphysical values

 When a satisfactory minimum has been found using limits, the limits
should then be removed if possible, in order to perform or re-perform
the error analysis without limits

 Minuit offers several
minimization algorithms:
MIGRAD, HESSE, MINOS etc
al. The MIGRAD algorithm is
in general the best.

 If parameter limits are
needed, one should be aware
of some techniques to
alleviate problems caused by
limits.

To Get the Right Answer from Minuit

44

 Getting the Right Minimum with Limits:
If MIGRAD converges normally to a point where no parameter is near
one of its limits, the existence of limits has probably not prevented
Minuit from finding the right minimum. On the other hand, if one or
more parameters is near its limit at the minimum, this may be because
the true minimum is indeed at a limit, or it may be because the
minimized has become ''blocked'' at a limit.

 Getting the Right Parameter Errors with Limits
In the best case, where the minimum is far from any limits, Minuit will
correctly transform the error matrix, and the parameter errors it
reports should be accurate. In other cases (which should be more
common, since otherwise you would not need limits), the very meaning
of parameter errors becomes problematic.

Reliability of Minuit Error Estimates

45

 When Minuit print-out gives the indications of error values with CURRENT
GUESS ERROR or APPROXIMATE ERROR, it means that the errors have been
calculated but they may not be accurate.

 Some signs that the errors may not be accurate:
Warning messages produced during the minimization or error analysis
Failure to find new minimum
Value of EDM too big (Estimated Distance to Minimum)(>10-3)
Correlation coefficients exactly equal to zero, unless some parameters are

known to be uncorrelated with the others
Correlation coefficients very close to one(greater than 0.99).

Parameter at limit.

Covariance Matrix

46

 Theoretically, the covariance matrix for a ''physical'' function must be
positive-definite at the minimum. Therefore, if MIGRAD reports a non-
positive-definite covariance matrix, this may be a sign of the following:

A Non-physical Region: leave such a region.
An Underdetermined Problem: reformulate the function
Numerical Inaccuracies: excessive round off errors or not enough

precision, more likely if the number of free parameters is very large,
or if the parameters are badly scaled and correlations are large.

 An ill-posed Problem:
Excessive numerical round off – especially for exponential and

factorial functions which get big very quickly and lose accuracy.
Starting too far from the solution - the function may have unphysical

local minima

Suggestions on Using Minuit
Minimization

47

 Read Minuit reference manual minuit.ps: In addition to the obligatory
technicalities, read chapters entitled: “Minuit Basic Concepts”; “How to
get the right answer from Minuit”; “Interpretation of the errors on Minuit
parameters”.

 Provide initial values reasonably close to the true minimum: save time; the
mean/median …

 To keep off from unphysical region: limit; FCN definition; warning
message;

 Minuit strategy level: 0;1;2
 Numerical precision: SET EPS;
 In cases where Minuit cannot locate minimum: try several precedent

experimental fits where subset of the parameters are fixed;

FUMILI Minimization Package

48

 TFumili is an optimized method for chi-square and log likelihood
minimizations.

 The minimum condition is:

Expand the left part of the above equation:

here is some initial value of parameters.

 In FUMILI algorithm, the last term is discarded:

[] miFxf
f

jjj
i

j
n

j ji

...1 ,0),(1
1

2

2

==−
∂

∂
⋅=

∂
∂ ∑

=

θ
θσθ

χ 



() 00
222

00

=−⋅







∂∂

∂
+







 ∂

==

∑ kk
k kii

θθ
θθ
χ

θ
χ

θθθθ


0θ


ki

j
n

j j

jj

ki

jj
n

j jki

fFfff
θθσθθσθθ

χ
∂∂

∂
⋅

−
+

∂∂
⋅=

∂∂
∂ ∑∑

==

2

1
2

1
2

22)(1

k

j

i

j
n

j j
ik

ki

ff
z

θθσθθ
χ ∂∂

=≈
∂∂

∂ ∑
=1

2

22 1

FUMILI Minimization Package

49

 Then the equations for parameter increments are:

 Very similar step formulae are used in FUMILI for negative logarithm of
the likelihood function with the same idea --linearization of functional
argument.

() 1...mi ,00
2

0

==−⋅+







∂
∂ ∑

= k
kkik

i

z θθ
θ
χ

θθ


ref: FUMILI_NIMA400.pdf (Nucl.Instrum.Meth.A440:431-437,2000)

Generating Pseudo Data

• Random number generation in ROOT is done using the
TRandom classes
– Three psudo-random number generator exists, TRandom1,
TRandom2 and TRandom3. TRandom is the base class.
•TRandom3 (a Mersenne-Twister generator) is used by default (it has a

very long period, ~ 106000 and it is very fast).
• Random numbers can be generated using the global static variable
gRandom

•TRandom::Rndm() generates uniform number in the [0,1] range.
• Seeding is controlled using TRandom::SetSeed(seed).

• When using seed = 0, independent random streams can be generated (the
seed is based on a UUID number).

root [0] gRandom->Rndm()

(Double_t)9.99741748906672001e-01

50

Universally Unique Identifier，简称UUID,
UUID是由一组32位数的16进制数字所构成

Random Number Distributions
• The class TRandom provides methods to generate numbers

according to some pre-defined distributions

51

 RooFit use accept-rejection techniques (Hit or miss method).

Random Number Distributions (2)

 Random numbers can be generated according to what-ever
distribution using accept-rejection techniques (often not very efficient)
or by using the inverse of the cumulative (integral) distribution

 ROOT has the method TF1::GetRandom(), which uses this
technique to generate random numbers from a generic function
object

52

Adopted technique: binned cumulative inversion
Caveat: approximations may depend on internal function binning.
– Can change it using: f.Npx(5000);

Summary

• We have learned:
– the concept of fitting,
– how to fit a histogram in ROOT.

• We have also learned:
– how to generate random numbers and distributions which can be

used to test and validate the fitting procedure.

• We will see also how fitting can be facilitate by using a tool
like RooFit.

53

54

Dig $ROOTSYS/tutorials/fit

 Run the example macros
 Try to understand the codes of the example macros:

references: http://root.cern.ch/drupal/content/reference-guide
class header descriptions

 “grep” those macros to find what you need

	幻灯片编号 1
	Fitting
	Outline
	What is Fitting ?
	What is Fitting (2)
	A well known estimator – the fit
	ML Fit of an Histogram
	The Likelihood estimator
	ML or – What should you use?
	Fitting in ROOT
	Fitting
	Fitting - Interface
	the Fit Method
	the Fitting Option
	Simple Gaussian Fitting
	Creating the Fit Function
	Fitting Histogram
	Fitting Histogram (2)
	Fixing and Setting Parameters
	Retrieving	The Fit Result
	Access to the Fit Covariance Matrix
	Some Fitting Options
	Fitting Multiple Sub Ranges
	Combining Functions
	Combining Function Fit and Plot
	Building More Complex Functions
	The Fit Panel
	Fit Panel (2)
	Access to the Fitter Information
	Minimization
	Minimization Algorithm
	Minimization Techniques
	Parameter Errors
	Interface to Minimization
	Under the Print-Out: MIGRAD
	Under the Print-Out: MIGRAD
	Under the Print-Out: MIGRAD
	Under the Print-Out: HESSE
	Under the Print-Out: MINOS
	Comments on Minimization
	Mitigating fit stability problems
	To Get the Truth from fitting
	To Get the Right Answer from Minuit
	To Get the Right Answer from Minuit
	Reliability of Minuit Error Estimates
	Covariance Matrix
	Suggestions on Using Minuit Minimization
	FUMILI Minimization Package
	FUMILI Minimization Package
	Generating Pseudo Data
	Random Number Distributions
	Random Number Distributions (2)
	Summary
	Dig $ROOTSYS/tutorials/fit

