
第三章：实验统计分析工具ROOT

授课人：董燎原
中国科学院高能物理研究所

2

I/O and Trees

Outline

3

• Introduction to I/O in ROOT
– how to save ROOT objects in a file
– example: saving an histogram

• ROOT Trees:
–TNtuple class (a simple Tree)
–TTree class

• How to create a Tree and to write in a file
• Merging of Trees: TChain
• Using Tree Friends
• How to read and analyze the Tree

4

Input and Output

参考 https://root.cern.ch/input-and-output

Saving Objects in ROOT

• Use the TFile class
–We need first to create the class, which opens the file

use option "RECREATE" if the file
already exists

• Write an object deriving from TObject:

• For objects that do not inherit from TObject, use :

TFile* f = TFile::Open("file.root","NEW");

object->Write("optionalName")
if the optionalName is not given the
object will be written in the file with its
original name (object->GetName())

f->WriteObject(object, "name");

5

TFile Class

• ROOT stores objects in TFiles:

• TFile behaves like file system:

• TFile has a current directory:

• You can browse the content:

f->mkdir("dir");

f->cd("dir");

TFile* f = TFile::Open("file.root", "NEW");

f->ls();
TFile** file.root
TFile* file.root
TDirectoryFile* dir dir
KEY: TDirectoryFile dir;1 dir

6

Saving Histogram in a File

• How to save objects in a file

• TFile compresses data using ZIP

TFile* f = TFile::Open("myfile.root","NEW");

TH1D* h1 = new TH1D("h1", "h1",100,-5.,5.);

h1->FillRandom("gaus"); // fill histogram with random data

h1->Write();

delete f;

h1->Write();
f->GetCompressionFactor()
(Float_t)2.34518527984619141e+00

7

Where is My Histogram ?

• All histograms and trees are owned by TFile which acts like a scope
• After closing the file (i.e when the file object is deleted) also the

histogram, trees and graphs objects are deleted
• This code will crash ROOT:

• Other objects will be still there and can be accessed afterwards

• This can be changed with

TFile* f = TFile::Open("myfile.root","RECREATE");

TH1D* h1 = new TH1D("h1","h1",100,-5.,5.);

delete f;

h1->Draw(); // will crash - DO NOT DO IT!!!

*** Break *** segmentation violation

TH1::AddDirectory(false);

8

Reading a File

• Reading is simple:

• Can also use

• which returns a null pointer if the read object is not of the right type

• Remember:
– TFile owns the histogram
– the histogram is gone when the file is closed
– to change this add TH1::AddDirectory(false) in root_logon.C

TFile* f = TFile::Open("myfile.root");
TH1* h1 = 0;
f->GetObject("h1",h1);
h1->Draw();
Delete f;

9

– TH1 * h = (TH1*) f->Get("h1");

– TH1 * h = (TH1*) f->GetObjectChecked("h1","TH1");

TBrowser

• GUI for browsing ROOT objects written in a file
root [0] new TBrowser();

10

11

To merge Root files containing histograms or/and Trees,
use the utility hadd in $ROOTSYS/bin/hadd.

At the shell command line, simply type hadd to get online help.

例如：
hadd out.root file1.root file2.root ... filen.root
将files1.root, file2.root, ….., filen.root 加到 out.root 中。

或者用通配符:
Hadd out.root file*.root

Merging ROOT Files

12

Trees

参考 https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#trees
tutorials: https://root.cern.ch/doc/master/group__tutorial__tree.html

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#trees

Why Should You Use a Tree ?

13

 In case you want to store large quantities of same-class objects,
ROOT has designed the TTree and TNtuple classes:
• The TTree class is optimized to reduce disk space and enhance

access speed

• A TNtuple is a TTree that is limited to only hold floating-point numbers

• a TTree can hold all kind of data, such as objects or arrays in addition
to all the simple types.

 When using a TTree, we fill its branch buffers and the buffers
are written to disk when it is full.
• TTree takes advantage of compression when the objects are written a

bunch at a time.

• TTree reduces the header of each object

• TTree optimizes the data access

• Tree class
–TTree

• for storing complex data types
• e.g. DataBase tables

Ntuple and Trees

• Ntuple class:
–TNtuple

• for storing tabular data
• e.g. Excel Table with

numbers
Event

Type

Particles

Pt Charge

Energy Track

Vertex

Position

Header

…

14

#include "Riostream.h"
void basic() {
ifstream in;

in.open(Form("basic.dat"));
Float_t x,y,z; Int_t nlines = 0;
TFile *f = new TFile("basic.root","RECREATE");
TH1F *h1 = new TH1F("h1","x distribution",100,-4,4);
TNtuple *ntuple = new TNtuple("ntuple","data from ascii file","x:y:z");
while (1) {

in >> x >> y >> z;
if (!in.good()) break;
if (nlines < 5) printf("x=%8f, y=%8f, z=%8f\n",x,y,z);
h1->Fill(x);
ntuple->Fill(x,y,z);
nlines++;

}
printf(" found %d points\n",nlines);
in.close();
f->Write();

}

Building ROOT Ntuple
• Creating and Storing N-tuples

– The ROOT class TNtuple can store only floating entries
• each raw (record) must be composed only of floating types

– Specify the name (label) of the type when creating the object

15

root $ROOTSYS/tutorials/tree/basic.C
也可参考 basic2.C

TFile f("basic.root");
ntuple->Print();

How To Read a NTuple

• Open the file and get the ntuple object
Note that (as for histograms) we do not
need to use TFile::Get
This works only in CINT, not valid C++

16

Looking at the Ntuple

• Can Draw one of the variable of the ntuple:

• Can Draw 2 (or more) variables:

• Can Scan the variables’ values:

ntuple->Draw("x")

ntuple->Draw("x:z","y>0","colz")

ntuple->Scan("x:y:z")

17

Getting The Entries

• Entries of a ROOT N-tuple can be retrieved using
TNtuple::GetEntry(irow)

18

Tfile f(“basic.root");

TNtuple *ntuple=0;
f.GetObject("ntuple",ntuple);

// loop on the ntuple entries
for (int i = 0; i < ntuple->GetEntries(); ++i) {

ntuple->GetEntry(i);
float * raw_content = ntuple->GetArgs();
float x = raw_content[0];
float y = raw_content[1];
float z = raw_content[2];

// do something with the data..
}

ROOT Data Format - Tress

• ROOT N-tuple can store only floating point variables
• For storing complex types, i.e. objects we can use

the ROOT tree class, TTree
–TNtuple is a special case of a TTree (a derived class)

• The ROOT Tree is
–Extremely efficient write once, read many.
–Designed to store >109 (HEP events).
–Trees allow fast direct and random access to any entry

(sequential access is the best).
– Trees are build with “branches” and “leaves”.

One can read a subset of all branches.

–Optimized for network access (read-ahead).
19

Why Trees ?

• object.Write() is convenient for simple objects like
histograms, but inappropriate for saving collections of
events containing complex objects

• High level functions like TTree::Draw loop on all events
with selection expressions.

• Reading a collection:
–read all elements (all events)

• With trees:
–only one element in memory,
–or even only a part of it (less I/O)

• Trees buffered to disk (TFile);
– I/O is integral part of TTree concept

20

Tree Access

• Databases have row wise access
–Can only access the full object (e.g. full event)

• ROOT trees have column wise access
–Direct access to any event, any branch or any leaf even

in the case of variable length structures
–Designed to access only a subset of the object attributes

(e.g. only particles’ energy)
– Makes same members consecutive, e.g. for object with

position in X, Y, Z, and energy E, all X are consecutive,
then come Y, then Z, then E. A lot higher zip efficiency!

21

Tree and Memory

22

Interactive Tree Analysis

23

root[] TFile f("staff.root")
root[] T->StartViewer() //invoke the viewer by the TTree object name
//or
root[] TBrowser a //double click the root file to open

Building a ROOT Tree

• Five steps to build a Tree
–Create a TFile class

• Tree can be huge  need file for swapping filled entries

–Create a TTree class

–Add a Branch (TBranch) to the TTree

–Fill the tree with the data

–Write the tree to file

TFile *hfile = TFile::Open("AFile.root","RECREATE");

TTree * tree = new TTree("myTree","A Tree");

3024

Tree Structure and Branches

• What is a Branch ?

–A branch is like a directory
• it can hold a simple variable, a list of variables, an object or evan a

collection of objects

• The leaves are the data containers of the branch

• it is possible to read only a sub-set of all the branches in a tree
– variables or object known to be used together should be put

in the same branch

• branches of the same tree can be written to separate files

25

26

Adding a Branch to the Tree

tree->Branch("Ev_Branch",&event,"temp/F:ntrack/I:nseg:nvtex:flag/i");

Branch Name

the address from which the
first variable is to be read

event is a structure with
one float and three integers
and one unsigned integer

a string describing the leaf list

Each leaf has a name and a type (default: floa t)
separa ted by a "/ " and separa ted from the next leaf by
a ":" <Variable>/<type>:<Variable>/<type>

The type can be omitted and if no type is given, the same
type as the previous variable is assumed.

"ntrack/I:nseg:nvtex"

To add a branch we need
–Name of the Branch
–Address of the pointer to the object we want to store

To save is a list of simple variables

27

Symbols Used for the Type

C: a character string terminated by the 0 character
B: an 8 bit signed integer
b: an 8 bit unsigned integer
S: a 16 bit signed integer
s: a 16 bit unsigned integer
I: a 32 bit signed integer
i: a 32 bit unsigned integer
L: a 64 bit signed integer
l: a 64 bit unsigned integer
F: a 32 bit floating point
D: a 64 bit floating point

If the type consists of two characters, the number specifies the number of
bytes to be used.

The line describes ntrack to be written as a 16-bit integer
(rather than a 32-bit integer):

ntrack/I2

28

a Branch to Hold an Array

 With TTree::Branch() method, you can also add a leaf that
holds an entire array of variables.

 To add an array of floats, use the f[n] notation when describing
the leaf.

To add an array of variable length

Float_t f[10];
tree->Branch("fBranch",f,"f[10]/F");

{
TFile *f = new TFile("peter.root","recreate");
Int_t nPhot;
Float_t E[500];
TTree* nEmcPhotons = new TTree("nEmcPhotons","EMC Photons");
nEmcPhotons->Branch("nPhot",&nPhot,"nPhot/I");
nEmcPhotons->Branch("E",E,"E[nPhot]/F");
}

example: $ROOTSYS/tutorials/tree/tree2.C and cernstaff.C

29

a Branch to Hold an Event Object

Example: To write a branch to hold an event object, we need to load the
object definition, e.g. the Event class in $ROOTSYS/test/libEvent.so.

First, we need to open a file and create a tree.

We need to create a pointer to an Event object,
Then we create a branch with the TTree::Branch method:

name of the branch, name of the class,
• The third parameter is the address of a pointer to the object to be stored.
• The fourth parameter is the buffer size and is by default 32000 bytes.
• The last parameter is the split-level:
To split a branch means to create a sub-branch for each data member in the
object. The split-level can be set to 0 to disable splitting or it can be set to a
number between 1 and 99 indicating the depth of splitting.
The default for the split-level is 99, the object will be split to the maximum.

root[] .L libEvent.so

root[] TFile *f = new TFile("AFile.root","RECREATE")
root[] TTree *tree = new TTree("T","A Root Tree")

root[] Event *event = new Event() 建一个Event对象的指针
root[] tree->Branch("EventBranch","Event",&event,32000,99)

Splitting

Split level = 0 Split level = 99

30

$ROOTSYS/tutorials/tree/Tree4.C

Splitting

Setting the split level (default = 99)

Split level = 0 Split level = 99

31

• Creates one branch per member – recursively
• Allows to browse objects that are stored in trees, even without

their library
• Fine grained branches allow fine-grained I/O - read only members

that are needed

Performance Considerations

A split branch is:
• Faster to read – if you only want a subset of data

members
• Slower to write due to the large number of branches

32

Fill the Tree

• Loop on the tree
• assign values to the object we want to store
• call TTree::Fill() creates a new entry

in the tree:
–snapshot of values of branches’ objects

• After, write Tree to file:

for (int e=0;e<100000;++e) {
myEvent->Generate(e); //
myTree->Fill(); //

fill
fill

event
the tree

}

myTree->Write();

33

Reading a Tree

• Open the file and get the TTree object from the file
–same as we have seen for TNtuple

• Or browse the TTree using
the TBrowser

• TTree::Print() shows the data layout

TFile f("AFile.root");
TTree *myTree = 0;
f.GetObject("myTree",myTree);

34

Examples of Writing & Reading Trees

35

examples: $ROOTSYS/tutorials/tree
tree1.C:a tree with several simple (integers and floating point)
variables.
tree2.C:a tree built from a C structure
tree3.C: how to extend a tree with a branch from another tree with
the Friends feature
tree4.C: a tree with a class (Event)

要使用 Event 这个类，需要到$ROOTSYS/test目录make 出
libEvent.so，以便调用。

// These examples can be run in many different ways:

// way1: .x tree1.C using the CINT interpreter

// way2: .x tree1.C++ using the automatic compiler interface

// way3: .L tree1.C or .L tree1.C++, then execute functions

myEvent->GetTracks()->First()->Dump();
==> Dumping object at: 0x0763aad0, name=Track, class=Track
fPx 0.651241 X component of the momentum
fPy 1.02466 Y component of the momentum
fPz 1.2141 Z component of the momentum
[…]

How To Read a Tree

• Create a variable pointing to the data

• Associate a branch with the variable

• Read ith-entry in the Tree

Event * myEvent = 0;

myTree->SetBranchAddress("eBranch",&myEvent);

myTree->GetEntry(i);

36

void ReadTree() {
TFile f("AFile.root");
TTree *T = (TTree*)f->Get("T");
Event *myEvent = 0;
TBranch* brEvent = 0;
T->SetBranchAddress("EvBranch", &myEvent, brEvent);
T->SetCacheSize(10000000);
T->AddBranchToCache("EvBranch");
Long64_t nent = T->GetEntries();
for (Long64_t i = 0; i < nbent; ++i) {

brEvent->GetEntry(i);
myEvent->Analyze();

}
}

How To Read a Tree

• Example macro

Data pointers (e.g. myEvent) MUST be set to 0

37

Accessing Tree Branches

• If we are interested in only some branches of a Tree:
– Use TTree::SetBranchStatus() or TBranch::GetEntry()

to select the branches to be read
• by defult all branches are read when calling
TTree::GetEntry(event_number)

– Speed up considerably the reading phase
– Example: we are interested in reading only a branch with an array

of muons
TClonesArray* myMuons = 0;
// disable all branches
myTree->SetBranchStatus("*", 0);
// re-enable the "muon" branches
myTree->SetBranchStatus("muon*", 1);
myTree->SetBranchAddress("muon", &myMuons);

// now read (access) only the "muon" branches

for (Long64_t i = 0; i < myTree->GetEntries(); ++i) {
myTree->GetEntry(i);

38

Copy subset of Tree to new Tree

39

void copytree() {
gSystem->Load("$ROOTSYS/test/libEvent");
//Get old file, old tree and set top branch address
TFile *oldfile = new TFile("$ROOTSYS/test/Event.root");
TTree *oldtree = (TTree*)oldfile->Get("T");
Event *event = new Event();
oldtree->SetBranchAddress("event",&event);
oldtree->SetBranchStatus("*",0);
oldtree->SetBranchStatus("event",1);
oldtree->SetBranchStatus("fNtrack",1);
oldtree->SetBranchStatus("fNseg",1);
oldtree->SetBranchStatus("fH",1);

//Create a new file + a clone of old tree in new file
TFile *newfile = new TFile("small.root","recreate");
TTree *newtree = oldtree->CloneTree();

newtree->Print();
newfile->Write();
delete oldfile;
delete newfile;

}

参考： tutorials/tree/copytree.C

Tree Selection Syntax

• Syntax for querying a tree
– Print the first 8 variables of the tree:

– Prints all the variables of the tree:

– Prints the values of var1, var2 and var3.

– A selection can be applied in the second argument:
– Prints the values of var1, var2 and var3 for the entries where

var1 is greater than 0

• Use the same syntax for TTree::Draw()

MyTree->Scan();

MyTree->Scan("*");

MyTree->Scan("var1:var2:var3");

MyTree->Scan("var1:var2:var3", "var1>0");

40

Looking at the Tree

• TTree::Scan("leaf:leaf:….") shows the values

41

Looking at the Tree

• TTree::Print() shows the data layout

42

Looking at the Tree

• TTree::Show(entry_number) shows values for one entry

43

Memory ↔ Tree

• Each Node is a branch in the Tree

0

T.Fill()

T

Memory

44

Memory ↔ Tree

• Each Node is a branch in the Tree
0
1
2
3
4
5
6

T.GetEntry(6)

T

Memory

45

TChain: The Forest

• Collection of Trees:
–list of ROOT files containing the same tree

• Same semantics as TTree.
–As an example, assume we have three files called file1.root,

file2.root, file3.root. Each contains tree called "T". Create a
chain:

– Now we can use the TChain like a TTree!

TChain chain("T"); // argument: tree name
chain.Add("file1.root");
chain.Add("file2.root");
chain.Add("file3.root");

46

TChain

• Chain Files together

47

Data Volume and Organization

• ATFile typically contains 1 TTree

• ATChain is a collection of TTrees or/and TChains

48

Adding Friends to Trees

• Trees are designed to be read only

• Often, people want to add branches to existing trees and
write their data into it

• Using tree friends is the solution:
– Create a new file holding the new tree

– Create a new Tree holding the branches for the user data

– Fill the tree/branches with user data

– Add this new file/tree as friend of the original tree

49

50

TFile f1("tree.root");
tree.AddFriend("tree_1", "tree1.root")
tree.AddFriend("tree_2", "tree2.root");
tree.Draw("x:a", "k<c");
tree.Draw("x:tree_2.x");

Tree Friends

• Using Tree Friends

TTree::AddFriend

51

The number of entries in the friend must be equal or greater to the
number of entries of the original chain. If the friend has fewer entries a
warning is given and the resulting histogram will have missing entries.

A full example of a tree and friends is in Example #3 ($ROOTSYS/tutorials/tree/tree3.C)

Trees in Analysis

52

The methods TTree::Draw, TTree::MakeClass and
TTree::MakeSelector are available for data analysis.

The TTree::Draw method is a powerful yet simple way to
look and draw the trees contents. It enables you to plot a
variable (a leaf) with just one line of code.

The TTree::MakeClass creates a class that loops over the
trees entries one by one. You can then expand it to do the
logic of your analysis.

The TTree::MakeSelector is the recommended method for
ROOT data analysis, especially important for large data set
in a parallel processing configuration

Long64_t Draw(const char* varexp, const char* selection,
Option_t* option = "",
Long64_t nentries = 1000000000,
Long64_t firstentry = 0)

TTree:Draw()

53

//root file from tree/staff.C:
TFile f ("cernstaff.root");
T->Draw("Cost") //1-D plot
T->Draw("Cost:Age") //2-D plot
T->Draw("Cost:Age:Children") //3-D plot

Using selection with TTree:Draw :
selection = "weight *(boolean expression)"

The value of the selection is used as a weight when filling the
histogram: any C++ operator, and some functions defined in
TFormula can be used

option is same as TH1::Draw method.

We use the tree in cernstaff.root, made by $ROOTSYS/tutorials/tree/cernbuild.C

Using TCut Objects in Ttree::Draw

54

A TCut is a specialized string object used for TTree selections.

Operators ” =, +=, +, *, !, &&, || ” are overloaded

TCut cut1 = "x<1"
TCut cut2 = "y>2"
//then cut1 && cut2
//result is the string "(x<1)&&(y>2)"

root[] TCut c1 = "x < 1"
root[] TCut c2 = "y < 0"
root[] TCut c3 = c1 && c2
root[] MyTree.Draw("x", c1)
root[] MyTree.Draw("x", c1 || "x>0")
root[] MyTree.Draw("x", c1 && c2)
root[] MyTree.Draw("x", "(x + y)*(c1 && c2)")

Setting the Range in TTree::Draw

55

Ttree::Draw() has two more optional parameters:

one is the number of entries and the second one is the entry to start with.

For example, this command draws 1000 entries starting with entry 100:

TTree::Draw Examples:

exercise and understand the draw
commands in section 12.20.7-12.20.7.1
of User guide.

https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#simple-
analysis-using-ttreedraw

T->Draw("Cost:Age", "Nation == \"FR\"","surf2",1000,100);

Using TTree::Scan

56

Long64_t Scan(const char* varexp = "", const char*
selection = "", Option_t* option = "", Long64_t
nentries = 1000000000, Long64_t firstentry = 0)

root[] MyTree->Scan();// print the first 8 variables of the tree.
root[] MyTree->Scan("*"); //print all the variable of the tree.
//Specific variables of the tree
root[] MyTree->Scan("var1:var2:var3");
//A selection can be applied in the second argument
root[] MyTree->Scan("var1:var2:var3","var1==0");

TTree::Scan returns the number of entries passing the selection.
By default 50 rows are shown before TTree::Scan pauses.
To change the default number of rows, use TTree::SetScanfield(maxrows).
If 0 is set, all rows are shown.

This option is interesting when dumping the contents of a Tree to an ascii file,
e.g. from the command line: root[] tree->Scan("*");>log.txt

TTree::Scan can be used to print the content of the tree’s entries:

root[] tree->SetScanField(0);

Filling a Histogram

57

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack >> myHisto")
root[] myHisto->Print()
TH1.Print Name= myHisto, Entries= 100, Total sum= 100
//to append more entries to the histogram
root[] T->Draw("fNtrack >>+ myHisto")

//To set the number of bins for a specific histogram
tree.Draw("sqrt(x)>>hsqrt(500,10,20)");
// plot sqrt(x) between 10 and 20 using 500 bins
tree.Draw("sqrt(x):sin(y)>>hsqrt(100,10,,50,.1,.5)");
// plot sqrt(x) against sin(y) 100 bins in x-direction; lower
// limit on x-axis is 10; no upper limit; 50 bins in y-direction;
// lower limit on y-axis is .1; upper limit is .5
tree.Draw("sqrt(x)>>+hsqrt","y>0");
//will not reset hsqrt and continue filling the histogram

The TTree::Draw method can also be used to fill a specific histogram:

appending the histogram with a “+”, will not reset hsqrt, but will continue to fill it.

Tree Information

58

Once we have drawn a tree, we can get information about the tree.
GetV1: Returns a pointer to the float array of the first variable.
GetV2: Returns a pointer to the float array of second variable
GetV3: Returns a pointer to the float array of third variable.
GetW: Returns a pointer to the float array of Weights where the weight equals the
result of the selection expression.

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack")
root[] Float_t *a
root[] a = T->GetV1()
//Loop through the first 10 entries and print the values of fNtrack:
root[] for (int i = 0; i < 10; i++)
root[] cout << a[i] << " " << endl
// need an endl to see the values
594 597 606 595 604 610 604 602 603 596

Analyzing Trees

• Tree is an efficient storage and access for huge
amounts of structured data

• Allows selective access of data
• It is used to analyze and select data.
• Most convenient way to analyze data store in a Tree is

with the TSelector class
– the user creates a new class MySelector deriving from
TSelector

– the MySelector object is used in
TTree::Process(TSelector*,...)

– ROOT invokes the TSelector’s functions which are virtuals, so
the user provided function implemented in MySelector will be
called.

Almost all HEP analyses based on TTree
59

60

举例 用脚本读取MC truth 信息

> cat stag.C
#include <iostream>
#include "TFile.h"
#include "TChain.h"
#include "TTree.h"
using namespace std;
int main() {

TChain * chain = new TChain("truth");
chain->Add("in.root");
Int_t indexmc;
Int_t pdgid[100];
Int_t motheridx[100];
chain->SetBranchAddress("indexmc",&indexmc);
chain->SetBranchAddress("pdgid",pdgid);
chain->SetBranchAddress("motheridx",motheridx);
for (Long64_t i=0; i<5;i++) {

chain->GetEntry(i);
cout << "event = " << i << endl;
for (int k = 0; k != indexmc; k++) {

cout << " " << k << " id= " << pdgid[k]
<< " mo=" << motheridx[k] << " "
<< pdgid[motheridx[k]] << endl;

}
}

>g++ stag.C `root-config --libs`
`root-config --cflags` -o run

1. 一个显示root文件中MC衰变信息的程序： 2. 编译成可执行文件：

3. 运行程序：

> ./run
event = 0

0 id= 433 mo=0 433
1 id= -431 mo=1 -431
2 id= 431 mo=0 433
3 id= 22 mo=0 433
4 id= 333 mo=2 431
5 id= -11 mo=2 431
6 id= 12 mo=2 431
7 id= 213 mo=4 333
8 id= -211 mo=4 333
9 id= 211 mo=7 213
10 id= 111 mo=7 213
11 id= 22 mo=10 111
12 id= 22 mo=10 111
13 id= 321 mo=1 -431
14 id= -321 mo=1 -431
15 id= -211 mo=1 -431

Event = 1
…… 以下省略

61

举例 用脚本读取MC truth 信息

> ./run
event = 0

0 id= 433 mo=0 433
1 id= -431 mo=1 -431
2 id= 431 mo=0 433
3 id= 22 mo=0 433
4 id= 333 mo=2 431
5 id= -11 mo=2 431
6 id= 12 mo=2 431
7 id= 213 mo=4 333
8 id= -211 mo=4 333
9 id= 211 mo=7 213
10 id= 111 mo=7 213
11 id= 22 mo=10 111
12 id= 22 mo=10 111
13 id= 321 mo=1 -431
14 id= -321 mo=1 -431
15 id= -211 mo=1 -431

Event = 1
…… 以下省略

61

#include "TFile.h"
#include "TChain.h"
#include "TTree.h "
int main() {

TChain * chain = new TChain("truth");
chain->Add("in-*.root");
Int_t indexmc;
Int_t pdgid[100];
Int_t motheridx[100];
chain->SetBranchAddress("indexmc", &indexmc);
chain->SetBranchAddress("pdgid", pdgid);
chain->SetBranchAddress("motheridx", motheridx);
TFile *file = new TFile("out.root", "recreate");
Int_t nt_Dspmode, nt_Dsmmode, Dspmode, Dsmmode;
tree->Branch("Dspmode", &nt_Dspmode, "nt_Dspmode/I");
tree->Branch("Dsmmode", &nt_Dsmmode, "nt_Dsmmode/I");
Long64_t nentries = chain->GetEntries();
for (Long64_t i=0; i<nentries;i++) {

chain->GetEntry(i);
TagModeMatch(Dspmode, Dsmmode, indexmc, pdgid, motheridx);
nt_Dspmode = Dspmode;
nt_Dsmmode = Dsmmode;
tree->Fill();

}
file->Write();

}

Example Macro

62

一个实际工作的例子truth.C

根据indexmc, pdgid, motheridx 判断 Ds+ 和Ds-的衰变模式

加入所有以in-开头，扩展名为.root的文件

编译：g++ truth.C `root-config --libs` `root-config --cflags` -o run_truth

Tree Data Access

E.g.

Init(tree)

SlaveBegin()

Process(i)

Terminate()

next entry?
no

yes

tree->Process("MySelector.C+")

63

TSelector

Steps of ROOT using a TSelector:

2. start TMySelector::SlaveBegin()
create histograms

3. run TMySelector::Process(Long64_t)
fChain->GetTree()>GetEntry(entry);

analyze data, fill histograms,…

4. end TMySelector::Terminate()
fit histograms, write them to files,…

64

1. setup TMySelector::Init(TTree *tree)
fChain = tree; fChain->SetBranchAddress()

Using TTree::MakeClass

65

When you need to do some programming with the variable in the tree, use
TTree::MakeClass

MyClass.h contains the class definition,
MyClass.C contains the MyClass::Loop() method.

Modify MyClass::Loop to implement analysis: select entries, fill histograms, draw
plots and output files.

Load MyClass and execute the Loop() function

root[] .L libEvent.so // in $ROOTSYS/test
root[] TFile *f = new TFile("Event.root");
root[] f->ls();
TFile**Event.rootTTree benchmark ROOT file
TFile*Event.rootTTree benchmark ROOT file

KEY: TH1Fhtime;1 Real-Time to write versus time
KEY: TTree T;1 An example of a ROOT tree
root[] T->MakeClass("MyClass")
Files: MyClass.h and MyClass.C generated from Tree: T

Using TTree::MakeSelector

66

 With a TTree to make a selector to process a limited set of entries:
especially important in a parallel processing configuration where we can specify which
entries to send to a processor.

the TTree::MakeSelector method creates two files similar to TTree::MakeClass
The TTree::Process method is used to specify the selector and the entries

 In the resulting files is a class that is a descendent of TSelector and
implements the following methods:

TSelector::Begin() - is called every time a loop over the tree starts.

This is a convenient place to create your histograms.

TSelector::Process() - is called to process an event.

It is the user's responsibility to read the TTree entries in memory,

apply entry selections and fill the histograms.

TSelector::Terminate() - is called at the end of a loop on a TTree.

This is a convenient place to draw and fit your histograms.

Tree analysis Example: h1analysis.C

67

Example of analysis class for the H1 data:
(参考：https://root.cern.ch/doc/master/h1analysis_8C.html)

h1analysis.C uses 4 large data sets from the H1 collaboration.
(需要下载 https://root.cern.ch/download/h1analysis/ 的4个数据文件，共200多MB)

A chain of 4 files is used to illustrate the various ways to loop on Root data sets.
Each data set contains a Root Tree named "h42" .
The class definition in h1analysis.h has been generated automatically by
TTree::MakeSelector using one of the files with the following statement:

root[] h42>MakeSelector("h1analysis");

This produces two files: h1analysis.h and
h1analysis.C (skeleton of this file).
The h1analysis class is derived from the Root
class TSelector.

Loop on all events:

root[] chain.Process("h1analysis.C")

https://root.cern.ch/doc/master/h1analysis_8C.html
https://root.cern.ch/download/h1analysis/
https://root.cern.ch/doc/master/classTTree.html#a6325b77dddf29d81480e0f9ab24c7a85

Summary

• The ROOT Tree is one of the most powerful
collections available for HEP

• Extremely efficient for huge number of data sets with
identical layout

• Very easy to look at TTree - use TBrowser!

• Write once, read many: ideal for experiments' data;
use friends to extend

• Branches allow granular access; use splitting to create
branch for each member, even through collections

• TSelector class provides a powerful way of
processing the Tree data using compiled code

68

	幻灯片编号 1
	I/O and Trees
	Outline
	幻灯片编号 4
	Saving Objects in ROOT
	TFile Class
	Saving Histogram in a File
	Where is My Histogram ?
	Reading a File
	TBrowser
	Merging ROOT Files
	幻灯片编号 12
	Why Should You Use a Tree ?
	Ntuple and Trees
	Building ROOT Ntuple
	How To Read a NTuple
	Looking at the Ntuple
	Getting The Entries
	ROOT Data Format - Tress
	Why Trees ?
	Tree Access
	Tree and Memory
	Interactive Tree Analysis
	Building a ROOT Tree
	Tree Structure and Branches
	Adding a Branch to the Tree
	Symbols Used for the Type
	a Branch to Hold an Array
	a Branch to Hold an Event Object
	Splitting
	Splitting
	Performance Considerations
	Fill the Tree
	Reading a Tree
	Examples of Writing & Reading Trees
	How To Read a Tree
	How To Read a Tree
	Accessing Tree Branches
	Copy subset of Tree to new Tree
	Tree Selection Syntax
	Looking at the Tree
	Looking at the Tree
	Looking at the Tree
	Memory ↔ Tree
	Memory ↔ Tree
	TChain: The Forest
	TChain
	Data Volume and Organization
	Adding Friends to Trees
	Tree Friends
	TTree::AddFriend
	Trees in Analysis
	TTree:Draw()
	Using TCut Objects in Ttree::Draw
	Setting the Range in TTree::Draw
	Using TTree::Scan
	Filling a Histogram
	Tree Information
	Analyzing Trees
	举例 用脚本读取MC truth 信息
	举例 用脚本读取MC truth 信息
	Example Macro
	Tree Data Access
	TSelector
	Using TTree::MakeClass
	Using TTree::MakeSelector
	Tree analysis Example: h1analysis.C
	Summary

