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I/O and Trees



Outline
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• Introduction to I/O in ROOT
– how to save ROOT objects in a file
– example: saving an histogram

• ROOT Trees:
–TNtuple class ( a simple Tree)
–TTree class

• How to create a Tree and to write in a file
• Merging of Trees: TChain
• Using Tree Friends
• How to read and analyze the Tree
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Input and Output

参考 https://root.cern.ch/input-and-output



Saving Objects in ROOT

• Use the TFile class
–We need first to create the class, which opens the file

use option "RECREATE" if the file 
already exists

• Write an object deriving from TObject:

• For objects that do not inherit from TObject, use :

TFile* f = TFile::Open("file.root","NEW");

object->Write("optionalName")
if the optionalName is not given the 
object will be written in the file with its 
original name (object->GetName())

f->WriteObject(object, "name");
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TFile Class

• ROOT stores objects in TFiles:

• TFile behaves like file system:

• TFile has a current directory:

• You can browse the content:

f->mkdir("dir");

f->cd("dir");

TFile* f = TFile::Open("file.root", "NEW");

f->ls();
TFile** file.root
TFile* file.root
TDirectoryFile* dir dir
KEY: TDirectoryFile dir;1 dir
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Saving Histogram in a File

• How to save objects in a file

• TFile compresses data using ZIP

TFile* f = TFile::Open("myfile.root","NEW");

TH1D* h1 = new TH1D("h1", "h1",100,-5.,5.);

h1->FillRandom("gaus"); // fill histogram with random data

h1->Write();

delete f;

h1->Write();
f->GetCompressionFactor() 
(Float_t)2.34518527984619141e+00
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Where is My Histogram ?

• All histograms and trees are owned by TFile which acts like a scope
• After closing the file (i.e when the file object is deleted) also the 

histogram, trees and graphs objects are deleted
• This code will crash ROOT:

• Other objects will be still there and can be accessed afterwards

• This can be changed with

TFile* f = TFile::Open("myfile.root","RECREATE"); 

TH1D* h1 = new TH1D("h1","h1",100,-5.,5.);

delete f;

h1->Draw(); // will crash - DO NOT DO IT!!!

*** Break *** segmentation violation

TH1::AddDirectory(false);
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Reading a File

• Reading is simple:

• Can also use

• which returns a null pointer if the read object is not of the right type

• Remember:
– TFile owns the histogram
– the histogram is gone when the file is closed
– to change this add TH1::AddDirectory(false) in root_logon.C

TFile* f = TFile::Open("myfile.root");
TH1* h1 = 0;
f->GetObject("h1",h1);
h1->Draw();
Delete f;
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– TH1 * h = (TH1*) f->Get("h1");

– TH1 * h = (TH1*) f->GetObjectChecked("h1","TH1");



TBrowser

• GUI for browsing ROOT objects written in a file
root [0] new TBrowser();
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To merge Root files containing histograms or/and Trees, 
use the utility hadd in $ROOTSYS/bin/hadd. 

At the shell command line, simply type hadd to get online help.

例如：
hadd out.root file1.root file2.root ... filen.root
将files1.root, file2.root, ….., filen.root 加到 out.root 中。

或者用通配符:
Hadd out.root file*.root

Merging ROOT Files
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Trees

参考 https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#trees
tutorials:  https://root.cern.ch/doc/master/group__tutorial__tree.html

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#trees


Why Should You Use a Tree ?
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 In case you want to store large quantities of same-class objects,
ROOT has designed the TTree and TNtuple classes: 
• The TTree class is optimized to reduce disk space and enhance 

access speed

• A TNtuple is a TTree that is limited to only hold floating-point numbers

• a TTree can hold all kind of data, such as objects or arrays in addition 
to all the simple types.

 When using a TTree, we fill its branch buffers and the buffers 
are written to disk when it is full. 
• TTree takes advantage of compression when the objects are written a 

bunch at a time. 

• TTree reduces the header of each object

• TTree optimizes the data access 



• Tree class
–TTree

• for storing complex data types
• e.g. DataBase tables

Ntuple and Trees

• Ntuple class:
–TNtuple

• for storing tabular data
• e.g. Excel Table with 

numbers
Event

Type

Particles

Pt Charge

Energy Track

Vertex

Position

Header

…
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#include "Riostream.h"
void basic() {
ifstream in;

in.open(Form("basic.dat"));
Float_t x,y,z; Int_t nlines = 0;
TFile *f = new TFile("basic.root","RECREATE");
TH1F *h1 = new TH1F("h1","x distribution",100,-4,4);
TNtuple *ntuple = new TNtuple("ntuple","data from ascii file","x:y:z");
while (1) {

in >> x >> y >> z;
if (!in.good()) break;
if (nlines < 5) printf("x=%8f, y=%8f, z=%8f\n",x,y,z);
h1->Fill(x);
ntuple->Fill(x,y,z);
nlines++;

}
printf(" found %d points\n",nlines);
in.close();
f->Write();

}

Building ROOT Ntuple
• Creating and Storing N-tuples

– The ROOT class TNtuple can store only floating entries
• each raw (record) must be composed only of floating types

– Specify the name (label) of the type when creating the object
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root $ROOTSYS/tutorials/tree/basic.C
也可参考 basic2.C



TFile f("basic.root"); 
ntuple->Print();

How To Read a NTuple

• Open the file and get the ntuple object
Note that (as for histograms) we do not 
need to use TFile::Get
This works only in CINT, not valid C++
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Looking at the Ntuple

• Can Draw one of the variable of the ntuple:

• Can Draw 2 (or more) variables:

• Can Scan the variables’ values:

ntuple->Draw("x")

ntuple->Draw("x:z","y>0","colz")

ntuple->Scan("x:y:z")
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Getting The Entries

• Entries of a ROOT N-tuple can be retrieved using
TNtuple::GetEntry(irow)
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Tfile f(“basic.root");

TNtuple *ntuple=0; 
f.GetObject("ntuple",ntuple);

// loop on the ntuple entries 
for (int i = 0; i < ntuple->GetEntries(); ++i) {

ntuple->GetEntry(i);
float * raw_content = ntuple->GetArgs();
float x = raw_content[0];
float y = raw_content[1];
float z = raw_content[2];

// do something with the data..
}



ROOT Data Format - Tress

• ROOT N-tuple can store only floating point variables
• For storing complex types, i.e. objects we can use 

the ROOT tree class, TTree
–TNtuple is a special case of a TTree (a derived class)

• The ROOT Tree is
–Extremely efficient write once, read many.
–Designed to store >109 (HEP events).
–Trees allow fast direct and random access to any entry 

(sequential access is the best).
– Trees are build with “branches” and “leaves”. 

One can read a subset of all branches.

–Optimized for network access (read-ahead).
19



Why Trees ?

• object.Write() is convenient for simple objects like 
histograms, but inappropriate for saving collections of 
events containing complex objects

• High level functions like TTree::Draw loop on all events   
with selection expressions.

• Reading a collection:
–read all elements (all events)

• With trees:
–only one element in memory,
–or even only a part of it (less I/O)

• Trees buffered to disk (TFile);
– I/O is integral part of TTree concept
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Tree Access

• Databases have row wise access
–Can only access the full object (e.g. full event)

• ROOT trees have column wise access
–Direct access to any event, any branch or any leaf even 

in the case of variable length structures
–Designed to access only a subset of the object attributes 

(e.g. only particles’ energy)
– Makes same members consecutive, e.g. for object with

position in X, Y, Z, and energy E, all X are consecutive,
then come Y, then Z, then E. A lot higher zip efficiency!
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Tree and Memory
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Interactive Tree Analysis
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root[] TFile f("staff.root")
root[] T->StartViewer() //invoke the viewer by the TTree object name
//or
root[] TBrowser a //double click the root file to open



Building a ROOT Tree

• Five steps to build a Tree
–Create a TFile class

• Tree can be huge  need file for swapping filled entries

–Create a TTree class

–Add a Branch (TBranch) to the TTree

–Fill the tree with the data

–Write the tree to file

TFile *hfile = TFile::Open("AFile.root","RECREATE");

TTree * tree = new TTree("myTree","A Tree");

3024



Tree Structure and Branches

• What is a Branch ?

–A branch is like a directory
• it can hold a simple variable, a list of variables, an object or evan a 

collection of objects

• The leaves are the data containers of the branch

• it is possible to read only a sub-set of all the branches in a tree
– variables or object known to be used together should be put 

in the same branch

• branches of the same tree can be written to separate files

25
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Adding a Branch to the Tree

tree->Branch("Ev_Branch",&event,"temp/F:ntrack/I:nseg:nvtex:flag/i");

Branch Name

the address from which the 
first variable is to be read

event is a structure with 
one float and three integers 
and one unsigned integer

a string describing the leaf list

Each leaf has a  name and a  type (default: floa t) 
separa ted by a  "/ " and separa ted from the next leaf by 
a  ":" <Variable>/<type>:<Variable>/<type>

The type can be omitted and if no type is given, the same 
type as the previous variable is assumed. 

"ntrack/I:nseg:nvtex"

To add a branch we need
–Name of the Branch
–Address of the pointer to the object we want to store

To save is a list of simple variables 
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Symbols Used for the Type

C: a character string terminated by the 0 character
B: an 8 bit signed integer 
b: an 8 bit unsigned integer 
S: a 16 bit signed integer
s: a 16 bit unsigned integer 
I: a 32 bit signed integer 
i: a 32 bit unsigned integer 
L: a 64 bit signed integer
l: a 64 bit unsigned integer
F: a 32 bit floating point 
D: a 64 bit floating point

If the type consists of two characters, the number specifies the number of 
bytes to be used. 

The line                   describes ntrack to be written as a 16-bit integer 
(rather than a 32-bit integer):

ntrack/I2
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a Branch to Hold an Array

 With TTree::Branch() method, you can also add a leaf that 
holds an entire array of variables. 

 To add an array of floats, use the f[n] notation when describing 
the leaf. 

To add an array of variable length

Float_t f[10];
tree->Branch("fBranch",f,"f[10]/F");

{
TFile *f = new TFile("peter.root","recreate");
Int_t nPhot;
Float_t E[500];
TTree* nEmcPhotons = new TTree("nEmcPhotons","EMC Photons");
nEmcPhotons->Branch("nPhot",&nPhot,"nPhot/I");
nEmcPhotons->Branch("E",E,"E[nPhot]/F");
}

example: $ROOTSYS/tutorials/tree/tree2.C and cernstaff.C
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a Branch to Hold an Event Object 

Example: To write a branch to hold an event object, we need to load the 
object definition, e.g. the Event class in $ROOTSYS/test/libEvent.so.

First, we need to open a file and create a tree.

We need to create a pointer to an Event object,
Then we create a branch with the TTree::Branch method:             

name of the branch, name of the class,
• The third parameter is the address of a pointer to the object to be stored.
• The fourth parameter is the buffer size and is by default 32000 bytes.
• The last parameter is the split-level:
To split a branch means to create a sub-branch for each data member in the 
object. The split-level can be set to 0 to disable splitting or it can be set to a 
number between 1 and 99 indicating the depth of splitting.
The default for the split-level is 99,     the object will be split to the maximum.

root[] .L libEvent.so

root[] TFile *f = new TFile("AFile.root","RECREATE")
root[] TTree *tree = new TTree("T","A Root Tree")

root[] Event *event = new Event()  建一个Event对象的指针
root[] tree->Branch("EventBranch","Event",&event,32000,99)



Splitting

Split level = 0 Split level = 99

30

$ROOTSYS/tutorials/tree/Tree4.C



Splitting

Setting the split level (default = 99)

Split level = 0 Split level = 99
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• Creates one branch per member – recursively
• Allows to browse objects that are stored in trees, even without 

their library
• Fine grained branches allow fine-grained I/O - read only members

that are needed



Performance Considerations

A split branch is:
• Faster to read – if you only want a subset of data 

members
• Slower to write due to the large number of branches
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Fill the Tree

• Loop on the tree
• assign values to the object we want to store
• call TTree::Fill() creates a new entry 

in the tree:
–snapshot of values of branches’ objects

• After, write Tree to file:

for (int e=0;e<100000;++e) {
myEvent->Generate(e); // 
myTree->Fill(); //

fill 
fill

event
the tree

}

myTree->Write();
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Reading a Tree

• Open the file and get the TTree object from the file
–same as we have seen for TNtuple

• Or browse the TTree using 
the TBrowser

• TTree::Print() shows the data layout

TFile f("AFile.root"); 
TTree *myTree = 0;
f.GetObject("myTree",myTree);
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Examples of Writing & Reading Trees
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examples: $ROOTSYS/tutorials/tree
tree1.C:a tree with several simple (integers and floating point) 
variables.
tree2.C:a tree built from a C structure
tree3.C: how to extend a tree with a branch from another tree with 
the Friends feature
tree4.C: a tree with a class (Event)

要使用 Event 这个类，需要到$ROOTSYS/test目录make 出
libEvent.so，以便调用。

// These examples can be run in many different ways:

// way1: .x tree1.C using the CINT interpreter

// way2: .x tree1.C++ using the automatic compiler interface

// way3: .L tree1.C or .L tree1.C++, then execute functions



myEvent->GetTracks()->First()->Dump();
==> Dumping object at: 0x0763aad0, name=Track, class=Track
fPx 0.651241 X component of the momentum
fPy 1.02466  Y component of the momentum
fPz 1.2141   Z component of the momentum
[…] 

How To Read a Tree

• Create a variable pointing to the data

• Associate a branch with the variable

• Read ith-entry in the Tree

Event * myEvent = 0;

myTree->SetBranchAddress("eBranch",&myEvent);

myTree->GetEntry(i);
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void ReadTree() {
TFile f("AFile.root");
TTree *T = (TTree*)f->Get("T");
Event *myEvent = 0;
TBranch* brEvent = 0;
T->SetBranchAddress("EvBranch", &myEvent, brEvent);
T->SetCacheSize(10000000);
T->AddBranchToCache("EvBranch");
Long64_t nent = T->GetEntries();
for (Long64_t i = 0; i < nbent; ++i) {

brEvent->GetEntry(i);
myEvent->Analyze();

}
}

How To Read a Tree

• Example macro

Data pointers (e.g. myEvent) MUST be set to 0
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Accessing Tree Branches

• If we are interested in only some branches of a Tree:
– Use TTree::SetBranchStatus() or TBranch::GetEntry()

to select the branches to be read
• by defult all branches are read when calling
TTree::GetEntry(event_number)

– Speed up considerably the reading phase
– Example: we are interested in reading only a branch with an array 

of muons
TClonesArray* myMuons = 0;
// disable all branches
myTree->SetBranchStatus("*", 0);
// re-enable the "muon" branches 
myTree->SetBranchStatus("muon*", 1);
myTree->SetBranchAddress("muon", &myMuons);

// now read (access) only the "muon" branches 

for (Long64_t i = 0; i < myTree->GetEntries(); ++i) {
myTree->GetEntry(i);

38



Copy subset of Tree to new Tree
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void copytree() {
gSystem->Load("$ROOTSYS/test/libEvent");
//Get old file, old tree and set top branch address
TFile *oldfile = new TFile("$ROOTSYS/test/Event.root");
TTree *oldtree = (TTree*)oldfile->Get("T");
Event *event   = new Event();
oldtree->SetBranchAddress("event",&event);
oldtree->SetBranchStatus("*",0);
oldtree->SetBranchStatus("event",1);
oldtree->SetBranchStatus("fNtrack",1);
oldtree->SetBranchStatus("fNseg",1);
oldtree->SetBranchStatus("fH",1);

//Create a new file + a clone of old tree in new file
TFile *newfile = new TFile("small.root","recreate");
TTree *newtree = oldtree->CloneTree();

newtree->Print();
newfile->Write();
delete oldfile;
delete newfile;

}

参考： tutorials/tree/copytree.C



Tree Selection Syntax

• Syntax for querying a tree
– Print the first 8 variables of the tree:

– Prints all the variables of the tree:

– Prints the values of var1, var2 and var3.

– A selection can be applied in the second argument:
– Prints the values of var1, var2 and var3 for the entries where 

var1 is greater than 0

• Use the same syntax for TTree::Draw()

MyTree->Scan();

MyTree->Scan("*");

MyTree->Scan("var1:var2:var3");

MyTree->Scan("var1:var2:var3", "var1>0");
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Looking at the Tree

• TTree::Scan("leaf:leaf:….") shows the values 
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Looking at the Tree

• TTree::Print() shows the data layout 
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Looking at the Tree

• TTree::Show(entry_number) shows values for one entry
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Memory ↔ Tree

• Each Node is a branch in the Tree

0

T.Fill()

T

Memory
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Memory ↔ Tree

• Each Node is a branch in the Tree
0
1
2
3
4
5
6

T.GetEntry(6)

T

Memory
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TChain: The Forest

• Collection of Trees:
–list of ROOT files containing the same tree

• Same semantics as TTree.
–As an example, assume we have three files called file1.root, 

file2.root, file3.root. Each contains tree called "T". Create a 
chain:

– Now we can use the TChain like a TTree!

TChain chain("T"); // argument: tree name 
chain.Add("file1.root"); 
chain.Add("file2.root"); 
chain.Add("file3.root");

46



TChain

• Chain Files together
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Data Volume and Organization

• ATFile typically contains 1 TTree

• ATChain is a collection of TTrees or/and TChains
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Adding Friends to Trees

• Trees are designed to be read only

• Often, people want to add branches to existing trees and 
write their data into it

• Using tree friends is the solution:
– Create a new file holding the new tree

– Create a new Tree holding the branches for the user data

– Fill the tree/branches with user data

– Add this new file/tree as friend of the original tree
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TFile f1("tree.root"); 
tree.AddFriend("tree_1", "tree1.root") 
tree.AddFriend("tree_2", "tree2.root"); 
tree.Draw("x:a", "k<c");
tree.Draw("x:tree_2.x");

Tree Friends

• Using Tree Friends



TTree::AddFriend
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The number of entries in the friend must be equal or greater to the 
number of entries of the original chain. If the friend has fewer entries a 
warning is given and the resulting histogram will have missing entries.

A full example of a tree and friends is in Example #3 ($ROOTSYS/tutorials/tree/tree3.C) 



Trees in Analysis 
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The methods TTree::Draw, TTree::MakeClass and 
TTree::MakeSelector are available for data analysis. 

The TTree::Draw method is a powerful yet simple way to 
look and draw the trees contents. It enables you to plot a 
variable (a leaf) with just one line of code.

The TTree::MakeClass creates a class that loops over the 
trees entries one by one. You can then expand it to do the 
logic of your analysis.

The TTree::MakeSelector is the recommended method for 
ROOT data analysis, especially important for large data set 
in a parallel processing configuration 



Long64_t Draw(const char* varexp, const char* selection, 
Option_t* option = "", 
Long64_t nentries = 1000000000, 
Long64_t firstentry = 0)

TTree:Draw()
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//root file from tree/staff.C:
TFile f ("cernstaff.root");
T->Draw("Cost") //1-D plot
T->Draw("Cost:Age") //2-D plot
T->Draw("Cost:Age:Children") //3-D plot

Using selection with TTree:Draw :
selection  =  "weight *(boolean expression)"

The value of the selection is used as a weight when filling the 
histogram: any C++ operator, and some functions defined in 
TFormula can be used

option is same as TH1::Draw method.

We use the tree in cernstaff.root, made by $ROOTSYS/tutorials/tree/cernbuild.C



Using TCut Objects in Ttree::Draw
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A TCut is a specialized string object used for TTree selections. 

Operators ” =, +=, +, *, !, &&, || ” are overloaded

TCut cut1 = "x<1"
TCut cut2 = "y>2" 
//then cut1 && cut2 
//result is the string "(x<1)&&(y>2)"

root[] TCut c1 = "x < 1" 
root[] TCut c2 = "y < 0"
root[] TCut c3 = c1 && c2 
root[] MyTree.Draw("x", c1)
root[] MyTree.Draw("x", c1 || "x>0") 
root[] MyTree.Draw("x", c1 && c2)
root[] MyTree.Draw("x", "(x + y)*(c1 && c2)")



Setting the Range in TTree::Draw
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Ttree::Draw() has two more optional parameters: 

one is the number of entries and the second one is the entry to start with. 

For example, this command draws 1000 entries starting with entry 100:

TTree::Draw Examples: 

exercise and understand the draw 
commands in section 12.20.7-12.20.7.1
of User guide.

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#simple-
analysis-using-ttreedraw

T->Draw("Cost:Age", "Nation == \"FR\"","surf2",1000,100);



Using TTree::Scan
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Long64_t Scan(const char* varexp = "", const char* 
selection = "", Option_t* option = "", Long64_t 
nentries = 1000000000, Long64_t firstentry = 0)

root[] MyTree->Scan();// print the first 8 variables of the tree. 
root[] MyTree->Scan("*"); //print all the variable of the tree.
//Specific variables of the tree
root[] MyTree->Scan("var1:var2:var3"); 
//A selection can be applied in the second argument
root[] MyTree->Scan("var1:var2:var3","var1==0"); 

TTree::Scan returns the number of entries passing the selection. 
By default 50 rows are shown before TTree::Scan pauses. 
To change the default number of rows, use TTree::SetScanfield(maxrows).
If 0 is set, all rows are shown. 

This option is interesting when dumping the contents of a Tree to an ascii file, 
e.g. from the command line: root[] tree->Scan("*");>log.txt

TTree::Scan can be used to print the content of the tree’s entries:

root[] tree->SetScanField(0);



Filling a Histogram
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root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack >> myHisto")
root[] myHisto->Print()
TH1.Print Name= myHisto, Entries= 100, Total sum= 100
//to append more entries to the histogram
root[] T->Draw("fNtrack >>+ myHisto")

//To set the number of bins for a specific histogram
tree.Draw("sqrt(x)>>hsqrt(500,10,20)");
// plot sqrt(x) between 10 and 20 using 500 bins
tree.Draw("sqrt(x):sin(y)>>hsqrt(100,10,,50,.1,.5)");
// plot sqrt(x) against sin(y) 100 bins in x-direction; lower 
// limit on x-axis is 10; no upper limit; 50 bins in y-direction; 
// lower limit on y-axis is .1; upper limit is .5
tree.Draw("sqrt(x)>>+hsqrt","y>0");
//will not reset hsqrt and continue filling the histogram

The TTree::Draw method can also be used to fill a specific histogram:

appending the histogram with a “+”, will not reset hsqrt, but will continue to fill it.



Tree Information
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Once we have drawn a tree, we can get information about the tree.
GetV1: Returns a pointer to the float array of the first variable.
GetV2: Returns a pointer to the float array of second variable 
GetV3: Returns a pointer to the float array of third variable.
GetW: Returns a pointer to the float array of Weights where the weight equals the 
result of the selection expression.

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack")
root[] Float_t *a
root[] a = T->GetV1()
//Loop through the first 10 entries and print the values of fNtrack:
root[] for (int i = 0; i < 10; i++) 
root[] cout << a[i] << " " << endl
// need an endl to see the values
594 597 606 595 604 610 604 602 603 596 



Analyzing Trees

• Tree is an efficient storage and access for huge 
amounts of structured data

• Allows selective access of data
• It is used to analyze and select data.
• Most convenient way to analyze data store in a Tree is 

with the TSelector class
– the user creates a new class MySelector deriving from
TSelector

– the MySelector object is used in
TTree::Process(TSelector*,...)

– ROOT invokes the TSelector’s functions which are virtuals, so 
the user provided function implemented in MySelector will be 
called.

Almost all HEP analyses based on TTree 
59
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举例 用脚本读取MC truth 信息

> cat stag.C
#include <iostream>
#include "TFile.h"
#include "TChain.h"
#include "TTree.h"
using namespace std;
int main() {

TChain * chain = new TChain("truth");
chain->Add("in.root");
Int_t indexmc;
Int_t pdgid[100];
Int_t motheridx[100];
chain->SetBranchAddress("indexmc",&indexmc);
chain->SetBranchAddress("pdgid",pdgid);
chain->SetBranchAddress("motheridx",motheridx);
for (Long64_t i=0; i<5;i++) {

chain->GetEntry(i);
cout << "event = " << i << endl;
for ( int k = 0; k != indexmc; k++ ) {

cout << "  " << k << " id= " << pdgid[k]
<< " mo=" << motheridx[k] << " " 
<< pdgid[motheridx[k]] << endl;

}
}

>g++ stag.C `root-config --libs` 
`root-config --cflags` -o run

1. 一个显示root文件中MC衰变信息的程序： 2. 编译成可执行文件：

3. 运行程序：

> ./run 
event = 0

0  id=  433 mo=0   433
1  id= -431 mo=1  -431
2  id=  431 mo=0   433
3  id=   22 mo=0   433
4  id=  333 mo=2   431
5  id=  -11 mo=2   431
6  id=   12 mo=2   431
7  id=  213 mo=4   333
8  id= -211 mo=4   333
9  id=  211 mo=7   213
10 id=  111 mo=7   213
11 id=   22 mo=10  111
12 id=   22 mo=10  111
13 id=  321 mo=1  -431
14 id= -321 mo=1  -431
15 id= -211 mo=1  -431

Event = 1 
…… 以下省略
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举例 用脚本读取MC truth 信息

> ./run 
event = 0

0  id=  433 mo=0   433
1  id= -431 mo=1  -431
2  id=  431 mo=0   433
3  id=   22 mo=0   433
4  id=  333 mo=2   431
5  id=  -11 mo=2   431
6  id=   12 mo=2   431
7  id=  213 mo=4   333
8  id= -211 mo=4   333
9  id=  211 mo=7   213
10 id=  111 mo=7   213
11 id=   22 mo=10  111
12 id=   22 mo=10  111
13 id=  321 mo=1  -431
14 id= -321 mo=1  -431
15 id= -211 mo=1  -431

Event = 1 
…… 以下省略
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#include "TFile.h"
#include "TChain.h"
#include "TTree.h " 
int main() {

TChain * chain = new TChain("truth");
chain->Add("in-*.root");
Int_t indexmc;   
Int_t pdgid[100];
Int_t motheridx[100];
chain->SetBranchAddress("indexmc", &indexmc);
chain->SetBranchAddress("pdgid", pdgid);
chain->SetBranchAddress("motheridx", motheridx);
TFile *file = new TFile("out.root", "recreate");
Int_t nt_Dspmode, nt_Dsmmode, Dspmode, Dsmmode;
tree->Branch("Dspmode",  &nt_Dspmode,  "nt_Dspmode/I");
tree->Branch("Dsmmode",  &nt_Dsmmode,  "nt_Dsmmode/I");
Long64_t nentries = chain->GetEntries();
for (Long64_t i=0; i<nentries;i++) {

chain->GetEntry(i);   
TagModeMatch(Dspmode, Dsmmode, indexmc, pdgid, motheridx);
nt_Dspmode = Dspmode;
nt_Dsmmode = Dsmmode;
tree->Fill();

}
file->Write();

}

Example Macro
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一个实际工作的例子truth.C

根据indexmc, pdgid, motheridx 判断 Ds+ 和Ds-的衰变模式

加入所有以in-开头，扩展名为.root的文件

编译：g++  truth.C `root-config --libs` `root-config --cflags` -o run_truth



Tree Data Access

E.g.

Init(tree)

SlaveBegin() 

Process(i)

Terminate()

next entry?
no

yes

tree->Process("MySelector.C+")
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TSelector

Steps of ROOT using a TSelector:

2. start TMySelector::SlaveBegin()
create histograms

3. run TMySelector::Process(Long64_t)
fChain->GetTree()>GetEntry(entry);

analyze data, fill histograms,…

4. end TMySelector::Terminate()
fit histograms, write them to files,…
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1. setup TMySelector::Init(TTree *tree)
fChain = tree; fChain->SetBranchAddress()



Using TTree::MakeClass
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When you need to do some programming with the variable in the tree, use 
TTree::MakeClass

MyClass.h contains the class definition, 
MyClass.C contains the MyClass::Loop() method.

Modify MyClass::Loop to implement analysis: select entries, fill histograms, draw 
plots and output files.

Load MyClass and execute the Loop() function

root[] .L libEvent.so // in $ROOTSYS/test
root[] TFile *f = new TFile("Event.root");
root[] f->ls(); 
TFile**Event.rootTTree benchmark ROOT file
TFile*Event.rootTTree benchmark ROOT file

KEY: TH1Fhtime;1 Real-Time to write versus time
KEY: TTree T;1 An example of a ROOT tree
root[] T->MakeClass("MyClass")
Files: MyClass.h and MyClass.C generated from Tree: T



Using TTree::MakeSelector
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 With a TTree to make a selector to process a limited set of entries:
especially important in a parallel processing configuration where we can specify which 
entries to send to a processor. 

the TTree::MakeSelector method creates two files similar to TTree::MakeClass
The TTree::Process method is used to specify the selector and the entries

 In the resulting files is a class that is a descendent of TSelector and 
implements the following methods:

TSelector::Begin() - is called every time a loop over the tree starts. 

This is a convenient place to create your histograms.

TSelector::Process() - is called to process an event. 

It is the user's responsibility to read the TTree entries in memory,   

apply entry selections and fill the histograms. 

TSelector::Terminate() - is called at the end of a loop on a TTree. 

This is a convenient place to draw and fit your histograms. 



Tree analysis Example: h1analysis.C
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Example of analysis class for the H1 data:
(参考：https://root.cern.ch/doc/master/h1analysis_8C.html)

h1analysis.C uses 4 large data sets from the H1 collaboration.
(需要下载 https://root.cern.ch/download/h1analysis/ 的4个数据文件，共200多MB)

A chain of 4 files is used to illustrate the various ways to loop on Root data sets. 
Each data set contains a Root Tree named "h42" .
The class definition in h1analysis.h has been generated automatically by 
TTree::MakeSelector using one of the files with the following statement: 

root[] h42>MakeSelector("h1analysis");

This produces two files: h1analysis.h and 
h1analysis.C (skeleton of this file).
The h1analysis class is derived from the Root 
class TSelector.

Loop on all events:

root[] chain.Process("h1analysis.C")

https://root.cern.ch/doc/master/h1analysis_8C.html
https://root.cern.ch/download/h1analysis/
https://root.cern.ch/doc/master/classTTree.html#a6325b77dddf29d81480e0f9ab24c7a85


Summary

• The ROOT Tree is one of the most powerful 
collections available for HEP

• Extremely efficient for huge number of data sets with 
identical layout

• Very easy to look at TTree - use TBrowser!

• Write once, read many: ideal for experiments' data; 
use friends to extend

• Branches allow granular access; use splitting to create 
branch for each member, even through collections

• TSelector class provides a powerful way of 
processing the Tree data using compiled code
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