
 

 

ROOT Workshop 2021 

ROOT Workshop 2021 ..................................................................................................................................................................... 1 

Basic Data Analysis Using ROOT .................................................................................................................................................. 3 
Introduction ..................................................................................................................................................................................... 3 
A guide to this tutorial................................................................................................................................................................. 4 

Part One – The Basics........................................................................................................................................................................ 5 
Getting started with the Nevis particle-physics desktops ........................................................................................... 5 
Getting started using your laptop .......................................................................................................................................... 6 
A Brief Intro to Linux ................................................................................................................................................................... 7 
Walkthrough: Setting up ROOT (5 minutes) .................................................................................................................. 10 
Walkthrough: Starting ROOT (5 minutes) ....................................................................................................................... 11 
Walkthrough: Plotting a function (15 minutes)............................................................................................................ 12 
Walkthrough: Plotting a function (continued) .............................................................................................................. 14 
Exercise 1: Detective work (10 minutes) ........................................................................................................................ 15 
Walkthrough: Working with Histograms (15 minutes) ............................................................................................ 16 
Walkthrough: Saving and printing your work (15 minutes) .................................................................................. 18 
Walkthrough: The ROOT browser (5 minutes) ............................................................................................................. 19 
Walkthrough: Fitting a histogram (15 minutes) .......................................................................................................... 20 
Walkthrough: Saving your work, part 2 (15 minutes) ............................................................................................... 25 
Walkthrough: Variables in ROOT NTuples/Trees (10 minutes) ........................................................................... 26 
Using the Treeviewer  .............................................................................................................................................................. 28 

Part Two – The Notebook Server.............................................................................................................................................. 33 
Starting with Jupyter (5 minutes) ....................................................................................................................................... 33 
Your first notebook (10 minutes) ....................................................................................................................................... 34 
Magic commands (5 minutes) .............................................................................................................................................. 36 
Markdown cells (5 minutes) ................................................................................................................................................. 37 
The ROOT C++ kernel (5 minutes)...................................................................................................................................... 38 

Decisions.............................................................................................................................................................................................. 39 
C++ or Python? ............................................................................................................................................................................ 39 
Command-line or notebook? ................................................................................................................................................. 40 
Diagonalizing the 2x2 decision matrix .............................................................................................................................. 42 

Part Three – The C++ Path ........................................................................................................................................................... 43 
Walkthrough: Simple analysis using the Draw command (10 minutes) ........................................................... 43 
Pointers: A too-short explanation (for those who don't know C++ or C) (5 minutes) ................................ 44 
Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes) ............................................. 45 
Walkthrough: Using C++ to analyze a Tree (10 minutes) ........................................................................................ 46 
Walkthrough: Using C++ to analyze a Tree (continued) ........................................................................................... 47 
Walkthrough: Running the Analyze macro (10 minutes)......................................................................................... 48 
Walkthrough: Making a histogram with Analyze (15 minutes)............................................................................. 49 
Exercise 2: Adding error bars to a histogram (5 minutes) ...................................................................................... 51 
Exercise 3: Two histograms in the same loop (15 minutes) ................................................................................... 52 
Exercise 4: Displaying fit parameters (10 minutes) ................................................................................................... 53 
Exercise 5: Scatterplot (10 minutes) ................................................................................................................................. 53 
Walkthrough: Calculating our own variables (10 minutes) .................................................................................... 54 
Exercise 6: Plotting a derived variable (10 minutes) ................................................................................................. 55 
Exercise 7: Trig functions (15 minutes) ........................................................................................................................... 55 
Walkthrough: Applying a cut (10 minutes) .................................................................................................................... 56 



 

Page 2 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 8: Picking a physics cut (15 minutes) ............................................................................................................. 57 
Exercise 9: A bit more physics (15 minutes).................................................................................................................. 58 
Exercise 10: Writing histograms to a file (10 minutes)............................................................................................. 58 
Exercise 11: Stand-alone program (optional) (60 minutes or more if you don’t know C++) ................... 59 

Part Four – The Python with pyroot Path ............................................................................................................................. 61 
A brief review (5 minutes) ..................................................................................................................................................... 61 
Differences between C++ and Python ............................................................................................................................... 62 
Walkthrough: Simple analysis using the Draw command (10 minutes) ........................................................... 64 
Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes) ............................................. 65 
Walkthrough: Using Python to analyze a Tree (10 minutes) .................................................................................. 66 
Walkthrough: Using the Analyze script (10 minutes) ................................................................................................ 68 
Exercise 2: Adding error bars to a histogram (5 minutes) ...................................................................................... 70 
Exercise 3: Two histograms in the same loop (15 minutes) ................................................................................... 71 
Exercise 4: Displaying fit parameters (10 minutes) ................................................................................................... 72 
Exercise 5: Scatterplot (10 minutes) ................................................................................................................................. 72 
Walkthrough: Calculating our own variables (10 minutes) .................................................................................... 73 
Exercise 6: Plotting a derived variable (10 minutes) ................................................................................................. 74 
Exercise 7: Trig functions (15 minutes) ........................................................................................................................... 74 
Walkthrough: Applying a cut (10 minutes) .................................................................................................................... 75 
Exercise 8: Picking a physics cut (15 minutes) ............................................................................................................. 76 
Exercise 9: A bit more physics (15 minutes).................................................................................................................. 77 
Exercise 10: Writing histograms to a file (10 minutes)............................................................................................. 77 
Exercise 11: Stand-alone program (optional) (30 minutes) ................................................................................... 78 

Part Five – Intermediate topics (for both ROOT/C++ and pyroot) ............................................................................ 79 
References ..................................................................................................................................................................................... 79 
Advanced histogramming notes .......................................................................................................................................... 80 
Directories ..................................................................................................................................................................................... 83 
JupyterLab ..................................................................................................................................................................................... 85 
Dataframes .................................................................................................................................................................................... 87 
uproot .............................................................................................................................................................................................. 89 
coffea ................................................................................................................................................................................................ 89 
Vectorization (speeding up array loops) ......................................................................................................................... 89 
Installing ROOT on your own computer .......................................................................................................................... 90 

Part Six – A too-brief and too-long introduction to statistics ....................................................................................... 95 

Part Seven – Advanced Exercises .......................................................................................................................................... 108 
Working with folders inside ROOT files ........................................................................................................................ 108 
C++ Container classes ............................................................................................................................................................ 109 
Exercise 12: Create a basic x-y plot (1-2.5 hours) .................................................................................................... 112 
Exercise 13: A more realistic x-y plotting task (1-2 hours) .................................................................................. 116 

Part Eight – Expert Exercises .................................................................................................................................................. 117 
Exercise 14: A brutally realistic example of a plotting task (1-2 hours)......................................................... 117 
Exercise 15: Data reduction (1-2 hours) ....................................................................................................................... 120 
Wrap-up....................................................................................................................................................................................... 124 

Version History .............................................................................................................................................................................. 125 

 

  



 

5/31/21 Basic Data Analysis Using ROOT Page 3 of 127 

 

Basic Data Analysis Using ROOT 

Introduction 

This tutorial started as a one-day class I taught in 2001. Over the years, I’ve revised it as different 

versions of ROOT came out, and in response to comments received from the students. 

Many parts of this tutorial are optional or are advanced exercises. No one expects you to get through 

all 127 pages before you start your physics work for the summer. Much of the material, especially 

from Part Five on, is intended to use as a reference if you continue to use ROOT in the future.  

The lessons have time estimates at the top. These are only rough estimates. Don't be concerned about 

time. The important thing is for you to learn something, not to punch a time clock.  

If you’re programming for the first time, then it will probably take you more than a half-day per part. 

Someone with years of prior experience in ROOT and C++ or Python might barely get through all 

eight parts in two days. 

On the other hand, if the class seems too easy, just keep going; I gradually ramp up the difficulty. 

The lessons do not stay at the level of “ROOT does what physicists do.” 

You can find this tutorial in PDF format (along with links to the sample files and references) at 

<http://www.nevis.columbia.edu/~seligman/root-class/>.  

At the end of the summer, let me know what you found useful or useless to you. I’ll consider your 

suggestions for next year’s workshop.  

Have fun! 

  

http://www.nevis.columbia.edu/~seligman/root-class/
http://www.nevis.columbia.edu/~seligman/root-class/


 

Page 4 of 127 Basic Data Analysis Using ROOT 5/31/21 

A guide to this tutorial 

If you see a command in this tutorial that’s preceded by “[]”, it means that it is a ROOT command. 

Type that command into ROOT without the “[]” symbols. For example, if you see 
[] .x treeviewer.C 

it means to type .x treeviewer.C at a ROOT command prompt. 

If you see a command in this tutorial preceded by “>” it means that it is a UNIX shell command. 

Type that command into UNIX, not into ROOT, and without the “>” symbol. For example, if you 

see 
> man less 

it means to type man less at a UNIX command prompt.  

If you take the Python part of this tutorial, the prompt is “In []”. For example: 
> ipython 

In[] from ROOT import TH1 

 

Paragraphs in this style are hints, tips, and advice. You may be able to get through this 
tutorial without reading any of this text… but I wouldn’t count on it!  

If you’re sharp of eye and keen of sight, you’ll also notice that I use different styles for 
Linux commands, program names and variables, and menu items.  

ROOT, Python, and Jupyter will put a session line number in brackets; e.g., [0], [1], [2];  
In [0], In [1], In [2]. I’ll omit the line numbers from this tutorial.  

 

 

Figure 1: http://xkcd.com/1343 by Randall Munroe 

  

http://xkcd.com/1343


 

5/31/21 Basic Data Analysis Using ROOT Page 5 of 127 

Part One – The Basics 

Getting started with the Nevis particle-physics desktops 

If you're sitting in front of a Linux desktop computer in room 118 of the Nevis research building, 

just use your account name and password to login.  

Click once on the Browser icon (at the top or bottom of the screen) to start a web browser. This 

either looks like the standard Firefox icon, or like a sphere with a mouse around it. 

Type the following URL in the Location field of the web browser: http://root.cern.ch/. This is the 

ROOT web site. You'll be coming back here often, so be sure to bookmark it. You may also want to 

bookmark the User’s Guide for a handy reference: click on Documents, then on the User’s Guide – 6 
series link. 

You'll need to open a terminal session to do your work. The menu path is: 

Applications -> Accessories -> Terminal 

If you see a prompt about initializing zsh, just hit “q”. 

You may find it convenient to add the Terminal application icon to the menu bar or to your desktop. 

You can do this by selecting Applications->Accessories->Terminal on the menu bar, but right-click 

on the word Terminal instead of just releasing the left button. That will give you options to create 

icons on the desktop or the “panel” (menu bar). 

Initially (for the ROOT class), you’ll probably be content just to login to the student computers and 

start working. When you start your real work for this summer, I suggest that you ssh to the main 

server for your experiment; it’s the one listed on “Summer Student Accounts” sheet that I handed out 

before the class. 

 

 

  

http://root.cern.ch/
http://root.cern.ch/


 

Page 6 of 127 Basic Data Analysis Using ROOT 5/31/21 

Getting started using your laptop 

Mac and Linux 

You can connect to the main server for your experiment by running a terminal window and using 

ssh to connect that server; e.g.,1 
ssh -X -Y <server-name>.nevis.columbia.edu 

On the Mac, you’ll find the Terminal application in Applications/Utilities. On Mac OS 10.7 and 

above, you’ll need to install XQuartz2: http://xquartz.macosforge.org  

Windows 

To connect to a Linux server from Windows, you need ssh and an X-Windows emulator. I 

recommend MobaXterm, which includes both: http://mobaxterm.mobatek.net/. 

Connecting to the notebook server 

This will be described in detail in Part Two. In short: go to https://notebook.nevis.columbia.edu 

(note that it’s “https”, not just “http”) and use your Nevis particle-physics Linux cluster account 

name and password.  

Installing ROOT on your laptop 

Don’t. 

If the above paragraph is too short and snarky for you, I’ll elaborate: You may correctly deduce that 

setting up ROOT on your own computer system is not a trivial task. It is not an app you can double-

click to install. To avoid a hassle, I suggest logging into our servers or using the notebook server for 

this course if you are able to do so. 

The reason why I installed ROOT on the Nevis particle-physics systems and prepared the notebook 

server is so you can spend less time on software installations, and more time on learning how to use 

the tools to do physics. Let’s do physics.  

If the above is not enough to dissuade you, or you don’t have a choice because you don’t 
have a connection to Nevis, I discuss the nitty-gritty details of installing ROOT on page 90.  

  
 

1  That’s dash capital-X, dash capital-Y. If you get tired of remembering to type -X -Y (or simply -XY) whenever 

you type ssh, edit the file ~/.ssh/config in your home directory and add the lines:  

ForwardX11 = yes 

ForwardAgent = yes  

 Don’t bother including them if you’re ssh’ing from a desktop in the Nevis research building; they’re the default.  

2  In the 2019 ROOT class the students discovered that if you fiddle with the Mac OS X Darwin environment variable 

$DYLD_LIBRARY_PATH, XQuartz may not work properly. Most users don’t set the value of this variable, but 

since you do scientific research you may have installed software (such as Anaconda, MacPorts, or Homebrew) that 

affects your environment variables.  

 If you’re having problems with XQuartz, check your shell start-up scripts (e.g., .zshrc, .bash_profile, 

.cshrc). If you see $DYLD_LIBRARY_PATH is altered, you might want to comment out that line and open a 

fresh Terminal window before running XQuartz.  

http://xquartz.macosforge.org/
http://mobaxterm.mobatek.net/
https://notebook.nevis.columbia.edu/


 

5/31/21 Basic Data Analysis Using ROOT Page 7 of 127 

A Brief Intro to Linux 

If you're already familiar with Linux, skip or skim this section. 

You can spend a lifetime learning Linux; I've been working with UNIX since 1993 and I'm still 
learning something new every day. The commands below barely scratch the surface.  

There are links at http://www.nevis.columbia.edu/~seligman/root-class/links.html to sites 
that can teach you more about Linux. 

 
Figure 2: http://xkcd.com/456 by Randall Munroe 

To copy a file: use the cp command. 3  

For example, to copy the file CreateSubdirectories.C from the directory 

~seligman/root-class to your current working directory, type:4 

> cp ~seligman/root-class/CreateSubdirectories.C $PWD 

In UNIX, the $PWD means the results of the pwd (“print working directory”) command.5 

To look at the contents of a text file: Use the less command.6  

This command is handy if you want to quickly look at a file without editing it. To browse the 
contents of file CreateSubdirectories.C, type: 

> less CreateSubdirectories.C 

While less is running, type a space to go forward one screen, type b to go backward one 
screen, type q to quit, and type h for a complete list of commands you can use. 

 

3  As more and more students have begun to use laptops, I noticed that many of them had an interesting 

misconception: The cp command copies a file from one place to another on the same computer. It does not copy a 

file to your laptop! For that you use scp; see the next page for how to learn about any UNIX command.  

4  It’s always “~seligman” (tilde-seligman), never “–seligman” (dash-seligman). Depending on the exact font used to 

print or display this tutorial, sometimes tildes look like dashes. On most keyboards, tilde is typed with SHIFT-` 

where ` (backtick) is on the upper-left-hand corner of the keyboard. In UNIX ~jsmith means “the home directory of 

the jsmith account.” Just plain ~ means your own home directory.  

5  A period (.) is the usual abbreviation in UNIX for “the current directory,” but many students missed the period the 

first time I taught this class.  

6  If the name is confusing: the less command was created as a more powerful version of the more command. 

http://www.nevis.columbia.edu/~seligman/root-class/links.html
http://xkcd.com/456


 

Page 8 of 127 Basic Data Analysis Using ROOT 5/31/21 

A Brief Intro to Linux (continued) 

To get help on any UNIX command: type man <command-name>  

While man is running, you can use the same navigation commands as less. For example, to learn 

about the less command, type: 
> man less 

To edit a file: I suggest you use emacs.7 

In UNIX, you will typically want to add an ampersand (&) to the end of an emacs command; 
the ampersand means to run the command as a separate process. To edit a file with the 
name CreateSubdirectories.C, type: 

> emacs CreateSubdirectories.C & 

The emacs environment is complex, and you can spend a lifetime learning it.8 For now, just 
use the mouse to move the cursor and look at the menus. When you get the chance, I 
suggest you take the emacs tutorial by selecting it under the "Help" menu. 

Learn how to cut and paste in whatever editor you use. If you don’t, you’ll waste a lot of 
time typing the same things over and over again. 

Are you quitting emacs after you change a file, only to start up the editor again a moment 
later? Hint: look at the File menu. If you're editing many files, try opening them all with 
File->Open File… and switch between them using the Buffers menu. 

 

 
Figure 3: http://xkcd.com/378 by Randall Munroe 

If you’re feeling bored, type Meta-x butterfly in emacs and see what happens.   

 

7  If you're already familiar with another editor, such as nano or vim, you can use it instead. If you’re using emacs 

on your Mac, you’ll get the screen-based version instead of the window-based version; do not put & after the 

command.  

8  I've spent two of your lifetimes already, and the class has just started! 

http://xkcd.com/378


 

5/31/21 Basic Data Analysis Using ROOT Page 9 of 127 

A Brief Intro to Linux (optional) 

Here are a few Linux tricks than can make your life easier.  

Using the command line 

When you’re typing commands in ROOT, IPython, or UNIX, your two best friends are the TAB key 

and the up-arrow key.  

Try it: On the UNIX command line, type (<TAB> means to hit the TAB key): 
> cp ~seli<TAB>roo<TAB>Cre<TAB>S<TAB> $PWD 

You’ll see how UNIX does its best to fill in the remainder of a word, up to the point for which 

there’s a choice.  

Now list the contents of files in your current directory: 
> ls 

Let’s execute that copy command again. You don’t have to type it again, even with the help of tab-

completion; just hit the up-arrow key twice and press ENTER.  

Did you look at the emacs tutorial I mentioned on the previous page? If you did, you saw 
that it starts with a discussion of using special keypresses for cursor navigation. Perhaps you 
thought, “Have they never heard of a mouse?” If you did, you were right: the emacs 

tutorial was written before GUIs and computer mice were known outside of Xerox PARC.  

Why is that tutorial useful, even though it’s no longer the 1970s? Because those same key-
based navigation commands work on the UNIX and ROOT command lines.9  

You don’t have to type the long commands in this tutorial, at least not more than once. 
With the help of tab-completion, the up-arrow key, navigation keypresses, and cut-and-
paste, you can edit your previous commands for new tasks.  

Don’t get too GUI 

You’re probably used to a graphical user interface (GUI) instead of the command line; for 
example, opening a file with an appropriate application by double-clicking on its icon in a 
window. For copying and editing files, or developing code, I recommend against a GUI; 
almost all physics development work is done on the command line. 

However, if all you’re going to do is read a file, it’s OK to double-click it in a file-manager 
window and let UNIX pick an application for you. 

This GUI advice won’t apply if you start using ROOT notebooks. We’ll get to that later. 

 

  

 

9  If you ask me to help you with a problem during the class and I start typing commands for you, you’re going to see 

me use the up-arrow key, then Ctrl-A, Ctrl-E, Meta-F, and Meta-B to jump the cursor through the commands you’ve 

typed and make changes.  

 I’ve grown so used to those navigation commands that when I edit a file, I use emacs -nw (for “no windows”) and 

skip the GUI features like menus and mouse-clicks. It’s faster for me to keep my hands on the keyboard most of the 

time.  



 

Page 10 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Setting up ROOT (5 minutes) 

ROOT is a robust, complex environment for performing physics analysis, and you can spend a 

lifetime learning it.10 Before you start using ROOT on the Nevis particle-physics systems, you have 

to type the following command: 

> module load root  

The command module load root sets some Unix environment variables and modifies 
your command and library paths. If you need to remove these changes, use the command 
module unload root.  

One of the variables that’s set is $ROOTSYS. This will be helpful to you if you're following 
one of the examples in the ROOT Users Guide. For example, if you're told to find a file in 
$ROOTSYS/tutorials (on page 79, for example) you'll be able to do this only after you've 
typed module load root. 

You have to execute module load root once each time you login to Linux and use 

ROOT. If you wish this command to be automatically executed when you login, you can add 
it to the .myprofile file in your home directory (read the warnings below before you do 
this).  

Warnings:  

• Some physics groups work with software frameworks that have their own versions 
of ROOT built-in; e.g., Athena in ATLAS or LArSoft in MicroBooNE. If you’re working 
with such a framework, you’ll have a special set-up command to use; you must not 
use the generic Nevis module load root. 

• The command module load root is only relevant on the Nevis particle-physics 
computer systems.11  Other systems will have different ways of setting the 
environment variables to make ROOT work. If there are other ROOT users on the 
systems you use, ask them how they set up ROOT. 

• Finally, do not put module load root in a start-up script if you’re using the 
notebook server. You’ll get lots of “not found” errors.  

 

 

10  That's three lifetimes so far. 

11  The module load UNIX command is part of a package called “environment modules.” Though it’s a standard 

package, environment modules are not normally included in a default UNIX installation. You can read more about 

this at https://twiki.nevis.columbia.edu/twiki/bin/view/Main/EnvironmentModules.  

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/EnvironmentModules


 

5/31/21 Basic Data Analysis Using ROOT Page 11 of 127 

Walkthrough: Starting ROOT (5 minutes) 

You are going to need at least two windows open during this part of the class. One window I'll call 

your “ROOT command” window; this is where you'll run ROOT. The other is a separate “UNIX 

command” window. On Unix, you can create a second window with the following command; don't 

forget the ampersand (&): 

> xterm & 

You can also select File->Open Terminal... (in Linux) or Shell->New Window (in Mac OS) in a 

running Terminal application.  

I like to open a new tab instead, but you can use whichever mode you prefer. I suggest you 
try all the methods to find out which one suits you.  

 

To actually run ROOT, just type:12 
> root  

The window in which you type this command will become your ROOT command window. 
You’ll see some “Welcome to ROOT” text in your command window. 

Click on the ROOT window to select it, if necessary.  

You can type .help to see a list of ROOT commands, You'll probably get more information than 

you can use right now. Try it and see. 

For the moment, the most important ROOT line command is the one to quit ROOT. To exit ROOT, 

type .q. Do this now and then start ROOT again, just to make sure you can do it. 

Sometimes ROOT will crash. If it does, it can get into a state for which .q won’t work. Try 
typing .qqq (three q) if .q doesn’t work; if that still doesn’t work, try five q, then seven q. 

Unfortunately, if you type ten q, ROOT won’t respond, “You’re welcome.” 

OK, that’s a dumb joke; I should leave the humor to xkcd. But the tip about .qqq, .qqqqq, 

and .qqqqqqq is legitimate. Sometimes I find just typing q or using Ctrl-C also works. 

ROOT can function as a calculator. If you want, in ROOT type 2+3 or sqrt(2) or 
whatever. I’m not going to dwell on this aspect of ROOT, but it’s good to know it’s there.13  

 

12  I’m starting with “basic” ROOT, which has a command syntax based on C++. For Python users, we’ll explore 

pyroot later. For these simple examples, the ROOT commands are almost the same in both languages anyway.  

13  One of those ROOT quirks that makes you go “uhh…”: If you want to take the sine of 30 degrees you have to use 
sin(30.*TMath::Pi()/180.)  



 

Page 12 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Plotting a function (15 minutes) 

Let's plot a simple function. Start ROOT and type the following at the prompt: 
[] TF1 f1("func1","sin(x)/x",0,10) 

[] f1.Draw() 

Note the use of C++ syntax to invoke ROOT commands.14 ROOT may help you out with 
context-based colors for the keywords it recognizes. In C++ notation, the first command 
says: Create an object (“f1”) that is a TF1 (we’ll get to what that is in a moment) with some 
properties (name, function, low range, high range). The second command tells f1 to draw 
itself.  

When you type in the first command, you may see something like 

(TF1 &) Name: func1 Title: sin(x)/x 

Don’t worry about this. It’s not an error.15  

If you have a keen memory (or you type .help on the ROOT command line), you'll see that 

neither TF1 nor any of its methods are listed as commands, nor will you find a detailed 

description of TF1 in the Users Guide. The only place that the complete ROOT functionality 
is documented is on the ROOT web site. 

Go to the ROOT web site at <http://root.cern.ch/> (did you remember to bookmark this site?), click 

on Reference, then on All Classes on the left-hand side, then on TF1; you may want to use the 

browser menu Edit->Find and search on TF1 to locate that link.16 Scroll down the page; you'll see 

some documentation and examples, the class methods, then method descriptions. 

Get to know your way around this web site. You'll come back often. 

Also note that when you executed f1.Draw() ROOT created a canvas for you named c1. 
“Canvas” is ROOT's term for a window that contains ROOT graphics; everything ROOT draws 
must be inside a canvas.17 

 

(continued on the next page) 

 

14  I’m simplifying. ROOT doesn’t use a C++ compiler, but an interpreter called “cling” that duplicates most of the 

C++ language specification. A prior version of ROOT used an interpreter called CINT; some of the ROOT 

documentation may still refer to the interpreter by that name.  

15  If it’s not an error, what is it? ROOT is printing out the type (TF1 &) and information about the object you’ve just 

created. When you become more familiar with programming, you’ll see that ROOT is printing out the result of 

creating the TF1 object, in the same way it would print the result if you typed 2+3. 

16  Assuming that ROOT hasn’t reorganized their web site (which they do periodically) since I last reviewed this 

tutorial, the link to the list of classes is https://root.cern/doc/master/annotated.html and the link to TF1 is 

https://root.cern/doc/master/classTF1.html.  

17  I’m simplifying again. The actual rule is that everything ROOT draws must be inside a “TPad.” Unless you want to 

add graphics widgets to a window (e.g., buttons and menus), this distinction won’t matter to you. 

http://root.cern.ch/
http://root.cern.ch/
https://root.cern/doc/master/annotated.html
https://root.cern/doc/master/classTF1.html


 

5/31/21 Basic Data Analysis Using ROOT Page 13 of 127 

Walkthrough: Plotting a function (continued)  

Bring window c1 to the front by left-clicking on it. As you move the mouse over different parts of 

the drawing (the function, the axes, the graph label, the plot edges) note how the shape of the mouse 

changes. Right-click the mouse on different parts of the graph and see how the pop-up menu 

changes. 

Position the mouse over the function itself (it will turn into a pointing finger or an arrow). Right-

click the mouse and select SetRange. Set the range to xmin=-10, xmax=10, and click OK. Observe 

how the graph changes.18,19 

Let's get into a good habit by labeling our axes. Right-click on the x-axis of the plot, select SetTitle, 

enter "x [radians]", and click OK.  

Right-clicking on the title gives you a TCanvas pop-up, not a text pop-up; it’s as if the title 
wasn’t there. Only if you right-click on the axis can you affect the title. In object-oriented 
terms, the title and its centering are a property of the axis. 

It's a good practice to always label the axes of your plots. Don't forget to include the units. 

 

 
Figure 4: http://xkcd.com/833/ by Randall Munroe 

Alt-text: “And if you labeled your axes, I could tell you exactly how MUCH better.” 

Do the same thing with the y-axis; call it "sin(x)/x". Select the RotateTitle property of the y-axis and 

see what happens. 

You can zoom in on an axis interactively. Left-click on the number "2" on the x-axis, and drag to the 

number "4". The graph will expand its view. You can zoom in as much as you like. When you've 

finished, right-click on the axis and select UnZoom. 

  

 

18  Did you get something funky instead? You probably right-clicked on the axis, not the function. Quit ROOT and start 

from the beginning. Question: Why did the graph change in such an unexpected way? For the answer, click on the 

question mark in the axis SetRange item.  

19  Note that ROOT handles the case where x=0 correctly. If you’re a math major, this may make you think. What 

happens if you plot cos(x)/x? tan(x)/x?  

http://xkcd.com/833/


 

Page 14 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Plotting a function (continued) 

You have a lot of control over how this plot is displayed. From the View menu, select Editor. Play 

around with this a bit. Click on different parts of the graph; notice how the options automatically 

change.  

Select View->Toolbar; among other options, you can see how you can draw more objects on the plot. 

There's no simple Undo command, as there might be in a dedicated graphics program, but you can 

usually right-click on an object and select Delete from the pop-up menu. 

If you want to change the color of the function, right-click on the function and select 

SetLineAttributes.  

Some of the pop-up menu items have question-mark links in them. While holding down the right 

button (to keep the menu active), move the mouse to the “?” and press the left button. There’ll be a 

pause for a few seconds, then you’ll see a description of what the item means. You can also select an 

option, then click on the online help button. Try this for a few options.  

Note that the actual helpfulness of the descriptions varies considerably.  

There’s also a Help menu on the upper-right hand corner of this window. Most ROOT 
windows have such a menu. Take look at its contents. I usually find that the information is 
enigmatic, but sometimes there’s something useful.  

If you “ruin” your plot, you can always quit ROOT and start it again. We're not going to work 
with this plot in the future anyway. 

 

 
Figure 5: https://xkcd.com/523/ by Randall Munroe 

Alt-text: “There’s also a spike on the Fourier transform at the one-month mark where –”  

“You want to stop talking right now.” 

 

If you have a choice, ruin the plot. Don’t let the plot ruin you.  

 

 

 

https://xkcd.com/523/


 

5/31/21 Basic Data Analysis Using ROOT Page 15 of 127 

Exercise 1: Detective work (10 minutes) 

Duplicate the following plot:20 

 

Figure 6: Some detective work is required to duplicate this plot. 

Look at the TF1 command above. If class TF1 will generate a one-dimensional function, 
what class might generate a two-dimensional function?  

If TF1 takes a function name, formula, and x-limits in its constructor, what arguments 

might a two-dimensional function class use? Where could you check your guess?  

With your first try, you probably got a contour plot, not a surface plot. Here’s another hint: 
you want the give the option "surf1" (with quotes) to the Draw method. 

If you're wondering how to figure out that “surf1” was an valid option to give to Draw(): 
Unfortunately, this is not obvious in the current ROOT web site or documentation. Near the 
top of the TF1 description, it states “TF1 graphics function is via the TH1 and TGraph 
drawing functions.” If you go to the TH1 class and look at the Draw() method, it says 
“Histograms are drawn via the THistPainter class.” If you go to the THistPainter 
class, you’ll see all the available Draw() options. 

It’s a long chain of references, and I didn’t expect you to figure it out on your own. The 
point is to prepare you for the kind of documentation searches you often have to do to 
accomplish something in ROOT; for example, the exercises in Parts Seven and Eight of this 
tutorial. Finding the “surf1” option is trivial by comparison! 

 

20  The colors don’t have to be the same, since the default colors change in different ROOT versions.  

10- 8- 6- 4- 2- 0 2 4 6 8 10

10-
8-

6-
4-

2-
0

2
4

6
8

10

0.2-

0

0.2

0.4

0.6

0.8

1

sin(x)*sin(y)/(x*y)



 

Page 16 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Working with Histograms (15 minutes) 

Histograms are described in Chapter 3 of the ROOT Users Guide. You may want to look over 
that chapter later to get an idea of what else can be done with histograms other than what I 
cover in this class. 

Let's create a simple histogram: 
[] TH1D h1("hist1","Histogram from a gaussian",100,-3,3) 

Let’s think about what these arguments mean for a moment (and also look at the 
description of TH1D on the ROOT web site). The ROOT name of the histogram is hist1. 

The title displayed when plotting the histogram is “Histogram from a gaussian”.21 There are 
100 bins in the histogram. The limits of the histogram are from -3 to 3. 

Question: What is the width of one bin of this histogram? Type the following to see if your 
answer is the same as ROOT thinks it is: 

[] h1.GetBinWidth(0) 

Note that we have to indicate which bin’s width we want (bin 0 in this case), because you 
can define histograms with varying bin widths.22 

If you type 
[] h1.Draw() 

right now, you won’t see much. That's because the histogram is empty. Let’s randomly generate 

10,000 values according to a distribution and fill the histogram with them: 
[] h1.FillRandom("gaus",10000) 

[] h1.Draw() 

The "gaus" function is pre-defined by ROOT (see the TFormula class on the ROOT web 
site; there’s also more on the next page of this tutorial). The default Gaussian distribution 
has a width of 1 and a mean of zero.  

If you’d like to see a formal definition of the words “Mean” and “StdDev” on the plot, see 
page 80. Question (for those who've had statistics): In this histogram, why isn't the mean 
exactly 0, nor the width exactly 1? 

Add another 10,000 events to histogram h1 with the FillRandom method (use up-arrow to enter 

the command again). Click on the canvas. Does the histogram update immediately, or do you have to 

type another Draw command? 

 

21  Did you just ask “What is a ‘gaussian’?” I created Part Six in this tutorial just for you! See page 95. 

22  For advanced users: Why would you have varying bin widths? Recall the “too many bins” and “too few bins” 

examples that I showed in the introduction to the class. In physics, it’s common to see event distributions with long 

“tails.” There are times when it’s a good idea to have small-width bins in regions with large numbers of events, and 

large bin widths in regions with only a few events. This can result in having roughly the same number of events per 

bin in the histogram, which helps with fitting to functions as discussed in the next few pages. 



 

5/31/21 Basic Data Analysis Using ROOT Page 17 of 127 

Walkthrough: Working with Histograms (continued) (10 minutes) 

Let’s put some error bars on the histogram. Select View->Editor, then click on the histogram. From 

the Error pop-up menu, select Simple. Try clicking on the Simple Drawing box and see how the plot 

changes. 

With these options, the size of the error bars is equal to the square root of the number of 
events in that histogram bin. Use the up-arrow key in the ROOT command window and 
execute the FillRandom method a few more times; draw the canvas again. Question: 
Why do the error bars get smaller? Hint: Look at how the y-axis changes. 

You will often want to draw histograms with error bars. For future reference, you could 
have used the following command instead of the Editor: 

[] h1.Draw("e") 

Let's create a function of our own: 
[] TF1 myfunc("myfunc","gaus",0,3) 

The “gaus” (or gaussian) function is actually P0e
-

x-P1( )
P2

æ

è
ç

ö

ø
÷

2

where P0, P1, and P2 are “parameters” of the 

function. Let’s set these three parameters to values that we choose, draw the result, and then create a 

new histogram from our function: 
[] myfunc.SetParameters(10.,1.0,0.5) 

[] myfunc.Draw() 

[] TH1D h2("hist2","Histogram from my function",100,-3,3) 

[] h2.FillRandom("myfunc",10000)  

[] h2.Draw() 

Note that we could also set the function's parameters individually: 
[] myfunc.SetParameter(1,-1.0) 

[] h2.FillRandom("myfunc",10000)  

What's the difference between SetParameters and SetParameter? If you have any 

doubts, check the description of class TF1 on the ROOT web site. 

 

 
Figure 7: https://xkcd.com/904/ by Randall Munroe 

Alt-text: “Also, all financial analysis. And, more directly, D&D.” 

 

https://xkcd.com/904/


 

Page 18 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Saving and printing your work (15 minutes) 

By now you've probably noticed the Save sub-menu under the File menu on the canvas. There are 

many file formats listed here, but we’re only going to use three of them for this tutorial. 

Select Save->canvas-name.C from one of the canvases in your ROOT session. Let’s assume for the 

moment that you’re working with canvas c1, so the file “c1.C” is created. In your UNIX window, 

type 

> less c1.C 

(If you get complaints about a file not found, the name of the canvas is “see-one,” not “see-
ell.”) As you can see, this can be an interesting way to learn more ROOT commands. 
However, it doesn't record the procedure you went through to create your plots, only the 
minimal commands necessary to display them.  

Next, select Save->c1.pdf from the same canvas; we’ll print it later. 

Finally, select Save->c1.root from the same canvas to create the file "c1.root". Quit ROOT with the 

.q command, and start it again. 

To re-create your canvas from the ".C" file, use the command 
[] .x c1.C 

This is your first experience with a ROOT “macro,” a stored sequence of ROOT commands 
that you can execute at a later time. One advantage of the “.C method” is that you can edit 
the macro file, or cut-and-paste useful command sequences into macro files of your own.23 

You can also start ROOT and have it execute the macro all in a single line: 

> root c1.C 

If you are physically in the Nevis research building, quit ROOT and print out your PDF file with the 

command 
> lpr -Pbw-research c1.pdf 

If you want to print directly from the ROOT canvas using File->Print, type  
lpr -Pbw-research  
in the first text box and leave the second one empty. 

Not only is the PDF format useful if you want to print something, but it’s usually simple to 
embed a PDF file in a paper or a presentation. You can’t embed a ROOT macro in a 
Powerpoint document and expect to see its graph! 

 

23  This is still useful if you’re working in pyroot, though you’ll have to do some translation from C++ to Python.  



 

5/31/21 Basic Data Analysis Using ROOT Page 19 of 127 

Walkthrough: The ROOT browser (5 minutes) 

The ROOT browser is a useful tool, and you may find yourself creating one at every ROOT 
session.  

One way to retrieve the contents of file “c1.root” is to use the ROOT browser. Start up ROOT and 

create a browser with the command:24 
[] TBrowser tb 

In the left-hand pane, scroll to the folder with the same name as your home directory.25 Scroll 

through the list of files. You'll notice special icons for any files that end in ".C" or ".root". If you 

double-click on a file that ends in ".C": if the Editor tab is in front ROOT will display its contents in 

the editor window; if the Canvas tab is in front, ROOT will execute its contents. Click on the Canvas 

tab, then double-click on c1.C to see what happens. 

Now double-click on c1.root, then double-click on c1;1. 

Don’t see anything? Click on the Canvas 1 tab in the browser window.  

What does "c1;1" mean? You're allowed to write more than one object with the same name 
to a ROOT file (this topic is part of a lesson later in this tutorial). The first object has ";1" put 
after its name, the second ";2", and so on. You can use this facility to keep many versions of 
a histogram in a file, and be able to refer back to any previous version. 

At this point, saving a canvas as a ".C" file or as a ".root" file may look the same to you. But 
these files can do more than save and re-create canvases. In general, a ".C" file will contain 
ROOT commands and functions that you'll write yourself; ".root" files will contain complex 
objects such as ntuples. 

The ROOT browser has other “gee-whiz” features. For example, if you if select Browser->New 
HTML, it will open a new tab and display the ROOT class index web page. Feel free to use this built-

in web browser if you wish; I sometime find that going through the nested web pages on the ROOT 

web site via Firefox to be too much of a hassle. 

As nifty as the ROOT browser is, for the work that you’ll do this summer you’ll probably 
reach the limits of what it can do for you, especially if you have to work with large numbers 
of files, histograms, ntuples, or plots. 

Still, it’s nice to know that it’s there, in case (as the name suggests) you want to browse 
quickly through a couple of ROOT files. 

 

24  You may see someone using this command instead:  
new TBrowser 

The difference is slight, and only matters if you’re experienced with C++.  (If you are experienced with C++: what is 

that difference? Hint: see page 46.) 

25  If you have a Nevis temporary account, the folder hierarchy may be puzzling to you; your home directory will be in 

/nevis/milne/files/<account>. For now, don’t worry about this. If you’d like to know more, there’s a 

page on automount at https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Automount. 

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Automount


 

Page 20 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Fitting a histogram (15 minutes) 

I created a file with a couple of histograms in it for you to play with. Switch to your UNIX window 

and copy this file into your directory:26 
> cp ~seligman/root-class/histogram.root $PWD 

Go back to your TBrowser window. (If you've quit ROOT, just start it again and start a new 

browser.) Click on the folder in the left-hand pane with the same name as your home directory.  

Double-click on histogram.root. You can see that I’ve created two histograms with the names 

hist1 and hist2. Double-click on hist1; you may have to move or switch windows around, or 

click on the Canvas 1 tab, to see the c1 canvas displayed. 

You can guess from the x-axis label that I created this histogram from a gaussian 
distribution, but what were the parameters? In physics, to answer this question we typically 
perform a “fit” on the histogram: you assume a functional form that depends on one or 
more parameters, and then try to find the value of those parameters that make the 
function best fit the histogram. 

Right-click on the histogram and select FitPanel. Under Fit Function, make sure that Predef-1D is 

selected. Then make sure gaus is selected in the pop-up menu next to it, and Chi-square is selected 

in the Fit Settings->Method pop-up menu. Click on Fit at the bottom of the panel. You'll see two 

changes: A function is drawn on top of the histogram, and the fit results are printed on the ROOT 

command window. 

Interpreting fit results takes a bit of practice. Recall that a gaussian has 3 parameters (P0, P1, 
and P2); these are labeled "Constant", "Mean", and "Sigma" on the fit output. ROOT 
determined that the best value for the "Mean" was 5.98±0.03, and the best value for the 
"Sigma" was 2.43±0.02. Compare this with the Mean and RMS printed in the box on the 
upper right-hand corner of the histogram. Statistics questions: Why are these values almost 
the same as the results from the fit? Why aren't they identical? 

On the canvas, select Fit Parameters from the Options menu; you'll see the fit parameters displayed 

on the plot.  

As a general rule, whenever you do a fit, you want to show the fit parameters on the plot. 
They give you some idea if your “theory” (which is often some function) agrees with the 
“data” (the points on the plot). 

 

26  If you’re going through this class and you’re not logged onto a system on the Nevis Linux cluster, you’ll have to get 

all the files from my web site: http://www.nevis.columbia.edu/~seligman/root-class/files/ 

 If you want to get all the files from that directory at once, you can use this UNIX command: 

wget -r -np -nH --cut-dirs=2 -R "index.html*" \ 

   https://www.nevis.columbia.edu/~seligman/root-class/files/ 

 You may have to install the wget command on your system, since it’s often not installed by default.  

 Be aware that in that directory there are a lot of work files I created to test things. There's more in there than just the 

files I reference in my tutorials. 

 

 

http://www.nevis.columbia.edu/~seligman/root-class/files/


 

5/31/21 Basic Data Analysis Using ROOT Page 21 of 127 

 

Figure 8: The resulting plot should look something like this. 

 

 

 

 

Figure 9: It will look nothing like this. This would be a poor fit for your function. 

http://xkcd.com/815 by Randall Munroe 

Alt-text: “As the CoKF approaches 0, productivity goes negative as you pull OTHER people into chair-spinning contests.” 

  

http://xkcd.com/815


 

Page 22 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Fitting a histogram (continued) 

As a check, click on landau (which vaguely resembles the plot in Figure 9) on the FitPanel's Fit 
Function pop-up menu and click on Fit again; then try expo and fit again. 

You may have to click on the Fit button more than once for the button to “pick up” the click.  

It looks like of these three choices (gaussian, landau, exponential), the gaussian is the best 
functional form for this histogram. Take a look at the "Chi2 / ndf" value in the statistics box 
on the histogram ("Chi2 / ndf" is pronounced "kie-squared per [number of] degrees of 
freedom"). Do the fits again and observe how this number changes. Typically, you know you 
have a good fit if this ratio is about 1.27 

The FitPanel is good for gaussian distributions and other simple fits. But for fitting large 
numbers of histograms (as you’d do in Parts Seven and Eight) or more complex functions, 
you want to learn the ROOT commands. 

To fit hist1 to a gaussian, type the following command:28 
[] hist1->Fit(“gaus”) 

This does the same thing as using the FitPanel. You can close the FitPanel; we won’t be using it 

anymore. 

Go back to the browser window and double-click on hist2.  

You've probably already guessed by reading the x-axis label that I created this histogram 
from the sum of two gaussian distributions. We’re going to fit this histogram by defining a 
custom function of our own. 

Define a user function with the following command: 
[] TF1 func("mydoublegaus","gaus(0)+gaus(3)") 

Note that the internal ROOT name of the function is "mydoublegaus", but the name of the 
TF1 object is func. 

What does "gaus(0)+gaus(3)" mean? You already know that the "gaus" function uses three 
parameters. "gaus(0)" means to use the gaussian distribution starting with parameter 0; 
"gaus(3)" means to use the gaussian distribution starting with parameter 3. This means our 
user function has six parameters: P0, P1, and P2 are the "constant", "mean", and "sigma" of 
the first gaussian, and P3, P4, and P5 are the "constant", "mean", and "sigma" of the second 
gaussian. 

 

(continued on the next page) 

 

27  If you’re not familiar with terms like “chi2” or “chi-squared” there’s a brief introduction to statistics on page 80. 

28  What’s the deal with the arrow “->” instead of the period? It’s because when you read in a histogram from a file, 

you get a pointer instead of an object. This only matters in C++, not in Python. See page 46 for more information. 



 

5/31/21 Basic Data Analysis Using ROOT Page 23 of 127 

Walkthrough: Fitting a histogram (continued) 

Let's set the values of P0, P1, P2, P3, P4, and P5, and fit the histogram.29 
[] func.SetParameters(5.,5.,1.,1.,10.,1.) 

[] hist2->Fit(“mydoublegaus”) 

It’s not a very good fit, is it? This is because I deliberately picked a poor set of starting 
values. Let’s try a better set: 

[] func.SetParameters(5.,2.,1.,1.,10.,1.) 

[] hist2->Fit(“mydoublegaus”) 

These simple fit examples may leave you with the impression that all histograms in physics 
are fit with gaussian distributions. Nothing could be further from the truth. I’m using 
gaussians in this class because they have properties (mean and width) that you can 
determine by eye.  

Chapter 5 of the ROOT Users Guide has a lot more information on fitting histograms, and a 
more realistic example. 

If you want to see how I created the file histogram.root, go to the UNIX window and type: 

> less ~seligman/root-class/CreateHist.C 

In general, for fitting histograms in a real analysis, you’ll have to define your own functions 
and fit to them directly, with commands like: 

[] TF1 func("myFunction","<...some parameterized TFormula...>") 

[] func.SetParameters(...some values...) 

[] myHistogram->Fit("myFunction") 

For a simple gaussian fit to a single histogram, you can always go back to using the FitPanel. 

 

29  It may help to view the PDF file with this tutorial and cut-and-paste the commands from here into your ROOT 

window. You can find this file at http://www.nevis.columbia.edu/~seligman/root-class/. 

 Warning: For now, don’t fall into the trap of cutting-and-pasting every command from this tutorial into ROOT. Save 

it for the more complicated commands like SetParameters or file names like  

~seligman/root-class/AnalyzeVariables.C. You want to get the “feel” for issuing commands 

interactively (perhaps with the tricks described on page 8), and that won’t happen if you just type Ctrl-C/click/Ctrl-

V over and over again.  

 When we get to Part Two, you’ll start cutting-and-pasting commands into notebooks on a regular basis.  

http://www.nevis.columbia.edu/~seligman/root-class/


 

Page 24 of 127 Basic Data Analysis Using ROOT 5/31/21 

 
Figure 10: Some possibilities for fitting plots using ROOT. If you choose to read the discussion on statistics in Part Six, 

starting on page 95, this cartoon may be funnier (or more tragic; such is the nature of physics).  

https://xkcd.com/2048/ by Randall Munroe 

Alt-text: “Cauchy-Lorentz: ‘Something alarmingly mathematical is happening, and you should probably  

pause to Google my name and check what field I originally worked in.’” 

https://xkcd.com/2048/


 

5/31/21 Basic Data Analysis Using ROOT Page 25 of 127 

Walkthrough: Saving your work, part 2 (15 minutes) 

So now you’ve got a histogram fitted to a complicated function. You can use Save as 
c1.root, quit ROOT, restart it, then load canvas "c1;1" from the file. You'd get your 
histogram back with the function superimposed... but it's not obvious where the function is 
or how to access it now. 

What if you want to save your work in the same file as the histograms you just read in? You 
can do it, but not by using the ROOT browser. The browser will open .root files in read-only 
mode. To be able to modify a file, you have to open it with ROOT commands. 

Try the following: Quit ROOT (note that you can select Quit ROOT from the Browser menu of the 

browser or the File menu of the canvas). Start ROOT again, then modify "histogram.root" with the 

following commands: 
[] TFile file1("histogram.root","UPDATE") 

It is the "UPDATE" option that will allow you to write new objects to "histogram.root". 

[] hist2->Draw() 

For the following two commands, hit the up-arrow key until you see them again.30 

[] TF1 func("user","gaus(0)+gaus(3)") 

[] func.SetParameters(5.,2.,1.,1.,10.,1.) 

[] hist2->Fit("user") 

Now you can do what you couldn't before: save objects into the ROOT file: 

[] hist2->Write() 

[] func.Write() 

Close the file to make sure you save your changes31: 

[] file1.Close() 

Quit ROOT, start it again, and use the ROOT browser to open "histogram.root". You'll see a couple 

of new objects: "hist2;2" and "user;1". Double-click on each of them to see what you've saved. 

You wrote the function with func.Write(), but you saw user;1 in the file. Do you see 
why? It has to do with the name you give to objects in your programming environment, 
versus the internal name that you give to ROOT. There’s more about this on page 43. I 
wanted to point it out so that you were aware that, though they seem closely connected at 
times, C++ and ROOT are two different entities. 

Chapter 11 of the ROOT Users Guide has more information on using ROOT files.  

 

30  In case you care: ROOT stores your ROOT commands in the file “.root-hist” in your home directory; that’s where it 

gets the lines you see with the up-arrow key. Similarly, the UNIX shell stores the last 5000 commands you’ve typed 

in .sh-history in your home directory.  

31  I’ve seen some ROOT documentation that suggests that closing the file is optional, since ROOT usually closes the 

file for you when you quit the program. However, I’ve also seen many ROOT files made unreadable because they 

weren’t closed properly. I suggest you always explicitly close any file you open! 



 

Page 26 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Variables in ROOT NTuples/Trees (10 minutes) 

I’ve created a sample ROOT ntuple for you. Quit ROOT. Copy the example file: 
> cp ~seligman/root-class/experiment.root $PWD 

Start ROOT again. Start a new browser with the command 
[] TBrowser b 

Click on the folder in the left-hand pane with the same name as your home directory. Double-click 

on experiment.root. There's just one object inside: tree1, a ROOT TTree (or ntuple) with 100,000 

simulated physics events. 

There's no real physics associated with the contents of this ntuple. I created it to illustrate 
ROOT concepts, not to demonstrate physics with a real detector. 

Right-click on the tree1 icon, and select Scan. You'll be presented with a dialog box; just hit OK for 

now. Select your ROOT window, even though the dialog box didn't go away. At first you'll notice 

that it's a lot of numbers. Take a look at near the top of the screen; you should see the names of the 

variables in this ROOT Tree.32 

You can hit Enter to see more numbers, but you probably won't learn much. Hit q to finish the scan. 

You may have to hit Enter a couple of times to see the ROOT prompt again. 

In this simple example, a particle is traveling in a positive direction along the z-axis with 
energy ebeam. It hits a target at z=0, and travels a distance zv before it is deflected by the 

material of the target. The particle’s new trajectory is represented by px, py, and pz, the 

final momenta in the x-, y-, and z-directions respectively. The variable chi2 (χ2) represents 
a confidence level in the measurement of the particle’s momentum after deflection. The 
variable "event" is just the event number (0 for the first event, 1 for the second event, 2 for 
the third event... 99999 for the 100,000th event).  

 

  
Figure 11: Sketch of the experiment and variables.  

 

32  If the names “stutter” (e.g., you see px.px instead of just px), don’t be concerned. The name of the package is 

ROOT, an ntuple is a type of Tree, and the individual variables are “leaves” on the Tree. ROOT has “branches” as 

well: if you remember that spreadsheet model I showed you during the lecture, branches correspond to entire 

columns. In the scan, ROOT is displaying both the name of the branch and the name of the leaf within the branch. 

For an ntuple, each branch only has one leaf, but TTree::Scan() has no way of knowing that, so it displays 

everything.  



 

5/31/21 Basic Data Analysis Using ROOT Page 27 of 127 

Walkthrough: Variables in ROOT NTuples/Trees (continued) 

Did you notice what's missing from the above description? Answer: units. I didn't tell you 
whether zv is in millimeters, centimeters, inches, yards, etc. Such information is not usually 
stored inside an ntuple; you have to find out what it is and include the units in the labels of 
the plots you create.33 For this example, assume that zv is in centimeters (cm), and all 
energies and momenta are in GeV. 

There’s something else that’s missing, but you wouldn’t have noticed it unless you’ve 
performed a scientific analysis before: time. Any real experiment would have several 
variables relating to time (the time of the event, the time that the particle interacted in the 
detector, etc.) I haven’t included any time-related variables in this ntuple, with the possible 
exception of the event number, mainly because they wouldn’t illustrate what I want to 
teach you in this tutorial.  

 

 

Figure 12: http://xkcd.com/1524 by Randall Munroe 

Alt-text: “I would say that time is one of my top three favorite dimensions.” 

 

  

 

33 Advanced note: There is a way of storing comments about the contents of a ROOT tree, which can include 

information such as units. However, you can't do this with ntuples; you have to create a C++ class that contains your 

information in the form of comments and use a ROOT “dictionary” to include the additional information. This is 

outside the scope of what you'll probably be asked to do this summer. If you're interested in the concept, it's 

described in Chapter 15 of the ROOT User's Guide. There’s an example in Part Eight of this tutorial. 



 

Page 28 of 127 Basic Data Analysis Using ROOT 5/31/21 

Using the Treeviewer 34 

Right-click the tree1 icon again and select StartViewer. 

You’re looking at the TreeViewer, a tool for making plots from ntuples interactively. The 
TreeViewer is handy for quick studies of ntuples, but it’s almost certainly not enough to get 
you through the work you’ll have to do this summer. Any serious analysis work will involve 
editing ROOT macros and writing C++ code or Python scripts. 

Still, there are times when a simple tool can be useful. Let’s use the TreeViewer to examine 
the tree1 ntuple. Once you have an idea of what’s inside tree1, you’ll be ready to start 
writing programs to analyze it.  

You can figure out how to use the TreeViewer on your own; the Help menu in the right-
hand corner of the TreeViewer panel is genuinely useful. Here’s a quick guide to get you 
started.  

In the second column of the large pane in the window, you’ll see the variables in the ntuple; they all 

have a “leaf” icon next to them. Double-click on one of them and look the resulting histogram. 

Double-click on a few more variables and see how the histogram changes.  

 

 

Figure 13: This is what I see when I run TreeViewer on my Macintosh.  

 

34  If you feel that this course has been too easy so far, you can skip the TreeViewer. It’s trivial to learn on your own if 

you want to. If you already know about cuts and scatterplots, skip ahead to page 34. 



 

5/31/21 Basic Data Analysis Using ROOT Page 29 of 127 

Correlating variables: scatterplots (10 minutes)  
Left−click on a variable and hold the mouse down. Drag the variable next to the blue curly X in the 

first column, over the word −empty−, and let go of the button. Now select a different variable and 

drag it over next to the curly Y. Click on the scatterplot icon in the lower left−hand corner of the 

TreeViewer (it’s next to a button labeled SPIDER35).  

This is a scatterplot, a handy way of observing the correlations between two variables. Be 
careful: it’s easy to fall into the trap of thinking that each (x,y) point on a scatterplot 
represents two values in your n−tuple. In fact, the scatterplot is a grid and each square in 
the grid is randomly populated with a density of dots that’s proportional to the number of 
values in that grid.  

Drag different pairs of variables to the X and Y boxes and look at the scatterplots. Do you see any 

correlations between the variables?  

If you just see a shapeless blob on the scatterplot, the variables are likely to be 
uncorrelated; for example, plot px versus py. If you see a pattern, there may be a 

correlation; for example, plot pz versus zv. It appears that the higher pz is, the lower zv 

is. Perhaps the particle loses energy before it is deflected in the target.  

 
Figure 14: This is what I see when I make a scatterplot of zv versus ebeam. The variables look uncorrelated to me, subject to 

the restriction that we can't have zv < 0. 

  

 

35  Go ahead and click on the SPIDER button if you want. A spider (or radar) chart is a way of displaying multivariant 

data in a two-dimensional graph. For more information, see  

 https://www.fusioncharts.com/resources/chart-primers/radar-chart 

 I’ve never seen spider charts used in physics, except when I looked up the definition for this tutorial. By the way, if 

you clicked that link, you just looked up spider charts on the web. (OK, I’m no Randall Munroe.) 

https://www.fusioncharts.com/resources/chart-primers/radar-chart


 

Page 30 of 127 Basic Data Analysis Using ROOT 5/31/21 

New variables: expressions (10 minutes)  

There are other quantities that we may be interested in apart from the ones already 
present in the ntuple. One such quantity is which is defined by: 

  

This is the transverse momentum of the particle, that is, the component of the particle’s 
momentum that's perpendicular to the z-axis. 

You can use TreeViewer to create expressions that are functions of the variables in the tree. Double-

click on one the E() icons that has the word −empty− next to it. In the dialog box, type 

sqrt(px*px+py*py) in the box under Expression, and type ~pt36 in the box under Alias. Then 

click on Done. Now double−click on the word ~pt in the TreeViewer.  

When you’re typing in the expression, you don’t have to type the name of any variable in 
the tree. You can just click on the name in the TreeViewer.  

The quantity theta, or the angle that the beam makes with the z-axis, is calculated by: 

  

The units are radians. Let’s create a new expression to calculate theta. Double−click on a different 

E() icon with −empty− next to it. Type atan2(~pt,pz) under Expression, and ~theta under 

Alias. Click Done, then double−click on ~theta. 37 

After an expression is no longer empty, you can’t double−click on it to edit it; that will just 
cause the expression to be plotted. To edit an existing expression, right−click on it and 
select EditExpression.  

Note that you can have expressions within expressions (such as ~pt in the definition of 
~theta). All expressions that you create must have names that begin with a tilde (~), and 
the expression editor will enforce this. A common error is to forget the tilde when you’re 
typing an expression; that’s the reason why it can be a good idea to insert a variable or an 
alias into an expression by clicking on it in the TreeViewer.   

  

 

36  That first character is a tilde (~), not a dash.  

37  The reason to use atan2(y,x) instead of just atan(y/x) is that the atan2 function correctly handles the case 

when x=0. 

  

pT

  

pT = px
2 + py

2

  

q = arctan
pT

pz

æ 

è 
ç 

ö 

ø 
÷ 



 

5/31/21 Basic Data Analysis Using ROOT Page 31 of 127 

Restricting values: cuts (10 minutes)  

Let’s create a "cut" (a limit on the range of a variable to be plotted). Edit another empty expression 

and give it the formula zv < 20 and the alias zcut.  

Note how the icon changes in the TreeViewer. ROOT recognizes that you’ve typed a logical 
expression instead of a calculation.  

Drag ~zcut to the scissor icon. Double−click on zv to plot it. Double−click on some of the other 

variables and look at both the histogram title and the Nent in the statistics box of the histograms; the 

z-cut affects all the plots, not just the plot of zv.  

Double−click on the scissor icon to turn off the cut; note the change in the scissor icon. 

Double−click on the icon again to turn the cut back on.  

Now edit ~zcut by right−clicking on it and selecting EditExpression. Edit the expression to read 

zv<20 && zv>10 and click Done. Plot zv. Has the cut changed? Now drag ~zcut to the 

scissors and plot zv again. 38  

 

 

Figure 15: This is what I see when I make a plot of theta with the cut "zv<20 && zv>10". 

(continued on next page) 

  

 

38  For those who know what a “weighted histogram” means: A “cut” is actually a weight ROOT applies when filling a 

histogram; a logical expression has the value 1 if true and the value 0 if false. If you want to fill a histogram with 

weighted values, use an expression for the cut that corresponds to the weight.  

 For example: a cut of 1/e will fill a histogram with each event weighted by 1/e; a cut of 

(1/e)*(sqrt(z)>3.2) will fill a histogram with events weighted by 1/e, for those events with sqrt(z) greater 

than 3.2. 



 

Page 32 of 127 Basic Data Analysis Using ROOT 5/31/21 

Restricting values: cuts (continued) (optional)  

If you wanted to display this plot in a talk, you’d have to label both axes (which you learned to do on 

page 13) and do something about that title. It’s not clear how to fix the title of a plot from 

TreeViewer; if you right-click on it you see that it’s a TPaveText with a number of options that 

don’t seem to do what you want.  

I figured this out by saving the plot as c1.C, examining that file, and looking up TPaveText on the 

ROOT web site. The simplest way to edit the title is right-click on it, select Clear, then select 

InsertText and type in your new title.  

 

 

 
Figure 16: http://xkcd.com/167 by Randall Munroe 

That’s why we climb (analyze) TTrees: the future is an adventure, and you don’t know what you’ll find.  

And perhaps the first speaker is wrong in other ways.  

Alt-text: “Why can’t you have normal existential angst like all the other boys?” 

 

  

http://xkcd.com/167


 

5/31/21 Basic Data Analysis Using ROOT Page 33 of 127 

Part Two – The Notebook Server 

If you’re familiar with Jupyter or IPython, you can skim or skip this part.  

Now I’m going to introduce a different software development tool, the notebook. It’s independent of 

ROOT, but it can be handy for creating ROOT programs.  

Starting with Jupyter (5 minutes) 

In any web browser (laptop, desktop, tablet), go to https://notebook.nevis.columbia.edu.39 You’ll be 

prompted for your Nevis Linux cluster account name and password.40 

When you visit notebook for the first time, you'll see your home directory. You can perform some 

elementary file operations from this screen: check the box next to a filename, and you'll see an 

option near the top of the screen to rename or delete the file. The Upload button near the top left 

allows you to copy files from the computer you're using to the Nevis cluster.  

The fun part is in the pop-up menu you get from clicking the “New” button near the top left: 

• Text File will give you a basic text editor. You will also get a text editor if you click on a text 

file on the home directory page. The Edit menu within the editor page will let you select 

which text editor you use; from page 8 you know my favorite editor is Emacs, but you can 

use whatever you wish.  

• Folder lets you create a new sub-directory.  

• Terminal will give you access to a limited (but still useful) terminal emulator.41 

• And then we have the notebook kernels… 

In Jupyter, a “kernel” is an environment for interpreting commands. I installed lots of 
kernels on the notebook server for users to explore,42 but for this tutorial there are only two 
of interest: “Python 3” (which includes an interface to ROOT)43 and “ROOT C++”.  

 
Figure 17: https://xkcd.com/1202/ by Randall Munroe  

 

39  Take care: it’s “https”, not just “http”.  

40  If you don’t have an active account at Nevis, then you won’t be able to login. You’ll have to install Jupyter on your 

own system (see page 88) or proceed without it; go on to the next section.  

41  For details, see https://twiki.nevis.columbia.edu/twiki/bin/view/Main/JupyterTerminal.  

42  For a description of each of the kernels, see https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython.  

43  Check with your working group. They may still use Python 2.   

https://notebook.nevis.columbia.edu/
https://xkcd.com/1202/
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/JupyterTerminal
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython


 

Page 34 of 127 Basic Data Analysis Using ROOT 5/31/21 

Your first notebook (10 minutes) 

From the New menu, select Python 3. You’ll see your first empty cell, labeled In [1]. At the top 

of the page, you’ll see that the name of the notebook is Untitled. The first thing you should do 

when creating a new notebook is to give it a new name.44 Go to the File menu within the Jupyter 

page and select Rename…. Pick any name you wish, such as pythontest.  

After you’ve renamed the notebook, go back to the Jupyter Home window. You’ll see the notebook 

file with the extension .ipynb.  

Go back to the notebook window. Under the Help menu, take the User Interface Tour (it’s about a 

minute long). Note the Keyboard Shortcuts.45  

Cut-and-paste the following into that first cell.46  
from ROOT import TH1D, TCanvas 

my_canvas = TCanvas("mycanvas","canvas title",800,600) 

example = TH1D("example","example histogram",100,-3,3) 

example.FillRandom("gaus",10000) 

exomple.Draw("E") 

my_canvas.Draw() 

This code is in Python, but after going through Part OneOne of this tutorial you can probably 
figure out what most of these lines are supposed to do.  

To "execute" the contents of a given cell, hit SHIFT-ENTER with your cursor in that cell. Do that 

now.  

Oops! There’s an error. Fix the error in the cell and hit SHIFT-ENTER again.  

Assuming there have been no mistakes, you should see a histogram embedded in the web 
page.  

There are also a couple of warning messages: 

Warning in <TCanvas::Constructor>: Deleting canvas with same name: 

mycanvas  

Warning in <TROOT::Append>: Replacing existing TH1: example (Potential 

memory leak). 

Let’s think about what those messages mean. When you execute lines in a cell, your 
environment doesn’t “start fresh”; everything you defined before is still there. ROOT is 
warning you that the TCanvas and the histogram are being overridden.  

In Python, you can usually ignore these warnings.   

 

44  You don’t have to do this. But if you don’t, your home directory will soon be littered with notebooks named 

Untitled.ipynb, Untitled1.ipynb, Untitled2.ipynb, etc., and you won’t know what’s in any of them.  

45  There are more Jupyter hints at https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/. Some of those 

tips won’t work on the Nevis systems; e.g., you can’t install new packages on the Nevis notebook server. The last 

tip, on different ways to share notebooks, will be helpful to those who work with folks who don’t use Jupyter.  

46  You can type it in manually if you want, but (a) that’s a lot of typing, and (b) you have to make sure you get each 

character correct for the sake of this example.  

https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/


 

5/31/21 Basic Data Analysis Using ROOT Page 35 of 127 

Click in the next cell and cut-and-paste this line, then hit SHIFT-ENTER: 
exampleFit = example.Fit("gaus") 

Note that this next cell recognizes the histogram object you defined in the previous cell. 
This gives you some idea of one feature of notebooks: You can fiddle with something in a 
given cell until it does what you want, then move on to the next phase of your task that 
depends on the previous cell.  

Wait a moment… We just added a fit to the histogram, but the plot didn’t change. Maybe 
we have to plot it again.  

Enter this line after the one you just pasted, or into a subsequent cell, and hit SHIFT-ENTER: 
example.Draw() 

No new plot, and the plot above it still didn’t change. What’s wrong? Nothing. Jupyter runs 
in a web browser, and browsers behave differently than X-Windows (the underlying 
graphics protocol of UNIX). You may have noticed that, unlike the ROOT plots in Part One, 
the shape of the cursor doesn’t change as you move it over the plot, and right-clicking on it 
brings up a browser menu, not a ROOT one. If you right-click on the plot and select View 
Image, you’ll see that the plot is not a dynamic object, but a static .png file.47 

How do we get a plot? You probably guessed the answer from what I had in the first cell. 
Paste the following line after that last Draw() command, or in a new cell: 

my_canvas.Draw() 

Finally, you see the histogram with the fit superimposed. 

Remember page 12: ROOT plots everything in a canvas. In Jupyter, a TCanvas is not 
automatically drawn when its underlying plot updates. You have to explicitly draw the 
TCanvas yourself. That’s why the first example contains the lines: 

my_canvas = TCanvas("mycanvas","canvas title",800,600) 

# … stuff … 

my_canvas.Draw() 

I had to define the TCanvas that would be used as the “target” of any Draw commands, 
then Draw that TCanvas in order for the plot to be displayed.48   

 

47  “PNG” stands for Portable Network Graphics. It’s a standardized format for uncompressed images to be sent over 

the web. Jupyter uses that format instead of GIF because the GIF algorithm is patented.  

48  Since we haven’t had to explicitly define our canvases before, I should mention: the canvas name and title are 

usually not important; the name only matters if you were to write the canvas to a file, and the canvas title is rarely 

displayed (as opposed to the histogram title, which appears at the top of the plot).  

 What matters is the size of the canvas. Here, I used 800 pixels wide and 600 pixels tall, which is the size of our old 

friend c1 that’s automatically defined if you don’t define a canvas yourself.  

 I could have defined the canvas using only defaults with 

my_canvas = TCanvas() 

 but I thought that might be even more confusing to see for the first time.  



 

Page 36 of 127 Basic Data Analysis Using ROOT 5/31/21 

Magic commands (5 minutes) 

In Jupyter, “magic” refers to additional commands added by Jupyter to the kernel 
environment that aren’t normally part of that kernel’s language.49 I’m going to start with a 
slightly exotic magic command because I think you’ll find it useful. 

In a new cell in the Python notebook we worked with above, execute this command:50 
%jsroot on 

As a general rule, magic commands begin with the percent sign “%”.51 

Draw the canvas again: 
my_canvas.Draw() 

Move the cursor over the new plot.  

Ah, that’s more like it! The plot is not interactive in the same way as in X-Windows ROOT, 
but you can get a lot done. Play around a bit, looking at tooltips and right-clicking. Note the 
faint icons below the lower left-hand corner of the plot.  

If you execute %lsmagic you’ll see a list of available magic commands. There’s probably 
more here than you can absorb right now.52 Here are examples of the magic commands I 
find to be the most useful: 

%mkdir subdirectory 

%cp ~seligman/root-class/jsroot-test.ipynb subdirectory 

%ls subdirectory 

%less c1.C 

%man root 

%cd subdirectory 

The above commands are “line magics,” which are executed line-by-line within a cell. There 
are also “cell magics” that affect the contents of the entire cell in which they appear; they 
must appear as the first line in a cell. They begin with a double “%”. Examples:  

• %%writefile <filename> (write the cell to file <filename>);  

• %%timeit (execute the cell many times and determine the average execution 
time);  

• %%sh (execute the cell as a UNIX shell script).   

 

49  No, nothing to do with Doctor Strange or Gandalf, though you may find yourself muttering “You shall not pass!” as 

you work with ROOT.  

50  Note that the %jsroot magic command is only available in Python-based notebooks after you’ve executed 

import ROOT or from ROOT import… In ROOT C++ notebooks it’s built-in.  

 “JSROOT” is short for “Javascript ROOT”; it’s an evolving project to bring more interactivity of ROOT graphics 

into web browsers. For more information, see  

https://github.com/root-project/jsroot/blob/master/docs/JSROOT.md.  

51  Well… not really. There’s an option (%automagic on|off) that allows you to omit the leading %. In this 

tutorial I’ll always include the % prefix to make it clear when a command is “magic”.  

52  You can find a description of magic commands here: 

https://ipython.readthedocs.io/en/stable/interactive/magics.html. 

https://github.com/root-project/jsroot/blob/master/docs/JSROOT.md
https://ipython.readthedocs.io/en/stable/interactive/magics.html


 

5/31/21 Basic Data Analysis Using ROOT Page 37 of 127 

Markdown cells (5 minutes) 

One of the hardest habits to get into is documenting your work. Jupyter makes it easy.  

Click in an empty cell. Go to the pop-up menu near the top of the page that reads Code. Select 

Markdown from that menu. Now you can type plain text in that cell; e.g., “The following code sums 

all the histograms in the analysis.” When you're done, hit SHIFT-ENTER to see the formatted result. 

You can also include Markdown,53 HTML,54 and LaTeX55 commands to format the text. Here are 

some examples: declare a cell to be Markdown, paste one of the following paragraphs into the cell, 

and hit SHIFT-ENTER: 

Markdown 

# 2019 Analysis Project 

*Energy*, **time**, and `momentum` are all variables in this ntuple.  

HTML 

<h1>2019 Analysis Project</h1> 

<p><i>Energy</i>, <b>time</b>, and <tt>momentum</tt>.</p> 

<p>The following code reads in an ntuple.</p> 

LaTeX 

\begin{align} 

\nabla \times \vec{\mathbf{B}} -\, \frac1c\, 

\frac{\partial\vec{\mathbf{E}}}{\partial t} & = 

\frac{4\pi}{c}\vec{\mathbf{j}} \\ 

\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ 

\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, 

\frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ 

\nabla \cdot \vec{\mathbf{B}} & = 0 

\end{align} 

Can you mix all of them in a single Markdown cell? Give it a try!  

 

53  Markdown is a simple text-layout layout that emphasizes readability over the methods described in the next two 

footnotes. There are a lot of tutorials on the web; here’s one: https://help.github.com/articles/basic-writing-and-

formatting-syntax/.  

54  HTML (“HyperText Markup Language”) is the standard language for formatting content in web browsers. If you’ve 

never seen it before, it’s because you’ve used some program that formats web pages for you into HTML (Markdown 

is one such program). My favorite HTML tutorial is at https://www.w3schools.com/html/.   

 If you want a couple of xkcd cartoons on HTML: https://xkcd.com/1341/  and https://xkcd.com/1144/.  

55  LaTeX is a document-preparation package that’s often used in research. If you write a paper for publication this 

summer, you are going to use LaTeX; physics publications don’t accept articles in MS-Office or Google Docs 

format. Don’t worry about learning LaTeX. No one writes a LaTeX document from scratch; they get one from 

someone and learn by example. It’s much easier than learning ROOT. For some Jupyter-related examples, see 

http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Typesetting%20Equations.html.  

 You can spend a lifetime learning LaTeX, but no one ever has.  

https://help.github.com/articles/basic-writing-and-formatting-syntax/
https://help.github.com/articles/basic-writing-and-formatting-syntax/
https://www.w3schools.com/html/
https://xkcd.com/1341/
https://xkcd.com/1144/
http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Typesetting%20Equations.html


 

Page 38 of 127 Basic Data Analysis Using ROOT 5/31/21 

The ROOT C++ kernel (5 minutes) 

In Part One, all of the practice ROOT code used C++ syntax. Yet I switched to Python when I 
introduced Jupyter. Now you’ll learn why.  

Start a ROOT C++ notebook (either from your Jupyter home page, or from the File menu of your 

existing notebook).  Rename it to cplusplustest or whatever you want. Paste the following into 

a cell and execute it. 
TH1D example("example","example histogram",100,-3,3); 

example.FillRandom("gaus",10000); 

example.Draw(); 

You won’t see anything, but after the explanation on page 34 you know why: you have to draw the 

canvas. The warning message says it drew the plot on TCanvas c1, so add the following line to the 

end of the above cell and hit SHIFT-ENTER: 
c1.Draw(); 

Uh-oh. It’s not just warning you that you’re creating a new histogram with the same name. 
ROOT’s C++ interpreter is treating it as an error and won’t let you continue.  

This is a general issue of Python vs. C++: Python is more forgiving. If you want to execute 
that cell, you’ll have to restart ROOT. Fortunately, there’s an easy way to do that.  

Go to the Kernel menu on the page and select Restart. It will warn you that you’re about lose all 

your variables, which in this case is exactly what you want. Click in the cell with your code and hit 

SHIFT-ENTER. 

I’m being sneaky, aren’t I? I knew c1.Draw() would not work. The error message tells you 
why: the automatically-created c1 is a pointer, and requires the -> symbol. 

Edit the “.” to the pointer symbol “->” and hit SHIFT-ENTER. You forgot to restart the kernel again, 

didn’t you? Restart the kernel then hit SHIFT-ENTER in the cell.  

If you think about it for a second, I could have given you a more complete example, the 
same way I did for the Python notebook: 

TCanvas my_canvas(); 

TH1D example("example","example histogram",100,-3,3); 

example.FillRandom("gaus",10000); 

example.Draw(); 

my_canvas.Draw(); 

I presented it this way to make a couple of points. First, I wanted to show you how to 
restart a kernel within a notebook, which you may want to do even in Python.56  

Second, I wanted you to learn that if you’re working with C++ in ROOT, you’ll have to be 
aware when you’re redefining objects that ROOT thinks you’ve created before. You can 
work with ROOT C++ in Jupyter57 but you have to be mindful of your environment. 

  

 

56  If you looked at the keyboard shortcuts, you know another way: Hit ESC to get into Command Mode, then hold 

down the 0 (zero) key.  

57  There are lots of examples at https://swan-gallery.web.cern.ch/basic/.  

https://swan-gallery.web.cern.ch/basic/


 

5/31/21 Basic Data Analysis Using ROOT Page 39 of 127 

Decisions 

If you’ve already made up your mind about the questions posed in the section headers, you 
can skip or skim this section.  

C++ or Python? 

Up until this point, the commands for ROOT/C++ and Python/ROOT were nearly identical.58 I 
presented them in the context of using cling, ROOT’s C++ environment.  

From this point forward, using ROOT/C++ is different from using Python with ROOT 
extensions. You have to decide: in which language do you want to use ROOT? My initial 
advice is to ask your supervisor. Their response, in ascending order of likelihood, will be: 

• A clear decision (C++ or Python). 

• “I don’t know. Which do you feel like learning?” 

• “I have no idea what you’re talking about.” 

If it’s up to you, this may help you decide:59 

In favor of Python: 

• Learning Python is easier and faster than learning C++. 

• Python can be more appropriate for “quick-and-dirty” analysis efforts, if that’s the 
kind of work you’ll be doing this summer.  

In favor of C++: 

• All of the ROOT documentation, Parts Seven and Eight of this tutorial, and most of 
the tutorials included with ROOT (see page 79) are in C++. 

• If you’re going to be working with your experiment’s analysis framework, it will 
almost certainly involve working in C++.  

• C++ code, when compiled, is faster than Python (see page 59).60  

  

 

58  See page 53 for the differences when using Python versus ROOT/C++.  

59  Here are the areas in which neither has a clear advantage: Both C++ and Python are used worldwide, so knowing 

either one is useful. Python’s interactive development is usually cited as an advantage over C++, but ROOT offers 

the interactive C++ interpreter, cling. Both languages have substantive numerical computing libraries (e.g., SciPy in 

Python, GSL in C++). Rivals to C++ and Python include (respectively) the Julia programming language and the 

Ruby scripting language; however, as far as I know none of the particle-physics groups connected with Nevis use 

them.  

60  There are various tricks for making Python run faster; e.g., the %pypy cell magic, the Cython extension, list 

comprehensions, clever use of NumPy. You’ll learn about them if you choose to become a Python expert.  



 

Page 40 of 127 Basic Data Analysis Using ROOT 5/31/21 

Command-line or notebook? 

Once you’ve decided on the language, you next have to decide on your programming 
environment: the command line as in Part OneOne, or the notebook as in Part Two.  

In favor of notebooks 

• They facilitate rapid code development. You fiddle inside a cell, hit SHIFT-ENTER to 
execute it, get it to do what you want. Then you move to the next cell. 

• Documentation is easy, as shown on page 37. 

• Notebooks are easy to share. For example, a colleague of yours can copy one of your 
notebooks to their own area to look at it: 

%cp ~jsmith/energy-calibration/myanalysis.ipynb jsmith-analysis.ipynb 

• The interface to a notebook is through a web browser. You don’t need ssh or an 
X-Windows emulator.  

Against notebooks 

• They’re relatively new in software development. It’s possible your supervisor has 
never heard of them. If you say you’ve got a .png plot in a Jupyter notebook, they’ll 
reply “You’ve got a what in a where?”  

• The %jsroot on magic command does not enable every X-Window feature 
available from within the ROOT command line. There’s no TBrowser, TreeViewer, or 
FitPanel. You can’t add new elements to a plot and then save the ROOT commands 
so you can examine how to use them in a .C file.61   

• As you saw in the examples above, your canvases are not automatically drawn or 

updated for you. You must explicitly issue Draw() commands for your canvases.  

Issues with our notebook server 

Most of these points involve technical sysadmin issues. You may want to skip them, and 
come back later if you have a notebook problem.  

• The Nevis particle-physics JupyterHub notebook server is not something you find at 
most institutions, at least not for now. Only the REU students and the particle-
physics groups have access to it. Your astrophysics or RARAF colleagues won’t be 
able to view your notebooks. You can install Jupyter on your laptop, but that won’t 
help anyone else see your work. 

• You can develop software in notebooks, but you can’t run multi-threaded or multi-

 

61  Oops, I just lied to you. If you’ve drawn something to my_canvas, you can write its associated ROOT commands 

to a file with  

 my_canvas.SaveSource(“filename.C”); 

 where filename.C can be any name you want. Don’t forget to use -> if your canvas variable is a C++ pointer 

instead of an object! 



 

5/31/21 Basic Data Analysis Using ROOT Page 41 of 127 

hour jobs with them on our notebook server.62  

• Some physics software is a “chimera”, a blend of software compiled in two 
languages. For example, the Neutrino Deep Learning group uses Python to call pre-
compiled C++ routines. Our notebook server may not be able to run software that’s 
been compiled on another machine.63  

• As you get more familiar with the UNIX shell, you may start making changes to your 
standard shell setup. You do this by editing special shell initialization files such as 
.profile.64 If you add new variables to your environment, these variables are 

available in our notebook server as well.65  

However, if you modify certain variables such as $LD_LIBRARY_PATH or run 
environment-customization scripts (such as module load root) in your default 
initialization, it can affect the execution of the notebook server. The typical symptoms are a 
notebook kernel that refuses to start or you get library load errors.  

You can get around many of these issues by running Jupyter on your workgroup server; this 
is described at https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython.  

  

 

62  The way to handle such tasks is with a batch system, which I discuss on the second day of this course. 

63  I doubt this will be important to your work this summer, but so you can look it up if necessary: In 2021, most of the 

particle-physics systems are running CentOS 7.  

64  You can find a list of which files you can change in https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Shell.  

 A UNIX survival tip: Never let a well-meaning friend start editing your shell initialization scripts for you. I can’t 

count the number of times I’ve looked at someone’s shell init scripts and saw they were last edited in the 1990s. A 

user had either forgotten or never knew that their friend had put any such commands there, and so never kept them 

updated in the years since. These init scripts were copied from user to user for over a decade.  

 If you edit your scripts yourself, at least you have a chance to maintain them.  

65  For reference: 

 If you define a variable in a shell, e.g., 

export mywork=~/analysis_work_directory 

 then you can access the variable within your program in ROOT C++: 

TString my_location = gSystem->Getenv("mywork"); 

 In Python: 

import os 

my_location = os.environ["mywork"] 

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Shell


 

Page 42 of 127 Basic Data Analysis Using ROOT 5/31/21 

Diagonalizing the 2x2 decision matrix 

It’s probably occurred to you that I’ve left you with four choices: 

ROOT C++ on the command line ROOT C++ in a Jupyter notebook 

Python with ROOT on the command 
line 

Python with ROOT in a Jupyter 
notebook 

This tutorial is already 127 pages long, and I’ve taken longer than I should have to offer you 
too many options. For simplicity, I’ve chosen to present ROOT C++ on the command line in 
Part Three, and Python with ROOT in a Jupyter notebook in Part Four.  

If you choose to pursue one of the “off-diagonal” choices, you won’t have much trouble 
following Parts Three or Four. You were introduced to ROOT C++ in a notebook on page 38. 
To run Python with ROOT on the command line (including magic commands), the following 
will set you up on a Nevis particle-physics system: 

module load root 

ipython 

Parts Three and Four of this tutorial present the same commands, exercises, and 
footnotes.66 Pick which language you want to learn and go there; Part Three (ROOT C++) 
starts on the next page and Part Four (Python with ROOT) starts on page 61.  

You might even be able to do both Parts Three and Four; once you’ve mastered C++, Python 
is pretty easy! 

 

 
Figure 18: https://xkcd.com/184/ by Randall Munroe 

Alt-text: “In fact, draw all your rotational matrices sideways. Your professors will love it!  

And then they’ll go home and shrink.” 

  

 

66 The xkcd cartoons in the two parts are different, to give you an incentive to skim both.  

https://xkcd.com/184/


 

5/31/21 Basic Data Analysis Using ROOT Page 43 of 127 

Part Three – The C++ Path 

Walkthrough: Simple analysis using the Draw command (10 
minutes) 

It may be that all the analysis tasks that your supervisor will ask you to do can be performed 
using the tools you learned about in Part One: the Draw command, the TreeViewer, the 
FitPanel and other simple techniques discussed in the ROOT Users Guide. 

However, it’s more likely that these simple commands will only be useful when you get 
started; for example, you can draw a histogram of just one variable to see what the 
histogram limits might be in C++. Let’s start with the same tasks you just did with 
TreeViewer.67 

If you didn’t copy the example ntuple file, do so now: 
> cp ~seligman/root-class/experiment.root $PWD 

If you don't already have the sample ROOT TTree file open, open it with the following command: 
[] TFile myFile("experiment.root") 

You can use the Scan command to look at the contents of the Tree, instead of using the TBrowser: 
[] tree1->Scan() 

If you take a moment to think about it (a habit I strongly encourage), you may ask how 
ROOT knows that there's a variable named tree1, when you didn't type a command to 
create it. 

The answer is that when you read a file containing ROOT objects (see “Saving your work, 
part 2” on page 25) in an interactive ROOT session, ROOT automatically looks at the objects 
in the file and creates variables with the same name as the objects. 

This is not standard behavior in C++; it isn’t even standard behavior when you’re working 
with ROOT macros. Don't become too used to it! 

You can also display the TTree in a different way that doesn't show the data, but displays the names 

of the variables and the size of the TTree: 
[] tree1->Print() 

Either way, you can see that the variables stored in the TTree are event, ebeam, px, py, pz, zv, 

and chi2. 

Create a histogram of one of the variables. For example: 
[] tree1->Draw("ebeam") 

Using the Draw command, make histograms of the other variables.  

 

  

 

67  I duplicate some of the descriptive material from the TreeViewer section, in case you decided to skip the quickie 

tools and get right into the programming.  



 

Page 44 of 127 Basic Data Analysis Using ROOT 5/31/21 

Pointers: A too-short explanation (for those who don't know 
C++ or C) (5 minutes) 

On the previous page we used the pointer symbol "->" (a dash followed by a greater-than 
sign) instead of the period "." to issue the commands to the TTree. This is because the 
variable tree1 isn’t really the TTree itself; it’s a ‘pointer’ to the TTree.  

The detailed difference between an object and a pointer in C++ (and ROOT) is beyond the 
scope of this tutorial. I strongly suggest that you look this up in any introductory text on 
C++. For now, I hope it’s enough to show a couple of examples: 

[] TH1D hist1("h1","a histogram",100,-3,3) 

This creates a new histogram in ROOT, and the name of the “histogram object” is hist1. I 
must use a period to issue commands to the histogram: 

[] hist1.Draw() 

Here’s the same thing, but using a pointer instead: 

[] TH1D *hist1 = new TH1D("h1","a histogram",100,-3,3) 

Note the use of the asterisk “*” when I define the variable, and the use of the C++ keyword 
“new”. In this example, hist1 is not a ‘histogram object,’ it’s a ‘pointer’ to the location in 
computer memory where hist1 is stored. I must use the pointer syntax to issue 

commands: 

[] hist1->Draw() 

Take another look at the file c1.C that you created in a previous example. Note that ROOT 
uses pointers for almost all the code it creates. As I mentioned on page 43, ROOT 
automatically creates variables when it opens files in interactive mode; these variables are 
always pointers.  

It’s a little harder to think in terms of pointers than in terms of objects. But you have to use 
pointers if you want to use the C++ code that ROOT creates for you  

You also have to use pointers to take advantage of object inheritance and polymorphism in 
C++. ROOT relies heavily on object inheritance (some would say too heavily), and this is 
often reflected in the code it generates.  

 

 
Figure 19: http://xkcd.com/138 by Randall Munroe 

Alt-text: “Every computer, at the unreachable address of 0x-1, stores a secret. I have found it,  

and it is that all humans ar--- SEGMENTATION FAULT” 

http://xkcd.com/138


 

5/31/21 Basic Data Analysis Using ROOT Page 45 of 127 

Walkthrough: Simple analysis using the Draw command, part 2 
(10 minutes) 

Instead of just plotting a single variable, let’s try plotting two variables at once: 

[] tree1->Draw("ebeam:px") 

This is a scatterplot, a handy way of observing the correlations between two variables. The 
Draw command interprets the variables as ("y:x") to decide which axes to use. 

It's easy to fall into the trap of thinking that each (x,y) point on a scatterplot represents two 
values in your ntuple. The scatterplot is a grid; each square in the grid is randomly 
populated with a density of dots proportional to the number of values in that square. 

Try making scatterplots of different pairs of variables. Do you see any correlations? 

If you see a shapeless blob on the scatterplot, the variables are likely to be uncorrelated; for 
example, plot px versus py. If you see a pattern, there may be a correlation; for example, 
plot pz versus zv. It appears that the higher pz is, the lower zv is, and vice versa. Perhaps 

the particle loses energy before it is deflected in the target. 

Let's create a “cut” (a limit on the range of a variable): 
[] tree1->Draw("zv","zv<20") 

Look at the x-axis of the histogram. Compare this with: 
[] tree1->Draw("zv") 

Note that ROOT determines an appropriate range for the x-axis of your histogram (see 
page 81). Enjoy this while you can; this feature is lost when you start using analysis macros. 

A variable in a cut does not have to be one of the variables you're plotting: 
[] tree1->Draw("ebeam","zv<20") 

Try this with some of the other variables in the tree. 

The symbol for logical AND in C++ is "&&". Try using this in a cut, e.g.: 
[] tree1->Draw("ebeam","px>10 && zv<20") 

  



 

Page 46 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Using C++ to analyze a Tree (10 minutes) 

You can spend a lifetime learning all the in-and-outs of object-oriented programming in 
C++.68 Fortunately, you only need a small subset of this to perform analysis tasks with 
ROOT. The first step is to have ROOT write the skeleton of an analysis class for your ntuple. 
This is done with the MakeSelector command.69  

Let's start with a clean slate: quit ROOT if it’s running and start it up again. Open the ROOT tree 

again: 
[] TFile myFile("experiment.root") 

Now create an analysis macro for tree1 with MakeSelector. I'm going to use the name “Analyze” 

for this macro, but you can use any name you want; just remember to use your name instead of 

“Analyze” in all the examples below. 
[] tree1->MakeSelector("Analyze") 

Switch to the UNIX window and examine the files that were created: 
> less Analyze.h 

> less Analyze.C 

Unless you're familiar with C++, this probably looks like gobbledy-gook to you. (I know C++, 
and it looked like gobbledy-gook to me… at first.)  We can simplify this by understanding the 
approach of most analysis tasks: 

• Definition – define the variables we’re going to use. 

• Initialization - open files, create histograms, etc. 

• Loop - for each event in the ntuple or Tree, perform some tasks: calculate values, 
apply cuts, fill histograms, etc. 

• Wrap-up - display results, save histograms, etc. 

You’ve probably already guessed that the lines beginning with // are comments. They 
describe more than we’re going to use, so I’ll narrow things down on the next page.70  

 

68  That's four lifetimes, five if you’re studying LaTeX. And you thought you only signed up for a ten-week project! 

Gosh, I wonder if it takes a lifetime to understand high-energy physics. 

69  If you’re bolder or familiar with C++, you don’t have to use MakeSelector to write an analysis class (specifically, a 

TSelector class) for you; look up TTreeReader on the ROOT web site. I use MakeSelector in this tutorial to spare 

you from having to define a TTreeReaderValue for every branch in the TTree. If you’re willing to follow the 

directions for TTreeReader, you may get code that will be easier for you to revise in the long run. For an example, 

see ~seligman/root-class/AnalyzeReader.C.  

70  Many of the comments, as well as the routines SlaveBegin and SlaveTerminate refer to something called 

PROOF. This is a method of breaking up your ntuple into sections and analyzing each section on a separate CPU 

core of your computer.  

 By the way, PROOF has nothing directly to do with batch processing, which I describe on the second day of this 

course. If you do use PROOF, note that SlaveBegin and SlaveTerminate are where you put your 

initialization and wrap-up code, respectively, and Begin and Terminate should be “stubs.” 

 There’s another ROOT class that can speed up ntuple analysis on machines with multiple cores: RDataFrame (see 

page 86). 



 

5/31/21 Basic Data Analysis Using ROOT Page 47 of 127 

Walkthrough: Using C++ to analyze a Tree (continued) 

Here’s a simplified version of the C++ code from Analyze.C. I’ve removed the automatically 

generated comments created by ROOT, and minimized the routines SlaveBegin and 

SlaveTerminate which we won’t use for this tutorial. I also marked the places in the code where 

you'd place your own commands for Definition, Initialization, Loop, and Wrap-up. Compare the 

code you see in Analyze.C with what I've put below. If you wish, you can edit the contents of your 

Analyze.C to match what I’ve done; it will give you practice using emacs or whatever text editor 

you choose.71 

 
#define Analyze_cxx 

#include "Analyze.h" 

#include <TH2.h> 

#include <TStyle.h> 

 

//******** Definition section ********* 

 

void Analyze::Begin(TTree * /*tree*/) 

{ 

  TString option = GetOption(); 

 

  //******** Initialization section ********* 

} 

 

void Analyze::SlaveBegin(TTree* tree) {} 

 

Bool_t Analyze::Process(Long64_t entry) 

{ 

  // Don’t delete this line! Without it the program will crash.  

  fReader.SetEntry(entry); 

 

  //******** Loop section ********* 

  // You probably want GetEntry(entry) here. 

  return kTRUE; 

} 

 

void Analyze::SlaveTerminate() {} 

 

void Analyze::Terminate() 

{ 

  //******** Wrap-up section ********* 

} 

 

Figure 20: Example C++ TSelector macro (Analyze.C). Compare with the code in Python (Figure 27, page 67). 

  

 

71  If you’re feeling lazy, you can copy the “reduced” file from my area: 

 > cp ~seligman/root-class/Analyze.C $PWD 



 

Page 48 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Running the Analyze macro (10 minutes) 

As it stands, the Analyze macro does nothing, but let’s learn how to run it anyway. Quit ROOT, start 

it again, and enter the following lines: 
[] TFile myFile("experiment.root") 

[] tree1->Process("Analyze.C") 

Get used to these commands. You’ll be executing them over and over again for the next 
several exercises. Remember, the up-arrow and tab keys are your friends!72 

Let’s examine each of those commands: 

• TFile myFile("experiment.root") –  tells ROOT to load the file 
experiment.root into memory. This saves you from have to create the TBrowser and 
double-clicking on the file name every time you start ROOT (and you’ll be restarting 
it a lot!). 

• tree1->Process("Analyze.C") – load Analyze.C and run its analysis code on 

the contents of the tree. This means: 

o load your definitions; 

o execute your initializations; 

o execute the loop code for each entry in the tree; 

o execute your wrap-up code. 

After the second command, ROOT will pause as it reads through all the events in the Tree. Since we 

haven’t included any analysis code yet, you won’t see anything happen. 

Take another look at Analyze.h, also called a “header file.” (Analyze.C is the 
“implementation file.”) If you scan through it, you’ll see C++ commands that do something 
with “branches,” “chains,” and loading the variables from a tree. Fancy stuff, but you don’t 
have to know about any of the nitty-gritty details. Now go back and look at the top of 
Analyze.C. You'll see the line  

   #include "Analyze.h" 

This means ROOT will include the contents of Analyze.h when it loads Analyze.C. This takes 
care of defining the C++ variables for the contents of the tree.  

 

72  If you’re a real ROOT jockey (and I know you want to be), there’s an even faster way to do this. When I work 

through the exercises in this course, I start ROOT with this command: 

 > root experiment.root 

 This means to run ROOT and to open file experiment.root right away. I can omit the TFile command and get to 

work.  



 

5/31/21 Basic Data Analysis Using ROOT Page 49 of 127 

Walkthrough: Making a histogram with Analyze (15 minutes) 

Edit the file Analyze.C. In the Definitions section, insert the following code: 
   TH1* chi2Hist = NULL; 

This means “define a new histogram pointer and call it chi2Hist.” Why define this as a 
pointer when plain ol’ variables are easier to use? The short answer is that ROOT uses 
pointers all the time; for example, if you want to read something from a file, you must 
always use pointers. The sooner you get used to pointers, the better.73  

Don’t forget the semi-colons “;” at the ends of the lines! You can omit them in interactive 
commands, but not in macros. 

In the Initialization section, insert the following code: 
   chi2Hist = new TH1D("chi2","Histogram of Chi2",100,0,20); 

This means “set this pointer to a new histogram object.” We’re doing this here, instead of 
the Definitions section, because sometimes you want quantities like histogram limits to be 
variable rather than fixed; e.g., they depend on user input. 

In the Loop section, put this in: 
   GetEntry(entry); 

   chi2Hist->Fill(*chi2); 

The first of these two lines means “get an entry from the TTree.”74 Note that the variable 
entry is an argument to the Process method, so you don’t have to set it. This line will 
assign values to variables defined in the ntuple: *ebeam, *chi2, and so on.75 In code 
prepared by MakeSelector, the variables extracted from an ntuple are pointers; they have 
to be prefixed with “*” to access their values. 

The second line means “in the histogram chi2Hist add 1 to a bin that corresponds to the 

value of *chi2.”  

  

 

73  Why are we defining a pointer then setting it equal to NULL? I’m teaching you to avoid a common problem in 

programming: uninitialized variables. If we didn’t set chi2Hist to NULL, what would its value be? I don’t know. 

It would likely be set to zero, which is also the typical value of NULL. But this behavior varies between different 

C++ compilers. It’s better to be sure. 

 This is not an issue in the code we’re writing now, but in the future you’ll discover that uninitialized variables cause 

lots of crashes. Let’s get into good programming habits and avoid them from the start. 

 Some compilers offer another name for NULL, nullptr. They both have the same value, but for you one may be 

clearer than the other.  

74  Actually, in the context of MakeSelector it means “get the data from the TTree pointed to by 

fReader.SetEntry(entry)”.  

75  It’s mildly annoying that whenever you use MakeSelector to create an analysis skeleton, you must remember to 

put a GetEntry line. Since MakeSelector is doing everything else for us, why can’t it put in that one line too 

so we don’t have to remember?  

 The answer is that there’s more that can be done with the TSelector skeleton than we’re doing in this course; do 

a web search on “TSelector example” for some ideas. Since there are times when a simple line like 

GetEntry(entry) is not what you want, or you might create an analysis skeleton for one tree and use it on 

another, MakeSelector makes you put in the GetEntry line manually.  



 

Page 50 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Making a histogram with Analyze (continued) 

This goes in the Wrap-up section: 
   chi2Hist->Draw(); 

You already know what this does; you’ve used it before!  

Save the file, quit and restart ROOT, then enter the same commands as before: 
[] TFile myFile("experiment.root") 

[] tree1->Process("Analyze.C") 

Finally, we’ve made our first histogram with a C++ analysis macro. In the Initialization 
section, we defined a histogram; in the Loop section, we filled the histogram with values; in 
the Wrap-up section, we drew the histogram. 

“What histogram? I don’t see anything!” Don’t forget: if you have the TBrowser open, you 
may need to click on the Canvas 1 tab.  

How did I know which bin limits to use on chi2Hist? Before I wrote the code, I drew a 

test histogram with the command: 

[] tree1->Draw("chi2") 

Hmm, the histogram’s axes aren’t labeled. How do I put the labels in the macro? Here’s how 
I figured it out: I labeled the axes on the test histogram by right-clicking on them and 
selecting SetTitle. I saved the canvas by selecting Save->c1.C from the File menu. I looked at 
c1.C and saw these commands in the file: 

   chi2->GetXaxis()->SetTitle("chi2"); 

   chi2->GetYaxis()->SetTitle("number of events"); 

I scrolled up and saw that ROOT had used the variable chi2 for the name of the histogram 
pointer. I copied the lines into Analyze.C, but used the name of my histogram instead: 

   chi2Hist->GetXaxis()->SetTitle("chi2"); 

   chi2Hist->GetYaxis()->SetTitle("number of events"); 

Try this yourself: add the two lines above to the Initialization section, right after the line that defines 

the histogram. Test the revised Analyze class. 

 



 

5/31/21 Basic Data Analysis Using ROOT Page 51 of 127 

Exercise 2: Adding error bars to a histogram (5 minutes) 

We're still plotting the chi2 histogram as a solid curve. Most of the time, your supervisor will want 

to see histograms with errors. Revise the Analyze::Terminate method in Analyze.C to draw 

the histograms with error bars. 

Hint: Look back at “Working with Histograms” on page 17. 

Warning: The histogram may not be immediately visible, because all the points are 
squeezed into the left-hand side of the plot. We'll investigate the reason why in a 
subsequent exercise. 

After you make a change to Analyze.C, you have to restart ROOT before you run  
tree1->Process(“Analyze.C”) again. Don’t forget the up-arrow key! 

 

 

 
Figure 21: What I get when I plot chi2 with the error bars turned on.  

See Figure 29 on page 70 for how I made this plot.  

  



 

Page 52 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 3: Two histograms in the same loop (15 minutes) 

Revise Analyze.C to create, fill, and display an additional histogram of the variable ebeam (with 

error bars and axis labels, of course). 

Take care! On page 46 I broke up a typical physics analysis task into pieces: Definition, 
Initialization, Loop, and Wrap-up; I also marked the locations in the macro where you'd put 
these steps. 

What may not be obvious is that all your commands that relate to definitions must go in the 
Definitions section, all your commands that are repeated for each event must go in the 
Loop section, and so on. Don't try to create two histograms by copying the entire program 
and pasting it more than once; it won't work. 

Prediction: You’re going to run into trouble when you get to the Wrap-up section and draw 
the histograms. When you run your code, you’ll probably only see one histogram plotted, 
and it will be the last one you plot. 

The problem is that when you issue the Draw command for a histogram, by default it’s 
drawn on the “current” canvas. If there is no canvas, a default one (our old friend c1) is 
created. Both histograms are being drawn to the same canvas. 

The easiest way to solve this problem is to create a new canvas for each histogram. Look at 
c1.C to see an example of how a canvas is created. Look up the TCanvas class on the 
ROOT web site to figure out what the commands do. To figure out how to switch between 
canvases, look at TCanvas::cd() (that is, the cd() method of the TCanvas class). 

Is the ebeam histogram empty? Take a look at the lower and upper limit of the x-axis of 

your histogram. What is the range of ebeam in the ntuple?  



 

5/31/21 Basic Data Analysis Using ROOT Page 53 of 127 

Exercise 4: Displaying fit parameters (10 minutes) 

Fit the ebeam histogram to a gaussian distribution.  

OK, that part was easy. It was particularly easy because the “gaus” function is built into 
ROOT, so you don’t have to worry about a user-defined function.  

Let’s make it a bit harder: the parameters from the fit are displayed in the ROOT text window; your 

task is to put them on the histogram as well. You want to see the parameter names, the values of the 

parameters, and the errors on the parameters as part of the plot. 

This is trickier, because you have to hunt for the answer on the ROOT web site... and when 
you see the answer, you may be tempted to change it instead of typing in exactly what's on 
the web site.  

Take a look at the description of the TH1::Draw() method. In that description, it says 
“See THistPainter::Paint for a description of all the drawing options.” Click on the word 
THistPainter. There's lots of interesting stuff here, but for now focus on the section “Fit 
Statistics.” (This is a repeat of how I found the “surf1” option for Exercise 1 on page 15). 

There was another way to figure this out, and maybe you tried it: Draw a histogram, select 
Options->Fit Parameters, fit a function to the histogram, save it as c1.C, and look at the file. 
OK, the command is there, mingled with the TPaveStats options... but would you have 
been able to guess which one it was if you hadn't looked it up on the web site? 

Exercise 5: Scatterplot (10 minutes) 

Now add another plot: a scatterplot of chi2 versus ebeam. Don’t forget to label the axes!  

Hint: Remember back in Exercise 1, I asked you to figure out the name TF2 given that the 
name of the 1-dimensional function class was TF1? Well, the name of the one-dimensional 

histogram class is TH1D, so what do you think the name of the two-dimensional histogram 

class is? Check your guess on the ROOT web site. 

  



 

Page 54 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Calculating our own variables (10 minutes) 

Let's calculate our own values in an analysis macro, starting with pt from page 29. Let’s begin with 

a fresh analysis skeleton: 
[] tree1->MakeSelector(“AnalyzeVariables”) 

In the Process section, put in the following line (remember: all the ntuple variables are pointers):76 
   Double_t pt = TMath::Sqrt((*px)*(*px) + (*py)*(*py)); 

What does this mean? Whenever you create a new variable in C++, you must say what type 
of thing it is. We've already done this in statements like 

TF1 func("user","gaus(0)+gaus(3)") 

This statement creates a brand-new variable named func, with a type of TF1.  In the 
Process section of AnalyzeVariables, we're creating a new variable named pt, and 
its type is Double_t.  

For the purpose of the analyses that you’re likely to do, there are only a few types of 
numeric variables that you’ll have to know:  

• Float_t is used for real numbers.  

• Double_t is used for double-precision real numbers.  

• Int_t is used for integers.  

• Bool_t is for boolean (true/false) values.  

• Long64_t specifies 64-bit integers, which you probably won't need to use.  

Most physicists use double precision for their numeric calculations, just in case.77 

ROOT comes with a very complete set of math functions. You can browse them all by 
looking at the TMath class on the ROOT web site, or Chapter 13 in the ROOT User’s Guide. 

For now, it’s enough to know that TMath::Sqrt() computes the square root of the 
expression within the parenthesis “()”.78 

Test the macro in AnalyzeVariables to make sure it runs. You won’t see any output, so we’ll fix that 

in the next exercise. 

 

76  You also have to put in that GetEntry line, which I complained about in Footnote 75. 

77  If you already know C++: the reason why we don't just use the built-in types float, double, int, and bool is 

discussed in Chapter 2 of the ROOT Users Guide. 

78  To be fair, there are C++ math packages as well. I could have asked you to do something like this: 

#include <cmath> 

# ... fetch px and py 

pt = std::sqrt((*px)*(*px) + (*py)*(*py)); 

 The reason why I ask you to use ROOT’s math packages is that I want you to get used to looking up and using 

ROOT’s basic math functions (algebra, trig) in preparation for using its advanced routines (e.g., fourier analysis, 

finding polynomial roots).  



 

5/31/21 Basic Data Analysis Using ROOT Page 55 of 127 

Exercise 6: Plotting a derived variable (10 minutes) 

Revise AnalyzeVariables.C to make a histogram of the variable pt. Don’t forget to label the axes; 

remember that the momenta are in GeV. 

If you want to figure out what the bin limits of the histogram should be, I’ll permit you to 
“cheat” and use the following command interactively:79 

tree1->Draw("sqrt(px*px + py*py)") 

Exercise 7: Trig functions (15 minutes) 

Revise AnalyzeVariables.C to include a histogram of theta (recall page 30). 

I’ll make your life a little easier: the math function you want is TMath::ATan2(y,x), 
which computes the arctangent of y/x. It's better to use this function than 
TMath::ATan(y/x), because the ATan2 function correctly handles the case when x=0. 

 

 
Figure 22: http://xkcd.com/809 by Randall Munroe 

 

79  If you compare this command with the computation of pt on the previous page, you may be either confused or 

irritated: When using C++ you have to access the ntuple variables using pointer notation like “(*px)”, while using 

ROOT directly you can get away with just using the variable names like “px”. This is one of the reasons many folks 

prefer Python.  

http://xkcd.com/809


 

Page 56 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Applying a cut (10 minutes) 

The last “trick” you need to learn is how to apply a cut in an analysis macro. Once you've 
absorbed this, you'll know enough about ROOT to start using it for a real physics analysis. 

The simplest way to apply a cut in C++ is to use the if statement. This is described in every 
introductory C and C++ text, and I won’t go into detail here. Instead, I'll provide an example 
to get you started. 

Once again, let's start with a fresh macro: 
[] tree1->MakeSelector("AnalyzeCuts") 

Our goal is to count the number of events for which pz is less than 145 GeV. Since we're going to 

count the events, we're going to need a counter. Put the following in the Definition section of 

AnalyzeCuts.C: 
   Int_t pzCount = 0; 

Why Int_t and not Long64_t? I find that Int_t is easier to remember. I could even 

“cheat” and just use int, which will work for this example. You would only have to use the 

type Long64_t if you were counting more than 231 entries. I promise you that there aren’t 
that many entries in this file!80 

For every event that passes the cut, we want to add one to the count. Put the following in the 

Process section: 
   if ( (*pz) < 145 ) 

   { 

      pzCount = pzCount + 1; // you could use "pzCount++;" instead 

   } 

Be careful: it's important that you surround the logical expression (*pz) < 145 with 
parentheses "()", but the "if-clause" must use curly brackets "{}". 

Now we have to display the value. Again, I'm going to defer a complete description of formatting 

text output to a C++ textbook, and simply supply the following statement for your Wrap-up section: 
   std::cout << "The number of events with pz < 145 is "  

      << pzCount << std::endl; 

When I run this macro, I get the following output: 

  The number of events with pz < 145 is 14962 

Hopefully you'll get the same answer. 

 

80  Recall that in the lecture I gave at the start of the class, I mentioned that other commonly used data-analysis 

programs couldn’t handle a large number of events. Can you picture an Excel spreadsheet with more than 231 rows? 

ROOT can handle datasets with up to 263 entries!  

 Having trouble visualizing powers of 2? Remember that 210 ≈ 103, so 263 = 23× (260) = 23× (210)6 ≈ 23× (103)6 = 

8*1018 or about eight quintillion, roughly the number of grains of sand in the world. My claim “ROOT can handle 

datasets with up to 263 entries” is theoretical rather than practical.  



 

5/31/21 Basic Data Analysis Using ROOT Page 57 of 127 

Exercise 8: Picking a physics cut (15 minutes) 

Go back and run the macro you created in Exercise 5. If you’ve overwritten it, you can copy my 

version and copy-n-paste the relevant lines to your code: 
> cp ~seligman/root-class/AnalyzeExercise5.C $PWD 

> cp ~seligman/root-class/AnalyzeExercise5.h $PWD 

The chi2 distribution and the scatterplot hint that something interesting may be going on.  

The histogram, whose limits I originally got from the command tree1->Draw("chi2"), 
looks unusual: there's a peak around 1, but the x-axis extends far beyond that, up to 
chi2 > 18. Evidently there are some events with a large chi2, but not enough of them to 
show up on the plot. 

On the scatterplot, we can see a dark band that represents the main peak of the chi2 
distribution, and a scattering of dots that represents a group of events with anomalously 
high chi2. 

The chi2 represents a confidence level in reconstructing the particle's trajectory. If the chi2 
is high, the trajectory reconstruction was poor. It would be acceptable to apply a cut of 
"chi2 < 1.5", but let's see if we can correlate a large chi2 with anything else.  

Write a macro to create a scatterplot of chi2 versus theta. It’s easiest if you just copy the relevant 

lines from your code in Exercise 7; there are files AnalyzeExercise7.C and .h in my area if it will 

help. 

Take a careful look at the scatterplot. It looks like all the large-chi2 values are found in the 
region theta > 0.15 radians. It may be that our trajectory-finding code has a problem with 
large angles. Let’s put in both a theta cut and a chi2 cut to be certain we’re looking at a 
sample of events with good reconstructed trajectories. 

Use an if statement to only fill your histograms if chi2 < 1.5 and theta < 0.15. Change the bin limits 

of your histograms to reflect these cuts; for example, there’s no point to putting bins above 1.5 in 

your chi2 histograms since you know there won't be any events in those bins after cuts. 

It may help to remember that the symbol for logical AND in C++ is &&. 

A tip for the future: in a real analysis, you'd probably have to make plots of your results 
both before and after cuts. A physicist usually wants to see the effects of cuts on their data.  

I confess: I cheated when I pointed you directly to theta as the cause of the high-chi2 
events. I knew this because I wrote the program that created the tree. If you want to look at 
this program yourself, go to the UNIX window and type: 

> less ~seligman/root-class/CreateTree.C 



 

Page 58 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 9: A bit more physics (15 minutes) 

Assuming a relativistic particle, the measured energy of the particle in our example ntuple is given 

by 

  

and the energy lost by the particle is given by 

  

Create a new analysis macro (or revise one of the ones you’ve got) to make a scatterplot of vs. 

zv. Is there a relationship between the z-distance traveled in the target and the amount of energy 

lost? 

Exercise 10: Writing histograms to a file (10 minutes) 

In all the analysis macros we’ve worked with, we’ve drawn any plots in the Terminate method. 

Pick one of your analysis macros that creates histograms, and revise it so that it does not draw the 

histograms on the screen, but writes them to a file instead. Make sure that you don't try to write the 

histograms to “experiment.root”; write them to a different file named “analysis.root”. When you're 

done, open “analysis.root” in ROOT and check that your plots are what you expect. 

In “Saving your work, part 2” on page 25, I described all the commands you're likely to 
need. 

Don't forget to use the ROOT web site as a reference. Here’s a question that's also a bit of a 
hint: What would be the difference between opening your new file with "UPDATE" access, 
"RECREATE" access, and "NEW" access? Why might it be a bad idea to open a file with 
"NEW" access? (A hint within a hint: what would happen if you ran your macro twice?) 

 

 
Figure 23: https://xkcd.com/1459/ by Randall Munroe 

 

  

Emeas
2 = px

2 + py
2 + pz

2

  

Eloss = Ebeam - Emeas

  

E loss

https://xkcd.com/1459/


 

5/31/21 Basic Data Analysis Using ROOT Page 59 of 127 

Exercise 11: Stand-alone program (optional) (60 minutes or 
more if you don’t know C++) 

Why would you want to write a stand-alone program instead of using ROOT interactively? 
Compiled code executes faster; maybe you’ve already learned about the techniques 
described in chapter 7 of the ROOT User’s Guide. Stand-alone programs are easier to submit 
to batch systems that run in the background while you do something else. The full 
capabilities of C++ are available to you; see footnote 14 on page 6. 

I’ll be honest with you: I’m spending all this time to teach you about interactive ROOT, but I 
never use it. I can develop code faster in a stand-alone program, without restarting ROOT or 
dealing with a puzzling error message that refers to the wrong line in a macro.  

If it’s near the end of the second day, don’t bother to start this exercise. But if you have an 
hour or more -- well, you’re pretty good. This exercise is a bit of a challenge for you. 

So far, you’ve used ROOT interactively to perform the exercises. Your task now is to write a stand-

alone program that uses ROOT. Start with the macro you created in Exercise 10: you have a ROOT 

script (a ".C" file) that reads an ntuple, performs a calculation, and writes a plot to a file. Create, 

compile, and run a C++ program (a ".cc" file) that does the same thing.  

You can’t just take Analyze.C, copy it to Analyze.cc, and hope it will compile. For one thing, 
Analyze.C does not have a main routine; you will have to write one. Also, C++ doesn’t know 
about the ROOT classes; you have to find a way to include the classes in your program. 
There are links on this page that may help you: 

http://www.nevis.columbia.edu/~seligman/root-class/links.html 

(continued on next page) 

 

 

Figure 24: https://xkcd.com/1513/ by Randall Munroe 

Alt-text: “I honestly didn’t think you could even USE emoji in variable names.  

Or that there so many different crying ones.”  

http://www.nevis.columbia.edu/~seligman/root-class/links.html
https://xkcd.com/1513/


 

Page 60 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 11: Stand-alone program (continued) 

When you try to compile the program, the following simple attempt won't work: 

> g++ Analyze.cc -o Analyze  

You will have to add flags to the g++ command that will refer to the ROOT header files and 
the ROOT libraries. You can save yourself some time by using the root-config 
command. Take a look at the man page for this command: 

> man $ROOTSYS/man/man1/root-config.1 

Try it: 

> root-config --cflags 

> root-config --libs 

Is there were a way of getting all that text into your compilation command without typing it 
all over again? This is where the UNIX “backtick” comes in handy. Try: 

>  g++ Analyze.cc -o Analyze `root-config --cflags` 

Be careful as you type this; it’s not the usual single quote (') but the backtick (`), which is 
typically located in the upper left-hand corner of a computer keyboard. 

Are things still not working? Maybe I want you to think about adding more than one 
argument to a single command. 

That’s enough hints. 

 

 

Figure 25: http://xkcd.com/303 by Randall Munroe 

Alt-text: “Are you stealing those LCDs?” “Yeah, but I’m doing it while my code compiles.” 

  



 

5/31/21 Basic Data Analysis Using ROOT Page 61 of 127 

Part Four – The Python with pyroot Path 

If you’re not interested in pyroot or Python, skip or skim this part. Go to page 79. 

A brief review (5 minutes) 

Skip this page if you’ve gone through the examples in Part Two.  

Visit https://notebook.nevis.columbia.edu, type your Nevis account name and password, then select 

Python 3 from the New pop-up on the upper left. Use File->Rename… to change the name from 

“Untitled” to anything you want; e.g., “Basic Test”.  

What turns Python into pyroot is the inclusion of the ROOT libraries. That’s done with the import 

command. Cut-and-paste the following into the first, then press SHIFT-ENTER.   
from ROOT import TH1D, TCanvas 

my_canvas = TCanvas() 

example = TH1D("example","example histogram",100,-3,3) 

example.FillRandom("gaus",10000) 

example.Fit("gaus") 

example.Draw() 

my_canvas.Draw() 

 

 

Figure 26: http://xkcd.com/353/ by Randall Munroe 

https://notebook.nevis.columbia.edu/
http://xkcd.com/353/


 

Page 62 of 127 Basic Data Analysis Using ROOT 5/31/21 

Differences between C++ and Python 

If you already know C++, or you’ve already done Part Three, you should be aware of some 

differences between using C++ and Python. Pay attention to the prompts; they tell you whether the 

example is in ROOT/C++ or Python. 

• C++ statements end with a semi-colon. Python statements end with a RETURN; no semi-colons.  
[] myhist.FillRandom("gaus",10000); myhist.Fit("gaus"); 

 

In [] myhist.FillRandom("gaus",10000) 

In [] myhist.Fit("gaus") 

• C++ control structures (e.g., if statements, loops) are indicated by curly braces ({}).81 Any 

indentation is for the convenience of humans; the compiler doesn’t need it: 
for (Int_t jentry=0; jentry<nentries; jentry++) { 

      Int_t ientry = LoadTree(jentry); 

      // More stuff 

} 

std::cout << "The loop is over" << std::endl; 

Python control structures are defined by indentations. The indentation is mandatory; ending (or 

increasing) the indentation is the same as ending (or nesting) the structure. This means that when 

you start working with pyroot scripts, you must be careful with the TAB and SPACE keys. Note the 

colon at the end of the for statement; colons are also needed at the end of if statements: 
for jentry in xrange( entries ): 

   # get the next tree in the chain and verify 

   ientry = mychain.LoadTree( jentry ) 

   # More stuff 

print ("The loop is over") 

• C++ uses pointers, and ROOT makes liberal use of them in the code it generates for you (in .C 

files, etc.). Python does not use pointers, which means you don’t have to remember whether to 

use "." or "->": 
[] TH1* hist = new TH1D("example","my second histogram",100,-3,3); 

[] hist->FillRandom("gaus"); 

 

In [] hist = ROOT.TH1D("example","my second histogram",100,-3,3) 

In [] hist.FillRandom("gaus") 

  

 

81  I'm simplifying here. All the code in this course you’ve have seen so far use curly braces. I don't want to confuse 

you any further (except for this footnote).  



 

5/31/21 Basic Data Analysis Using ROOT Page 63 of 127 

• You have might picked up on this from the examples above: C++ has strict rules about types, 

and expects you to specify them when you create a new variable.82 Python determines types 

dynamically, and you don't have to specify them:83 
[] Double_t x = 2 * 3; 

[] TH1D yae = TH1D("test4","yet another example",200,-100,100); 

 

In [] x = 2*3 

In [] yae = ROOT.TH1D("test4","yet another example",200,-100,100) 

• Finally,84 the ROOT C++ interpreter, cling, knows the names of all the ROOT classes.  
[] TH1D* example4 = new TH1D("example4","my fourth histogram",100,-3,3); 

[] example4.Draw(); 

In Python, you have to explicitly load ROOT, and then indicate that a class is part of ROOT. There 

are two ways to do this: 

Method 1: Import all of ROOT, and indicate which classes are part of ROOT with a prefix: 
In [] import ROOT 

In [] example4 = ROOT.TH1D("example4","my fourth histogram",100,-3,3) 

In [] example4.Draw() 

Method 2: Import the classes you'll need explicitly so you can omit the prefix: 
In [] from ROOT import TH1D 

In [] example4 = TH1D("example4","my fourth histogram",100,-3,3) 

In [] example4.Draw() 

I’m typically going to use the second method in this tutorial, but you can use either one.85 If you use 

the second method, be aware that if you add a new ROOT class to your Python script (e.g., 

TCanvas), you'll have to add it to your import list: 
In [] from ROOT import TH1D, TCanvas 

  

 

82  Since I hate to lie to you, I should mention the C++ auto keyword, which lets C++ determine the type for you. 

Both of the following are correct: 

TH1D* hist = new TH1D(“hist”,”title”,100,-3,3); 

auto hist = new TH1D(“hist”,”title”,100,-3,3); 

 This can be a great timesaver if a C++ function returns something with a type like 

std::vector<std::pair<int,double>>::iterator. However, you have to be comfortable with C++ 

before using it, which is why I’m relegating this C++ tip in a footnote in the Python section.   

 How comfortable with C++ do you have to be before you can use auto? Enough so that you understand why both 

of the above lines are not the best choice. A better choice would be: 

auto hist = std::make_unique<TH1D>(“hist”,”title”,100,-3,3); 

 Aren’t you glad you’re learning Python? 

83  At least, not for the work you're likely to be asked to do with pyroot this summer.  

84  … for the purposes of this tutorial. There are many, many more differences between C++ and Python! 

85  If you read up on Python, you’ll discover a third way: from ROOT import * 

 Never do this! It’s an extremely bad programming practice that will lead you into disaster someday. In fact, forget I 

mentioned it. Take a marker and cross out this footnote.  



 

Page 64 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Simple analysis using the Draw command (10 
minutes) 

It may be that all the analysis tasks that your supervisor will ask you to do can be performed 
using the Draw command, the TreeViewer, the FitPanel and other simple techniques 
discussed in the ROOT Users Guide. 

However, it’s more likely that these simple commands will only be useful when you get 
started; for example, you can draw a histogram of just one variable to see what the 
histogram limits might be. Let’s start with the same tasks you did with TreeViewer.86, 87  

If you didn’t copy the example n tuple file in Part One, do so now: 
> cp ~seligman/root-class/experiment.root $PWD 

Open the sample ROOT TTree in the notebook with the following: 
from ROOT import TFile, gROOT 

myFile = TFile("experiment.root") 

tree1 = gROOT.FindObject("tree1") 

The first command imports specific ROOT classes into Python (see the previous page).  

That third command means: Look through everything we’ve read in (the “everything” is 
gROOT) and find the object whose name is "tree1".  

If you've done Part Three, note that in Python we have to read in the ntuple explicitly.  

In a notebook, you can’t use the Scan method to look at the contents of the Tree (see page 26), but 

you can display the names of the variables and the size of the TTree: 
tree1.Print() 

You can see that the variables stored in the TTree are event, ebeam, px, py, pz, zv, and chi2. 

Create a histogram of one of the variables. For example: 
from ROOT import TCanvas 

my_canvas = TCanvas() 

tree1.Draw("ebeam") 

my_canvas.Draw() 

While we have to explicitly Draw a canvas, we can re-use a previously-defined canvas (the 
same way command-line ROOT keeps re-using c1).  

Using the Draw commands, make histograms of the other variables.  

 

86  I duplicate some of the descriptions from the TreeViewer discussion, in case you decided to rush into programming 

and skip the simple tools.  

87  If you’re experienced with Python, you may ask why I’m not including NumPy, SciPy, and matplotlib in this 

tutorial. I want to focus on the ROOT toolkit, even though many tasks (especially in Parts Seven and Eight) can be 

more easily accomplished using those additional packages. I wrestled with this issue for a while, before deciding 

that there are hundreds of web sites on matplotlib but few sites on ROOT. But I may change my mind next year! 



 

5/31/21 Basic Data Analysis Using ROOT Page 65 of 127 

Walkthrough: Simple analysis using the Draw command, part 2 
(10 minutes) 

Instead of just plotting a single variable, let's try plotting two variables at once: 

tree1.Draw("ebeam:px") 

my_canvas.Draw() 

This is a scatterplot, a handy way of observing the correlations between two variables. The 
Draw command interprets the variables as ("y:x") to decide which axes to use. 

It's easy to fall into the trap of thinking that each (x,y) point on a scatterplot represents two 
values in your ntuple. The scatterplot is a grid; each square in the grid is randomly 
populated with a density of dots proportional to the number of values in that square. 

Try making scatterplots of different pairs of variables. Do you see any correlations? 

If you see a shapeless blob on the scatterplot, the variables are likely to be uncorrelated; for 
example, plot px versus py. If you see a pattern, there may be a correlation; for example, 

plot pz versus zv. It appears that the higher pz is, the lower zv is, and vice versa. Perhaps 
the particle loses energy before it is deflected in the target. 

Let's create a “cut” (a limit on the range of a variable): 
tree1.Draw("zv","zv<20") 

my_canvas.Draw() 

Look at the x-axis of the histogram. Compare this with: 
tree1.Draw("zv") 

my_canvas.Draw() 

Note that ROOT determines an appropriate range for the x-axis of your histogram. Enjoy 
this while you can; this feature is lost when you start using analysis scripts.88 

A variable in a cut does not have to be one of the variables you’re plotting: 
tree1.Draw("ebeam","zv<20") 

Try this with some of the other variables in the tree. 

ROOT’s symbol for logical AND is &&. Try using this in a cut, e.g.: 
tree1.Draw("ebeam","px>10 && zv<20") 

  

 

88  After this point, I won’t include the my_canvas.Draw() line in future examples, and you’ll have to remember to 

execute that line. I assume you’ve gotten into the habit of re-using or cut-and-pasting lines between cells.  



 

Page 66 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Using Python to analyze a Tree (10 minutes) 

You can spend a lifetime learning all the in-and-outs of programming in Python.89 
Fortunately, you only need a small subset of this to perform analysis tasks with pyroot.  

In ROOT/C++, there’s a method (MakeSelector) that can create a macro for you from a 
TTree or ntuple. In pyroot there’s no direct equivalent. However, the “analysis skeleton” for 
an ntuple is much simpler in Python. I’ve got a basic file in my area that you can copy and 
edit to suit your task.  

Copy my example Python script to your directory. Then take a look at it: 
%cp ~seligman/root-class/Analyze.py $PWD 

%load Analyze.py 

The second of the two magic commands will load the contents of Analyze.py into the next 
notebook cell, all ready for you to play with it.  

Most analysis tasks have the following steps: 

• Set-up - open files, define variables, create histograms, etc. 

• Loop - for each event in the ntuple or Tree, perform some tasks: calculate values, 
apply cuts, fill histograms, etc. 

• Wrap-up - display results, save histograms, etc. 

The Python code from Analyze.py is on the next page. I’ve marked the places in the code where 

you'd place your own commands for Set-up, Loop, and Wrap-up.  

You’ve probably already guessed that lines beginning with "#" are comments.  

In Python, “flow control” (loops, if statements, etc.) is indicated by indenting statements. In C++, 

any indentation is optional and is for the convenience of humans. In Python the indentation is 

mandatory and shows the scope of statements like if and for.  

Note that Loop and Wrap-up are distinguished by their indentation. This means that when you type 

in your own Loop and Wrap-up commands, they must have the same indentation as the comments I 

put in.  

Take a look at the code mychain.vertex, which means “get the current value of variable 

vertex from the TTree in mychain.”  This is an example; there’s no variable vertex in the 

ntuple in experiment.root. If you want to know what variables are available, typically you’ll have to 

examine the ntuple/TTree in the TBrowser or display its structure with Print as you did on page 

64. 

 

 

89  We’re up to at least four lifetimes, five if you completed Part Three, possibly six if you’re learning LaTeX from 

scratch, maybe even seven if you skipped ahead to Part Six.   



 

5/31/21 Basic Data Analysis Using ROOT Page 67 of 127 

from ROOT import TFile, gDirectory 

# You probably also want to import TH1D and TCanvas 

# unless you're not drawing any histograms. 

from ROOT import TH1D, TCanvas 

 

# Open the file. Note that the name of your file outside this class 

# will probably NOT be experiment.root. 

 

myfile = TFile( 'experiment.root' ) 

 

# Retrieve the ntuple of interest. In this case, the ntuple's name is 

# "tree1". You may have to use the TBrowser to find the name of the 

# ntuple in a file that someone gives you. 

mychain = gDirectory.Get( 'tree1' ) 

entries = mychain.GetEntriesFast() 

 

### The Set-up code goes here. 

### 

 

for jentry in range( entries ): 

 

   # Copy next entry into memory and verify. 

   nb = mychain.GetEntry( jentry ) 

   if nb <= 0: 

      continue 

 

   # Use the values directly from the tree. This is an example using a 

   # variable "vertex". This variable does not exist in the example 

   # ntuple experiment.root, to force you to think about what you're 

   # doing.   

   # myValue = mychain.vertex  

   # myHist.Fill(myValue) 

 

   ### The Loop code goes here. 

   ### 

    

### The Wrap-up code goes here 

### 

 

Figure 27: Python analysis “skeleton” for a ROOT ntuple.  

Compare with the same code in C++ (Figure 20, page 47). 

 



 

Page 68 of 127 Basic Data Analysis Using ROOT 5/31/21 

Walkthrough: Using the Analyze script (10 minutes) 

As it stands, the Analyze script does nothing, but let’s learn how to run it anyway. Hit SHIFT-

ENTER in the cell to run the script.90 

Python will pause as it reads through all the events in the Tree. Since we haven’t included any 

analysis code yet, you won't see anything else happen. 

Let’s start making histograms. In the Set-up section, insert the following code: 
chi2Hist = TH1D("chi2","Histogram of Chi2",100,0,20) 

In the Loop section, put this in: 
chi2 = mychain.chi2 

chi2Hist.Fill(chi2) 

This goes in the Wrap-up section: 
canvas = TCanvas()    

chi2Hist.Draw() 

canvas.Draw() 

Don't forget about the indentation. The lines in the Loop section must be indented to show 
they’re part of the loop.  

Execute your revised script. 

Finally, we’ve made our first histogram with a Python script. In the Set-up section, we 
defined a histogram; in the Loop section, we filled the histogram with values; in the Wrap-
up section, we drew the histogram. 

How did I know which bin limits to use on chi2Hist? Before I wrote the code, I drew a 

test histogram: 

import ROOT 

myFile = ROOT.TFile("experiment.root") 

tree1 = ROOT.gROOT.FindObject("tree1") 

acanvas = TCanvas() 

tree1.Draw("chi2") 

acanvas.Draw() 

(continued on next page)  

 

90  You may want to organize your scripts in files outside of notebook cells. This lets you keep track of different 

versions of your scripts, and allows you to use your favorite text editor. To run an external script from within a 

notebook cell, use the %run magic command; e.g., 

 %run Analyze.py 

 You can save the contents of notebook cells by putting the %%writefile cell magic command at the top of the 

cell and hitting SHIFT-ENTER; e.g.,  

 %%writefile AnalyzeChi2.py 



 

5/31/21 Basic Data Analysis Using ROOT Page 69 of 127 

Walkthrough: Using the Analyze script (continued) 

Hmm, the histogram’s axes aren’t labeled. How do I put the labels in the script? Here’s how 
I figured it out: I went back to command-line ROOT from Part One and plotted chi2 with 
the TreeViewer. I labeled the axes on my test histogram by right-clicking on them and 
selecting SetTitle. I saved the canvas by selecting Save->c1.C from the File menu. I looked at 
c1.C and saw these commands in the file: 

   chi2->GetXaxis()->SetTitle("chi2"); 

   chi2->GetYaxis()->SetTitle("number of events"); 

I scrolled up and saw that ROOT had used the variable chi2 for the name of the histogram 

pointer. I copied the lines into my Python script, but used the name of my histogram 
instead, and converted the C++ lines into Python. This usually means replacing "->" with ".", 
and removing the semi-colon from the end: 

   chi2Hist.GetXaxis().SetTitle("chi2") 

   chi2Hist.GetYaxis().SetTitle("number of events") 

Try this yourself: add the two lines above to the Set-up section, right after the line that defines the 

histogram. Test the revised script.91 

 

 

 
Figure 28: http://xkcd.com/601 by Randall Munroe.  

Alt-text: “Wait, no, that one also loses. How about a nice game of chess?” 

Fortunately it’s easier to analyze histograms than it is to analyze love. At least it is for me! 

 

91  There’s another way to do this in the notebook. Plot the graph with JSROOT: 

%jsroot on 

acanvas.Draw() 

 You can then right-click on the axes, select Title->SetTitle, and enter the axis label you want. However, this solution 

can’t be automated; if you have to generate a hundred histograms each with different axis labels, you’ll want a 

method you can put into a script. 

http://xkcd.com/601


 

Page 70 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 2: Adding error bars to a histogram (5 minutes) 

We're still plotting the chi2 histogram as a solid curve. Most of the time, your supervisor will want 

to see histograms with errors. Revise the script to draw the histograms with error bars. 

Hint: Look back at “Working with Histograms” on page 17. 

Warning: The histogram may not be immediately visible, because all the points are 
squeezed into the left-hand side of the plot. We'll investigate the reason why in a 
subsequent exercise. 

 
Figure 29: What I get when I plot chi2 with errors bars turned on. In case you’re interested, the code below is how I made the 

above plot. I knew to use gPad to access the temporary histogram from reading the documentation for TTree::Draw(). I 

learned about SetTitleOffset by reading the TAxis documentation, which led me to the list of TGaxis methods.  

from ROOT import TFile, gROOT, TCanvas, gPad 

myFile = TFile("experiment.root”) 

tree1 = gROOT.FindObject("tree1") 

my_canvas = TCanvas() 

tree1.Draw("chi2","","e") 

# Get the temporary histogram used by TTree::Draw() 

htemp = gPad.GetPrimitive("htemp") 

htemp.GetXaxis().SetTitle("chi2") 

htemp.GetYaxis().SetTitle("number of events") 

htemp.GetYaxis().SetTitleOffset(1.5) 

my_canvas.Draw()  



 

5/31/21 Basic Data Analysis Using ROOT Page 71 of 127 

Exercise 3: Two histograms in the same loop (15 minutes) 

Revise your script to create, fill, and display an additional histogram of the variable ebeam (with 

error bars and axis labels, of course). 

Take care! On page 66 I broke up a typical physics analysis task into three pieces: the Set-
up, the Loop, and the Wrap-up; I also marked the locations in the script where you’d put 
these steps. 

What may not be obvious is that all your commands that relate to setting things up must go 
in the Set-up section, all your commands that are repeated for each event must go in the 
Loop section, and so on. Don't try to create two histograms by copying the entire script and 
pasting it more than once; it may execute, but it will take twice as long (because you’re 
reading the entire ntuple twice) and you’ll be left with a single histogram at the end. 

Prediction: You’re going to run into trouble when you get to the Wrap-up section and draw 
the histograms. When you run your code, you’ll probably only see one histogram plotted, 
and it will be the last one you plot. 

The problem is that when you issue the Draw command for a histogram, by default it’s 
drawn on the most recent canvas you created. Both histograms are being drawn to the 
same canvas. 

Some clues to solve this problem: Look at the examples above to see how a canvas is 
created. Look up the TCanvas class on the ROOT web site to figure out what the 
commands do. To figure out how to switch between canvases, look at TCanvas::cd() 
(that is, the cd() method of the TCanvas class). In Python, the namespace delimiter ("::" 
in C++) is a period ("."), so your solution will involve something like c1.cd(). Or you might 
define a canvas, draw in it, define a new canvas, then draw in the newer one.  

Is the ebeam histogram empty? Take a look at the lower and upper limits of your 
histogram. What is the range of ebeam in the ntuple? 

 

 
Figure 30: https://xkcd.com/979/ by Randall Munroe 

 

https://xkcd.com/979/


 

Page 72 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 4: Displaying fit parameters (10 minutes) 

Fit the ebeam histogram to a gaussian distribution.  

OK, that part was easy. It was particularly easy because the “gaus” function is built into 
ROOT, so you don't have to worry about a user-defined function.  

Let's make it a bit harder: the parameters from the fit are displayed in the ROOT text window; your 

task is to put them on the histogram as well. You want to see the parameter names, the values of the 

parameters, and the errors on the parameters as part of the plot. 

This is trickier, because you have to hunt for the answer on the ROOT web site... and when 
you see the answer, you may be tempted to change it instead of typing in what’s on the 
web site (with a prefix of ROOT or including it on the from import line). 

Take a look at the description of the TH1::Draw() method. In that description, it says 
“See THistPainter::Paint for a description of all the drawing options.” Click on the word 
“THistPainter”. There's lots of interesting stuff here, but for now focus on the section "Fit 
Statistics." (This is the same procedure for figuring out the “surf1” option for Exercise 1 on 
page 15). 

There was another way to figure this out, and maybe you tried it: Draw a histogram in 
command-line ROOT, select Options->Fit Parameters, fit a function to the histogram, save it 
as c1.C, and look at the file. The command is there, but would you have been able guessed 
how to apply it outside TPaveText if you without the web site? 

Exercise 5: Scatterplot (10 minutes) 

Now add another plot: a scatterplot of chi2 versus ebeam. Don't forget to label the axes!  

Hint: Remember back in Exercise 1, I asked you to figure out the name TF2 given that the 

name of the 1-dimensional function class was TF1? Well, the name of the one-dimensional 

histogram class is TH1D, so what do you think the name of the two-dimensional histogram 
class is? Check your guess on the ROOT web site. 

 

 
Figure 31: https://xkcd.com/1725/ by Randall Munroe 

Alt-text: “The 95% confidence interval suggests Rexthor’s dog could also be a cat, or possibly a teapot.” 

https://xkcd.com/1725/


 

5/31/21 Basic Data Analysis Using ROOT Page 73 of 127 

Walkthrough: Calculating our own variables (10 minutes) 

There are other quantities that we may be interested in apart from the ones already 
present in the ntuple. One such quantity is which is defined by: 

  

This is the transverse momentum of the particle, that is, the component of the particle's 
momentum that's perpendicular to the z-axis. 

Let's calculate our own values in an analysis macro. Load a fresh copy of that script into your 

notebook: 
%load Analyze.py 

In the Loop section, put in the following line: 
pt = ROOT.TMath.Sqrt(px*px + py*py) 

Did that not work? To get at the variables px and py, you have fetch them from the ntuple 

with something like mychain.px. You also have to either have import ROOT or from 
ROOT import TMath. 

ROOT comes with a very complete set of math functions. You can browse them all by 
looking at the TMath class on the ROOT web site, or Chapter 13 in the ROOT User’s Guide. 
For now, it's enough to know that ROOT.TMath.Sqrt() computes the square root of 

the expression within the parenthesis "()".92 

Test the script to make sure it runs. You won't see any output, so we'll fix that in the next exercise. 

 

 
Figure 32: http://xkcd.com/1473 by Randall Munroe 

 

92  To be fair, there are Python math packages as well. I could have asked you to do something like this: 

import math 

# ... fetch px and py 

pt = math.sqrt(px*px + py*py) 

 The reason why I ask you to use ROOT’s math packages is that I want you to get used to looking up and using 

ROOT’s basic math functions (algebra, trig) in preparation for using its advanced routines (e.g., fourier transforms, 

multi-variant analysis).  

  

pT

  

pT = px
2 + py

2

http://xkcd.com/1473


 

Page 74 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 6: Plotting a derived variable (10 minutes) 

Revise AnalyzeVariables.py to make a histogram of the variable pt. Don't forget to label the axes; 

remember that the momenta are in GeV. 

If you want to figure out what the bin limits of the histogram should be, I'll permit you to 
“cheat” and use the following command interactively: 

tree1.Draw("sqrt(px*px + py*py)") 

Exercise 7: Trig functions (15 minutes) 

The quantity theta, or the angle that the beam makes with the z-axis, is calculated by: 

  

The units are radians. Revise your script to include a histogram of theta. 

I'll make your life a little easier: the math function you want is 
ROOT.TMath.ATan2(y,x), which computes the arctangent of y/x. It's better to use this 
function than ROOT.TMath.ATan(y/x), because the ATan2 function correctly handles 

the case when x=0. 

 

 

Figure 33: http://xkcd.com/447 by Randall Munroe 

Alt-text: “They say that if a mathematician doesn’t do their great work by age eleven, they never will.” 

 

  

q = arctan
pT

pz

æ 

è 
ç 

ö 

ø 
÷ 



 

5/31/21 Basic Data Analysis Using ROOT Page 75 of 127 

Walkthrough: Applying a cut (10 minutes) 

The last “trick” you need to learn is how to apply a cut in an analysis macro. Once you’ve 
absorbed this, you’ll know enough about ROOT to start using it for a real physics analysis. 

The simplest way to apply a cut is to use the if statement. This is described in every 
introductory Python text, and I won't go into detail here. Instead I'll provide an example to 
get you started. 

Once again, let's start with a fresh Analyze script: 
%load Analyze.py 

Our goal is to count the number of events for which pz is less than 145 GeV. Since we're going to 

count the events, we're going to need a counter. Put the following in the Set-up section: 
   pzCount = 0 

For every event that passes the cut, we want to add one to the count. Put the following in the Loop 

section: 
   if ( pz < 145 ): 

      pzCount = pzCount + 1 

Be careful: Remember that indentation is important. The next statement after 
pzCount=pzCount+1 must not be indented the same amount, or it will be considered 
part of the if statement.  

Now we have to display the value. Include the following statement in your Wrap-up section:93 
   print ("The number of events with pz < 145 is", pzCount) 

When I run this macro, I get the following output: 

  The number of events with pz < 145 is 14962 

Hopefully you'll get the same answer. 

 

93  If you’re using Python 2, you may have to omit the parentheses around the arguments of the print statement: 

print "The number of events with pz < 145 is", pzCount 



 

Page 76 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 8: Picking a physics cut (15 minutes) 

Go back and run the script you created in Exercise 5. If you’ve overwritten it, you can copy my 

version: 
%cp ~seligman/root-class/AnalyzeExercise5.py $PWD 

%load AnalyzeExercise5.py 

The chi2 distribution and the scatterplot hint that something interesting may be going on.  

The histogram, whose limits I originally got from the command tree1.Draw("chi2"), 
looks unusual: there’s a peak around 1, but the x-axis extends far beyond that, up to 
chi2 > 18. Evidently there are some events with a large chi2, but not enough of them to 
show up on the plot. 

On the scatterplot, we can see a dark band that represents the main peak of the chi2 
distribution, and a scattering of dots that represents a group of events with anomalously 
high chi2. 

The chi2 represents a confidence level in reconstructing the particle’s trajectory. If the chi2 
is high, the trajectory reconstruction was poor. It would be acceptable to apply a cut of 
"chi2 < 1.5", but let's see if we can correlate a large chi2 with anything else.  

Make a scatterplot of chi2 versus theta. It’s easiest if you just copy the relevant lines from your 

code in Exercise 7; there's a file AnalyzeExercise7.py in my area if it will help. 

Take a careful look at the scatterplot. It looks like all the large-chi2 values are found in the 
region theta > 0.15 radians. It may be that our trajectory-finding code has a problem with 
large angles. Let's put in both a theta cut and a chi2 cut to be certain we're looking at a 
sample of events with good reconstructed trajectories. 

Use an if statement to only fill your histograms if chi2 < 1.5 and theta < 0.15. Change the bin limits 

of your histograms to reflect these cuts; for example, there’s no point to putting bins above 1.5 in 

your chi2 histograms since you know there won’t be any events in those bins after cuts. 

It may help to remember that, in Python, you'll want something like  
( chi2 < 1.5 and theta < 0.15 ) 

A tip for the future: in a real analysis, you'd probably have to make plots of your results 
both before and after cuts. A physicist usually wants to see the effects of cuts on their data.  

I must confess: I cheated when I pointed you directly to theta as the cause of the high-chi2 
events. I knew this because I wrote the program that created the tree. If you want to look at 
this program yourself, go to the UNIX window and type: 

> less ~seligman/root-class/CreateTree.C 



 

5/31/21 Basic Data Analysis Using ROOT Page 77 of 127 

Exercise 9: A bit more physics (15 minutes) 

Assuming a relativistic particle, the measured energy of the particle in our example ntuple is given 

by 

  

and the energy lost by the particle is given by 

  

Create a new analysis macro (or revise one of the ones you’ve got) to make a scatterplot of vs. 

zv. Is there a relationship between the z-distance traveled in the target and the amount of energy 

lost? 

 

 
Figure 34: http://xkcd.com/675 by Randall Munroe 

Alt-text: “I mean, what’s more likely – that I have uncovered fundamental flaws in this field that no one in it has ever thought 

about, or that I need to read a little more? Hint: it’s the one that involves less work.” 

 

Exercise 10: Writing histograms to a file (10 minutes) 

In all the analysis scripts we’ve worked with, we’ve drawn any plots in the Wrap-up section. Pick 

one of your scripts that creates histograms and revise it so that it does not draw the histograms on the 

screen but writes them to a file instead. Make sure that you don’t try to write the histograms to 

“experiment.root”; write them to a different file named “analysis.root”. When you're done, open 

“analysis.root” with the TBrowser in command-line ROOT and check that your plots are what you 

expect. 

In “Saving your work, part 2” on page 25, I described all the commands you’ll need. 

Don't forget to use the ROOT web site as a reference. Here's a question that's also a bit of a 
hint: What’s the difference between opening your new file with "UPDATE" access, 
"RECREATE" access, and "NEW" access? Why might it be a bad idea to open a file with 
"NEW" access? (A hint within a hint: what would happen if you ran your script twice?)  

  

Emeas
2 = px

2 + py
2 + pz

2

  

Eloss = Ebeam - Emeas

  

E loss

http://xkcd.com/675


 

Page 78 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 11: Stand-alone program (optional) (30 minutes) 

Why would you want to write a stand-alone program instead of using ROOT interactively?  

• You can’t live in a notebook forever.94 Typical analysis scripts get so large that you 
may want to use a regular text editor to work with them, instead of the limited 
editing available in a notebook cell.  

• One method of speeding up a Python program is to use Cython, a Python optimizing 
compiler: http://cython.org/. You can use Cython within a notebook (see 
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython), but you’ll get better 
results if you create a stand-alone program.  

• Stand-alone programs are necessary if you want to submit your Python program to a 
batch system.  

So far, you’ve used ROOT interactively to perform the exercises. Your task now is to write a stand-

alone program that uses ROOT. Start with the script you created in Exercise 10: you have a 

notebook cell that reads an ntuple, performs a calculation, and writes a plot to a file. Create a stand-

alone program that does the same thing.  

If you tried to do the C++ version of this Exercise on page 59, you may have found it 
difficult. The Python equivalent is much easier. Part of the reason is that all the clues you 
need are in the condor tutorial I prepared for the second day of the class: 

http://www.nevis.columbia.edu/~seligman/root-class/  

Look at the instructions for the .py files in that tutorial, then look at the comments in the 
.py files themselves.  

Don’t forget to use module load root if you expect a stand-alone Python program to 
be able to import the ROOT libraries! 

 

 
Figure 35: https://xkcd.com/1263/ by Randall Munroe 

  

 

94  Whether this is a programming tip or general life advice I leave up to you.  

http://cython.org/
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython
http://www.nevis.columbia.edu/~seligman/root-class/
https://xkcd.com/1263/


 

5/31/21 Basic Data Analysis Using ROOT Page 79 of 127 

Part Five – Intermediate topics (for both ROOT/C++ and pyroot) 

If you’ve gotten this far in the course, just skim the section titles in this Part. If anything 
interests you, dive in. Otherwise, use this Part as a reference for the future and move on to 
the statistics discussion in Part Six or the challenges of Part Seven.  

References 

You’ve learned a few techniques to figure out how to do something in ROOT: 

• The ROOT web site. 

• The ROOT user’s guide. 

• The Help menu located in the upper right-hand corner of most command-line ROOT 

windows. 

• Create something “by hand,” save it as a .C file, then examine the file to see how ROOT does 

it. 

There’s one other resource: the example ROOT programs that come with the package. You’ll find 

them in $ROOTSYS/tutorials. When I ask myself the question “How do I do something complicated 

in ROOT?” I often find the answer in one of the examples they provide. 

I’ve found it handy to make my own copy:95 

> cp –arv $ROOTSYS/tutorials $PWD 

Then I go into the “tutorials” sub-directory, run their examples, and look at their code: 
> cd tutorials 

> root –l demos.C 

> cd graphics 

> root –l first.C 

> less first.C 

You’re going to need these resources as you move into the topics for Parts Seven and Eight 
of the tutorial. I’m going to do less “hand holding” in these notes from now on, because a 
part of these exercises is to teach you how to use these references.96 

You can also find the tutorials in this web area, but I find it harder to search for specific 
examples:  

https://root.cern.ch/doc/master/group__Tutorials.html  

If the distributed nature of the information is annoying to you, welcome to the club! I often 
have to go hunting to find the answers I want when using ROOT, even after years of working 
with the package. Occasionally I’ve had no other choice but to examine the C++ source code 
of the ROOT program itself to find out the answer to a question. 

  

 

95  If the command doesn’t work: Did you remember to type module load root in your UNIX command window? 

That’s what sets the value of $ROOTSYS. 

96  You can still ask me questions during the class; I mean that any remaining written hints in this tutorial will be less 

detailed or require more thought. 

https://root.cern.ch/doc/master/group__Tutorials.html


 

Page 80 of 127 Basic Data Analysis Using ROOT 5/31/21 

Advanced histogramming notes 

The entries in this section were long footnotes in a previous edition of this tutorial. I decided to 

move them into Part Five to make the pages in Parts One, Three, and Four less cluttered.97  

Mean and StdDev, with weights 

All the histograms you’ve made have a “Mean” and “StdDev” in the upper-right-hand corner of the 

plot. In case you need a formal definition, the mean 𝑥̅ and standard deviation 𝜎 are defined by:  

𝑥̅ =  
1

𝑁
∑ 𝑥𝑖𝑦𝑖

𝑖

(1) 

𝜎2 =
1

𝑁
∑ 𝑦𝑖(𝑥𝑖 − 𝑥̅)2

𝑖

(2) 

where 𝑖 goes over the histogram bins, 𝑥𝑖 is the center of the bin on the 𝑥-axis, 𝑦𝑖 is the sum of the 

weights in that bin, and 𝑁 is the sum of the weights in the histogram.  

Note that I’m being super-formal here, in that I’m referring to 𝑦𝑖 and 𝑁 as “sums of weights.” That’s 

because, as I note in Footnote 38 on page 31, you can assign a weight to the entries as you fill a 

histogram. You do this by adding an extra argument to the Fill method. For example, this adds a 

value to a histogram with the default weight of 1.0: 
hist.Fill(value) 

while this adds that same value with a weight: 
hist.Fill(value, 1.0/error) 

For all of the histograms in this tutorial, even in the advanced exercises, the default weight of 1.0 is 

sufficient. In that case, 𝑦𝑖 is just the number of times you filled a value in bin 𝑖 and 𝑁 is the total 

number of times you filled the histogram.  

However, there are a number of reasons why you’d want to reweight data as you binned it into a 

histogram. One example, which I hinted at above, is when each individual value has an error 

associated with it. You might want to weight the values so that those with large errors have little 

weight and those with small errors have big weights. 

The values of Mean and StdDev in the plot do not include any values you filled that fall outside the 

𝑥-axis of the histogram. This is easy to test if you have any doubts: 
TH1D hist("hist","test",100,0,3) 

hist.FillRandom("gaus",1000) 

hist.Draw() 

  

 

97  “What? There was a version of this tutorial that was more cluttered?” Just for that, you get to work through all the 

exercises in Parts Seven and Eight.  



 

5/31/21 Basic Data Analysis Using ROOT Page 81 of 127 

Alternate gaussian parameterization 

In ROOT's TFormula notation, the “gaus” function refers to Equation 3 on page 95, where 𝐴, 𝜇, 𝜎 

refer to parameters P0, P1, P2 respectively. This is usually fine, except when you want a distribution 

that’s normalized so that total area under the gaussian distribution is unity. For that, use “gausn” 

instead, which uses the probability distribution function in Equation 4.  

With this different normalization, P0 divided by the bin width becomes the number of “equivalent 

events” in the histogram; that’s the “area” of the gaussian distribution expressed in units of events 

with weight=1: 
[] TFitResultPtr fitResult = hist.Fit("gausn") 

[] Double_t numberEquivalentEvents = fitResult->Parameter(0) / 

hist.GetBinWidth(0) 

 

 
Figure 36: https://xkcd.com/2118/ by Randall Munroe 

Alt-text: “It’s the NORMAL distribution, not the TANGENT distribution.” 

 

Automatic histogram binning 

As you’ve noticed when working with a command like tree1->Draw("zv"), ROOT can 

automatically determine the appropriate axis range of a plot for you. You can use the same trick; it 

is: 
TH1* hist = new TH1D(...); // define your histogram 

hist->SetCanExtend(TH1::kXaxis); // allow the histogram to re-bin itself 

hist->Sumw2(); // so the error bars are correct after re-binning 

“Re-binning” means that if a value is supplied to the histogram that's outside its limits, it will adjust 

those limits automatically. It does this by summing existing bins then doubling the bin width; the bin 

limits change, while the number of histogram bins remains constant.  

https://xkcd.com/2118/


 

Page 82 of 127 Basic Data Analysis Using ROOT 5/31/21 

Histogram arithmetic 

Suppose you're told to fill two histograms, then perform arithmetic on them; most often this will be 

adding histograms, but you can also subtract, multiply, and divide histogram contents. If you do this, 

call the "Sumw2" method of both histograms before you fill them; e.g., 
 

   TH1* hist1 = new TH1D(…); 

   TH1* hist2 = new TH1D(…); 

   hist1->Sumw2(); 

   hist2->Sumw2(); 

 

   // Fill your histograms 

   hist1->Fill(...);  

   Hist2->Fill(...);  

 

   // Add hist2 to the contents of hist1: 

   hist1->Add(hist2); 

If you forget Sumw2, then your error bars after the math operation won't be correct. General rule: If 

you're going to perform histogram arithmetic, use Sumw2 (which means “sum the squares of the 

weights”). Some physicists use Sumw2 all the time, just in case. 

 

 

 
Figure 37: https://xkcd.com/759/ by Randall Munroe 

Alt-text: “Handy exam trick: When you know the correct answer but not the correct derivation,  

derive blindly forward from the givens and backward from the answer,  

and join the chains once the equations start looking similar.  

Sometimes the graders don’t notice the seam.” 

 

  

https://xkcd.com/759/


 

5/31/21 Basic Data Analysis Using ROOT Page 83 of 127 

Directories 

A question for you: What will happen if you execute the following code in C++? 
TFile* file = new TFile("experiment.root"); 

TH1D* hist = new TH1D("example","example",100,-3,3); 

hist->FillRandom("gaus",10000); 

file->Close(); 

hist->Draw(); 

c1->Draw(); 

If you’re more accustomed to Python: 
import ROOT 

file = ROOT.TFile("experiment.root") 

hist = ROOT.TH1D("example","example",100,-3,3) 

hist.FillRandom("gaus",10000) 

file.Close() 

hist.Draw() 

Did you guess that the code will crash? The C++ version will give a segmentation fault; the Python 

version will complain that hist is now an object of ‘PyROOT_NoneType’. You may have even 

seen a crash like this before when working on Exercise 10. You’ve probably already guessed that the 

cause of the problem are “directories” (since that’s the title of this section), but how? 

A directory in ROOT (the TDirectory class) is a way of organizing ROOT’s objects. It’s like a 

directory or folder on disk, only ROOT’s directories typically hold only ROOT classes: TTrees, 

histograms, etc. They’re used mostly to organize the contents of ROOT disk files (see Exercise 12 

on page 112 for more) but you can define a directory in ROOT’s memory without writing it to disk, 

the same way you can have a histogram in ROOT’s memory without it being written to a file.  

For the most part, you don’t have to think about directories during an active ROOT session, but the 

example code above illustrates an unusual case. Let’s see why it fails. To see the name of the 

directory you’re using in ROOT, execute the following in C++: 
TDirectory::CurrentDirectory()->GetName() 

In Python: 
ROOT.TDirectory.CurrentDirectory().GetName() 

Give it a try:98 Start an interactive ROOT session and copy-and-paste the above command to see the 

name of the current directory (it will probably be “RInt” or “PyROOT”). Then copy-and-paste the 

TFile command in the example code above, then look at the directory name again.  

It looks like when you open a file, ROOT automatically creates a TDirectory with that file’s 
name and makes that your default directory. This may remind you a bit of Exercise 3. There 
you had to be careful about which TCanvas you wrote to. Here it’s important to understand 
in which TDirectory you’re creating objects.  

Look at the line in the example code that defines a new histogram. In which TDirectory will the 

histogram be created? I’m sure you got the correct answer: “experiment.root”.  

 

98  If you’d like a visual guide, you may want to start the TBrowser first so you can see the directory and histogram 

appear and disappear as you paste the commands. 

 



 

Page 84 of 127 Basic Data Analysis Using ROOT 5/31/21 

Now execute the example code up to and including the line where we close the file. Once again, look 

at the directory name. We’re not in “experiment.root” anymore.  

What happens if we try to draw hist now? We’ll get an error. The reason why is that when we 

closed the file, ROOT also removed its associated directory. When the TDirectory “experiment.root” 

was removed, everything in it was removed as well, including hist. The reason for the error when 

we try to draw the histogram is that hist refers to a region of memory that doesn’t exist anymore.  

The fix for the above example code is simple: swap the TFile and TH1D lines. Then hist is 

defined in a TDirectory that isn’t going away.  

Again, for the most part you don’t have be concerned with the TDirectory class. However, 
it’s a good idea to keep to the practice: Don’t create objects when you have an open file, 
unless you’re going to write that object to that file.  

Perhaps you’re asking yourself: hist was created while experiment.root was open. Does 
this mean the histogram was added to the disk file? No, for two reasons: we didn’t use a 
Write() method on anything, and the file was opened read-only (see Exercise 10).  

 

 

 
Figure 38: https://xkcd.com/981/ by Randall Munroe 

Moral: Be careful how you organize your directories! 

 

  

https://xkcd.com/981/


 

5/31/21 Basic Data Analysis Using ROOT Page 85 of 127 

JupyterLab 

You learned about Jupyter in Part Two. JupyterLab is the next phase of the Jupyter project. 

Eventually it will become the standard Jupyter interface. If you wish, you can experience the future 

today.  

JupyterLab is another step along the road to making Jupyter a full-fledged IDE (integrated 

development environment). Here’s an example: When I use Jupyter, typically I see something like 

this: 

 
Figure 39: A typical Jupyter view. 

I prefer to use tabs instead of separate browser windows, but otherwise your experience with Jupyter 

is probably the same: the main Jupyter file browser is in one window, while the Jupyter notebooks 

are each in separate windows of their own.  

This is what I see when I set up the same tasks in JupyterLab: 



 

Page 86 of 127 Basic Data Analysis Using ROOT 5/31/21 

 
Figure 40: A typical JupyterLab view. 

The entire notebook interface is contained in a single browser window. JupyterLab offers more, such 

as a text editor with syntax highlighting and the ability to execute code within Markdown 

documents. For more information, see the user’s guide at  

https://jupyterlab.readthedocs.io/en/stable/user/interface.html 

If you want to try JupyterLab, the simplest way to switch is to edit the URL of your main Jupyter 

page. For example, when I use Jupyter, I see the following URL: 

https://seligman.notebook.nevis.columbia.edu/user/seligman/tree 

To switch to JupyterLab, change the characters tree to lab. For example, what I would use is: 

https://seligman.notebook.nevis.columbia.edu/user/seligman/lab  

To switch back to Jupyter, select Launch Classic Notebook from JupyterLab’s Help menu.  

If you want to always use JupyterLab instead of Jupyter, create or edit the file 

~/.jupyter/jupyter_notebook_config.py and include the following line: 
 

c.NotebookApp.default_url = '/lab' 

  

https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://seligman.notebook.nevis.columbia.edu/user/seligman/tree
https://seligman.notebook.nevis.columbia.edu/user/seligman/lab


 

5/31/21 Basic Data Analysis Using ROOT Page 87 of 127 

Dataframes 

Using dataframes, each of the exercises 2 through 9 above can be written in 3 lines of code. You 

don’t need to create event loops with macros or analysis skeletons; the RDataFrame class and its 

associated methods handle all of that for you.99, 100  

The simplest way to view RDataframe is as a way to treat an ntuple like a spreadsheet. You can 

derive new columns and perform operations on a column like counting entries, summing the values, 

or finding the maximum/minimum value. You can also perform row-wise operations such as 

applying a cut (a “filter” in RDataFrame).  

Here’s a simple example in Python: 
import ROOT 

dataframe = ROOT.RDataFrame("tree1","experiment.root") 

example = dataframe.Define("pt","sqrt(px*px + py*py)") \ 

  .Filter("pz < 145").Count().Histo1D("pt") 

This defines a dataframe that contains our standard example ntuple tree1 from 

experiment.root. It then applies the following operations to the ntuple: 

• defines a new column, pt, from a formula; 

• applies a cut of pz < 145 to all the rows; 

• counts the number of rows that pass the cut; 

• makes a histogram of pt for all the rows that pass the cut.  

To access the value of the number of rows that pass the cut: 
print ("The number of events with pz < 145 is",example.GetValue()) 

To draw the histogram, assuming you’ve defined a suitable canvas: 
example.Draw() 

For a more complete example, including the equivalent code in C++, copy the Python notebook 

RDataFrameExercises.ipynb from ~seligman/root-class and open it via Jupyter. 

You can also see other examples in these two equivalent areas (see page 79): 

• The tutorials area $ROOTSYS/tutorials/dataframe; 

• Data Frame tutorials at https://root.cern.ch/doc/master/group__tutorial__dataframe.html. 

 

(continued on next page)  

 

99  The term “dataframe” is also an important component of the Python data analysis package pandas and the R 

programming language. Don’t confuse ROOT’s dataframes with pandas’ or R’s. There is some overlap of concepts, 

but they’re different things with the same name.  

100  The current RDataFrame class was introduced in ROOT 6.14. From ROOT 6.10 to 6.12, the class was called 

ROOT::Experimental::TDataFrame. Prior to 6.10, you won’t find dataframes in ROOT at all. Since this is an 

actively evolving feature of ROOT, you’ll want to check which version of ROOT your collaboration uses. The 

notebook server uses the latest stable version of ROOT but collaborations often stick with a particular older ROOT 

version.  

https://root.cern.ch/doc/master/group__tutorial__dataframe.html
https://pandas.pydata.org/docs/getting_started/index.html
https://www.tutorialspoint.com/r/r_data_frames.htm
https://www.tutorialspoint.com/r/r_data_frames.htm


 

Page 88 of 127 Basic Data Analysis Using ROOT 5/31/21 

Here are other advantages of RDataFrame: 

• It's easy to set up RDataFrame to use multiple threads, which greatly speeds up execution. 

Generally, you can do this in Python by just adding the line: 
ROOT.ROOT.EnableImplicitMT 

In C++: 
ROOT::EnableImplicitMT(); 

• Although I only show examples using the ntuple tree1, you can also use other file formats 

as input to dataframes; e.g., TTrees and CSV files.  

• As noted above, you don’t have to worry about event loops.  

• You can easily save modified dataframes (via the Snapshot method) to preserve the work 

you’ve done.  

With all these benefits, why didn’t I just use RDataframe in Parts Three and Four and save you some 

of the hassle? 

• A teaching reason: To be able to work with dataframes, you need to have some formal 

understanding of reading rows via an event loop. It’s hard to do that without seeing loop code 

at least once. 

• Another teaching reason: You need to know how to code loops (and other control structures) 

in both Python and C++ if you’re to work with those languages for anything other than 

ROOT.  

• RDataFrame “stages” its tasks using a technique called “lazy evaluation.” This means 

RDataFrame won’t read the dataframe from disk until the first actual call that requires using 

the data to compute a value.  

Consider: 
countPz = dataframe.Filter("pz < 145").Count() 

hist = dataframe.Define("pt","sqrt(px*px + py*py)") \ 

    .Define("theta","atan2(pt,pz)").Histo1D("pt") 

print ("The number of events with pz < 145 is",countPz.GetValue()) 

hist.Draw() 

When you execute the above code, RDataFrame will “stack” the Filter, Define, and 

Histo1D actions. It will only read the ntuple when it executes countPz.GetValue, 

which requires a concrete numeric value. As it reads the ntuple it will perform all the stacked 

actions.  

This means you want to have a strong sense of what RDataFrame actions are staged and 

which retrieve values. Consider the following code, which just moves a single line compared 

to the above code: 
countPz = dataframe.Filter("pz < 145").Count() 

print ("The number of events with pz < 145 is",countPz.GetValue()) 

hist = dataframe.Define("pt","sqrt(px*px + py*py)") \ 

    .Define("theta","atan2(pt,pz)").Histo1D("pt") 

hist.Draw() 

If you execute this code, RDataFrame will read the ntuple to get the value of countPz. It 

will then stage two more Define actions and the Histo1D action, and the read the ntuple 



 

5/31/21 Basic Data Analysis Using ROOT Page 89 of 127 

again to be able to draw the histogram. 

 

Do things right, and you’ll only read an ntuple from disk once. Do things wrong, and you could 

get a slow program that reads an ntuple from disk over and over again.  

• RDataFrame is reasonably easy to use if all you need are its basic actions. But if you want to 

do something that requires you to write custom code, its difficulty can ramp up. For details, 

see https://root.cern/doc/master/classROOT_1_1RDataFrame.html  

With all that said, I’m in favor of using dataframes and plan to use RDataFrame in my projects in the 

future. But this is definitely a subject in which you can become an expert faster than I can! 

uproot 

From RDataFrame, let’s go to the other end of the spectrum: ROOT I/O without using ROOT. The 

Python uproot package reads ROOT files using only Python and numpy. It’s particularly handy if 

you were already a Python expert before taking the ROOT class, and would rather not have to touch 

ROOT again if you can help it.  

I’ve installed uproot on the Python 3 installations available at Nevis. For documentation, see 

https://github.com/scikit-hep/uproot4  

coffea 

The coffea package is column-based analysis system specifically designed for high-energy physics. I 

think of it as a Python-only equivalent to RDataFrames. For more information, see 

https://coffeateam.github.io/coffea/.  

Vectorization (speeding up array loops) 

This is outside the scope of a ROOT tutorial, but I thought I’d at least include a reference: 

“Vectorizing” program code means to take loops over arrays and similar structures, and compiling 

them into a form for rapid execution on multi-processor CPUs or even GPUs: 
for (i = 0; i < N; i++){ a[i+1] = b[i] * 3; } 

For array operations, particularly those in nested loops, the code speed-up can be considerable. C++ 

code can be vectorized by turning on the right compilation option; typically -O3 will do the trick. 

For Python, the Numba package has been installed on the Nevis particle-physics systems: 

https://numba.readthedocs.io/en/stable/user/5minguide.html  

 
Figure 41:  https://xkcd.com/2054/ by Randall Munroe 

Hopefully your use of ROOT data will be more rational.  

https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://github.com/scikit-hep/uproot4
https://coffeateam.github.io/coffea/
https://numba.readthedocs.io/en/stable/user/5minguide.html
https://xkcd.com/2054/


 

Page 90 of 127 Basic Data Analysis Using ROOT 5/31/21 

Installing ROOT on your own computer 

Either you have no choice, or you’ve decided to ignore my warning on page 6. Here are various 

methods to install ROOT on your own computer. They are listed in ascending order of complexity.  

Docker 

Docker is probably the best method of running Jupyter+pyroot with a minimum of fuss. Its 

disadvantage is that it requires administrative access to the host computer system (e.g., your laptop), 

both to install Docker and to run the Docker container.  

The first step is to install Docker. For Mac and Windows systems, use Docker Desktop; there's a 

different procedure needed for Linux systems. 

Once Docker is installed and running, you'll be able to download and run a Docker container:  

sudo docker run -p 8080:8080 -v $PWD:/work wgseligman/jupyter-pyroot 

(Windows users will probably need to use %CD% instead of $PWD.)  

The first time you run this command, it will download a ~2.5GB container. Give it time.  

Finally, you'll see some output. Look at that output carefully, as it will tell you how to access Jupyter 

via a web browser. For example, assume the output contains something like this:  

    To access the notebook, open this file in a browser: 

        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html 

    Or copy and paste one of these URLs: 

        

http://649d0c4b4dc1:8080/?token=97d7242fc79734f1429bc425c627ccc4f586675c01ecdd9c 

     or 

http://127.0.0.1:8080/?token=97d7242fc79734f1429bc425c627ccc4f586675c01ecdd9c 

Then start up a web browser and visit  

http://127.0.0.1:8080/?token=97d7242fc79734f1429bc425c627ccc4f586675c01ecdd9c  

You'll see the standard Jupyter home page.  

That will get you started. The next few sub-sections are for refining your use of Docker.  

Changing the port  

Consider the command:  

sudo docker run -p 8080:8080 -v $PWD:/work wgseligman/jupyter-pyroot 

That first 8080 is the port to use on your local computer. If you want to use a different port on your 

computer (for example, you're already using port 8080 for something else), change that first 8080 to 

a different port. Note that if you change the port, you'll also have to change the port in the URL in 

the output; e.g.,  

sudo docker run -p 7000:8080 -v $PWD:/work wgseligman/jupyter-pyroot 

means you'll have to change:  

http://127.0.0.1:8080/?token=97d7242fc79734f1429bc425c627ccc4f586675c01ecdd9c 

to:  

http://127.0.0.1:7000/?token=97d7242fc79734f1429bc425c627ccc4f586675c01ecdd9c 

https://www.docker.com/
https://www.docker.com/products/docker-desktop
https://runnable.com/docker/install-docker-on-linux


 

5/31/21 Basic Data Analysis Using ROOT Page 91 of 127 

Changing the directory  

Again, consider:  

sudo docker run -p 8080:8080 -v $PWD:/work wgseligman/jupyter-pyroot 

That $PWD (%CD% in Windows) just means “the current directory.” The execution environment 

within the container uses /work for its files; the -v option in the command means "map /work to 

the current directory in the terminal." If you'd like to use a different directory on your computer as 

the work directory for the Docker container, just substitute that directory for $PWD. For example:  

sudo docker run -p 8080:8080 -v ~jsmith/root-class:/work wgseligman/jupyter-

pyroot 

Changing the container  

You can use New -> Terminal within Jupyter to get a shell. Within that shell, you can modify 

anything within the container you want; for example, you can use pip3 to install new Python 

packages or yum to install new Linux packages.101 

However, any changes you make to the Docker container won't be automatically saved when you 

quit the container. When you next start the container, it will start “fresh.” If you want to save your 

changes, you'll have to commit them.   

For example, assume that you've made some changes to your copy of the jupyter-pyroot container. 

Look up the ID of the container as assigned by your local docker process:  

sudo docker container ls 

CONTAINER ID        IMAGE                       COMMAND      […] 

1105371318e8        wgseligman/jupyter-pyroot   "jupyter notebook ..."   […] 

Your output will be different; I’ve omitted most of the columns, and you'll have a different 

CONTAINER ID. Commit a revised container using your own image name:  

sudo docker commit 1105371318e8 $USER/jupyter-pyroot 

You'll can see your new image with the docker images command. For example, if $USER is 

"jsmith":  

sudo docker images 

REPOSITORY                            TAG                 IMAGE ID      […] 

jsmith/jupyter-pyroot               latest              97ca601cbf9c    […] 

docker.io/wgseligman/jupyter-pyroot   latest              16c3bbdc8144  […] 

From that point forward, you'll probably want to run your new container with your changes:  

sudo docker run -p 8080:8080 -v $PWD:/work jsmith/jupyter-pyroot  

Docker container notes  

I prepared the container wgseligman/jupyter-pyroot to be similar to the environment of the notebook 

server; for example, it runs the same version of the OS and of ROOT (as of Apr-2021, that's CentOS 

7 and ROOT 6.22.08).  

A little bit web searching will show there are other ROOT containers available. For example:  

sudo docker run -p 3000:8080 pedwink/pyroot-notebook 

 

101  If you install something of general interest, let me know. I may add it to the main jupyter-pyroot container. 

https://pip.pypa.io/en/stable/user_guide/)
http://yum.baseurl.org/wiki/YumCommands.html)
https://docs.docker.com/engine/reference/commandline/commit/).
https://docs.docker.com/engine/reference/commandline/images/


 

Page 92 of 127 Basic Data Analysis Using ROOT 5/31/21 

That particular container uses Fedora 28 and ROOT 6.14, and it also offers Python 2 versions of its 

notebook kernels (wgseligman/jupyter-pyroot only offers Python 3).  

So if you can't find the feature you want in wgseligman/jupyter-pyroot, hunt around a bit. It's 

probably out there.  

 
 Figure 42: https://xkcd.com/1988/ by Randall Munroe 

Singularity  

If you don't have admin access to your local computer, or you simply prefer it, you can use 

Singularity instead. You still need admin access to install Singularity, or a willing sysadmin to do it 

for you. (Singularity is installed on all the systems in the Nevis particle-physics Linux cluster.)  

To download the container and convert it to Singularity's .sif format:  

singularity pull docker://wgseligman/jupyter-pyroot 

After some processing, you'll have the image file jupyter-pyroot_latest.sif. Then you can run 

Singularity on that container:  

singularity run --bind=$PWD:/work jupyter-pyroot_latest.sif 

Note that while you can change the mapping of the /work directory within the container (see the 

Docker instructions above), you can't change Jupyter's binding to port 8080. This might be a 

problem if you're running on a shared computer system and more than one user wants to run this 

container at the same time.  

Anaconda 

Docker and Singularity are OS-level containers.102 Anaconda is an environment-level container; it 

 

102  In contrast to emulators like VMware, which are machine-level containers.  

https://xkcd.com/1988/
https://sylabs.io/guides/3.5/user-guide/
https://docs.anaconda.com/anaconda/


 

5/31/21 Basic Data Analysis Using ROOT Page 93 of 127 

doesn't change the operating system, but it allows you download and execute packages in your home 

directory.  

If you use the Nevis Linux cluster, then you should consider using environment modules (see 

page 10) over Anaconda. But if you're on a different system, or the Nevis environment modules 

don't offer the package or version you're looking for, Anaconda is a better choice. You can install 

Anaconda in your home directory so admin access is not necessary.  

Once you've installed Anaconda, you’ll probably have to include conda-forge. 

To install Jupyter/ROOT, this command is supposed to work:  

conda create --name jupyter-pyroot jupyter python root 

However, I've found this method to be unreliable. Typically there's no problem with jupyter or 

python, but installing ROOT via Anaconda is hit-or-miss.  

Assuming you succeed, you can run the jupyter command: 

jupyter notebook 

or if you want control of the port:  
jupyter notebook --no-browser --port=XXXX 

Note that because Anaconda changes your execution environment, it may be incompatible with other 

environment setups (such as MicroBooNE’s LArSoft, ATLAS’ Athena, or Nevis’ module load 

command). 

Other packaged distributions 

There are other packaging systems than Anaconda; I only emphasized that one because it’s available 

on Mac OS X, Windows, and Linux. But if you’re already using a package system, ROOT may 

already be a part of it. 

For example, MacPorts has both ROOT and Jupyter. In RHEL-derived Linux systems, the EPEL 

repository has also has both ROOT and Jupyter.  

The difficulty with some of these packaged distributions is that the ROOT+Jupyter integration might 

need some work on your part.  

 

 
Figure 43: https://xkcd.com/1349/ by Randall Munroe 

  

https://docs.anaconda.com/anaconda/install/
https://conda-forge.org/
https://www.macports.org/
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://xkcd.com/1349/


 

Page 94 of 127 Basic Data Analysis Using ROOT 5/31/21 

The hard way: compiling ROOT and Jupyter from scratch 

I repeat my advice from page 6: Don’t.   

Obviously, it’s possible to install these packages from scratch; I do it all the time. But it can take a 

while to learn how to do it. You’d learn a lot about UNIX, but you’ll be learning neither ROOT nor 

physics. Don’t expect me to break from teaching other students about ROOT to teach you about your 

C++ compiler and the location of your Python distribution in your directory hierarchy.  

Now that you have been warned, here are the places to start: 

• Python (if it’s not already installed on your system) 

• ROOT 

• Jupyter 

Please keep the following in mind: 

• These are not applications that you can double-click to automatically install. The process 

requires some knowledge of the command shell.  

• Read the installation documentation for each package. Use some thought and initiative. If 

you aren’t familiar with UNIX shells before you started this process, you will be once you 

finish!  

• The dockerfile I used to create the wgseligman/jupyter-pyroot container may provide a clue 

for how to create your own installation.  

 

 
Figure 44: https://xkcd.com/1739/ by Randall Munroe 

Alt-text: “What was the original problem you were trying to fix?”  

“Well, I noticed that one of the tools I was using had an inefficiency that was wasting my time.” 

 

  

https://wiki.python.org/moin/BeginnersGuide/Download
https://root.cern/install/
https://jupyter.readthedocs.io/en/latest/install.html
https://github.com/wgseligman/docker-jupyter-pyroot/blob/master/Dockerfile
https://github.com/wgseligman/docker-jupyter-pyroot
https://xkcd.com/1739/


 

5/31/21 Basic Data Analysis Using ROOT Page 95 of 127 

Part Six – A too-brief and too-long introduction to statistics 

This section is for those students who have no exposure to statistics before taking this 
tutorial. My goal is to explain the following terms of “physicist jargon”:103 

• gaussian 

• chi-squared 

• chi-squared per degrees of freedom 

• sigma (as in “we’re looking for a five-sigma effect”) 

• systematic error 

Strictly speaking, this section has nothing to do with ROOT per se; that’s part of why it’s 
“too long.” However, I was asked to include something on these topics to hopefully give you 
a head start as you get involved with the research you’ll do this summer.104  

Gaussian 

The gaussian105 function (sometimes called the “normal distribution” or “the bell curve,” though 

both terms are a bit inaccurate in this case) is a standardized curve that frequently comes up in 

physics; for example, random processes such as particle decay. The formula for the gaussian 

function is: 

𝑓(𝑥) = 𝑒−
1
2(

𝑥−𝜇
𝜎 )

2

(3) 

• 𝜇 is the mean of the distribution. (For a gaussian, the mean, mode, and median are the same.) 

• 𝜎 = the standard deviation; it’s related to the “full width at half maximum” (FWHM) of the 

curve by FWHM = 2√2ln2𝜎 ≈ 2.35𝜎. 

• 𝑒 = Euler’s constant, a transcendental number that occurs often in calculations that relate to 

growth and increase. It’s formally defined as lim
𝑛→∞

(1 +
1

𝑛
 )

𝑛
. 

If you want to work with the normal distribution as a “probability density function” then you’ll want 

to include a normalization so the integral ∫ 𝒩(𝑥)𝑑𝑥 =
∞

−∞
 1 (see page 81): 

𝒩(𝑥: 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒−

1
2(

𝑥−𝜇
𝜎 )

2

(4) 

Without the normalization term, the maximum value (“amplitude”) of 𝐴𝑒−(
𝑥−𝜇

𝜎
)

2

 is A, which is easy 

to read from a graph.  

 

103  In this section, when I say “physicists do this” or “physicists do that,” it’s not exclusive. Other fields of study use the 

same terms. However, since I mostly hang out with physicists and not cultural ethnologists or meteorologists, I’ll 

only speak for the folks I know.  

104  The full subject of statistics is deep and beautiful, and you can spend a lifetime… well, you know the rest. 

105  I should call it the Gaussian function since it’s named after Carl Friedrich Gauss, but like many physicists I’m too 

lazy to hit the SHIFT key.  

 



 

Page 96 of 127 Basic Data Analysis Using ROOT 5/31/21 

 
Figure 45: A few gaussian functions with annotations.106 

I’ll repeat something I say in Part One: You see the word “gaussian” a lot in this tutorial, because it’s 

an easy distribution to work with as I prepare plots and such. There are many other probability 

distributions and functional forms that are used in physics. For example, there’s the Poisson 

distribution, which models the number of discrete events seen in a time interval (used in radioactive 

decay); and the Landau distribution, which describes energy loss of ionizing particles.  

Gaussian distributions come up a lot because when you’re making an observation that depends on 

the combination of many underlying probability distributions, the combination generally tends 

towards a gaussian. But don’t start believing that everything is normal!  

 
Figure 46: https://xkcd.com/314/ by Randall Munroe 

 

106  When I was a graduate student, I showed a plot very much like this one at one of my first talks to the rest of my 

experiment’s group. The spokesman thundered “Take that off the screen!” He felt that the information it conveyed 

was so trivial that I was insulting everyone’s intelligence. Don’t make the same mistake that I did! 

 On the other hand, if you feel that your intelligence has just been insulted, you may be ready to be an experiment 

spokesperson. Quick, write a proposal! 

https://xkcd.com/314/


 

5/31/21 Basic Data Analysis Using ROOT Page 97 of 127 

 

Chi-squared 

It’s quite rare in physics to perform a data analysis task and see nice smooth curves like those in 

Figure 45. For the most part, you make histograms of data, as in my introductory talk. Such a plot 

might look something like this:107 

 

 
Figure 47: A typical histogram that you might create during a data analysis. 

Suppose you want to test whether the above distribution of data was generated according to a 

gaussian distribution. The typical test used in physics is to perform a “fit”: fiddle with the parameters 

A, 𝜇, and 𝜎 (typically called “amplitude”, “mean”, and “sigma” respectively) until the function best 

fits those data points. 

The mathematical method for performing such a fit starts with computing a quantity denoted as 𝜒2, 

pronounced “chi-squared.” For a general 1-dimensional function to be fitted to a 1-dimensional 

histogram, this is: 

𝜒2 = ∑
(𝑦𝑖 − 𝑓(𝑥𝑖; 𝑝𝑗))

2

𝑒𝑖
2

𝑖

(5) 

where: 

 

107  If you jumped here from Part One, you’re going to make your own plots similar to the next couple of figures.  



 

Page 98 of 127 Basic Data Analysis Using ROOT 5/31/21 

• i means the i-th bin of the histogram (more generally, the i-th data point you’ve gathered). 

• yi means the data (or value of) the i-th bin of the histogram.  

• ei means the error in the i-th bin of the histogram (i.e., the size of the error bars). 

• 𝑓(𝑥𝑖; 𝑝𝑗) means to compute the value of the function at 𝑥𝑖 (the value on the x-axis of the 

center of bin i) given some assumed values of the parameters 𝑝0, 𝑝1, 𝑝2 … 𝑝𝑗. 

The process of “fitting” means to test different values of the parameters until you find those that 

minimize the value of 𝜒2. 

This probably sounds quite involved. Indeed, it can be. Fortunately, physicists and mathematicians 

have developed many tools to relieve the computational tedium of much of this process. As you will 

learn in Part One (if you jumped here) or learned in Part One (if you’re reading this tutorial from 

beginning to end), fitting the histogram in Figure 47 to a gaussian distribution is a matter of a couple 

of mouse clicks: 

 
Figure 48: It looks like a gaussian function is a reasonable assumption for the underlying distribution of our data. In this case, 

I knew this to be true because of how I generated the “data” in the histogram. You (will do)/(have done)/(will have done) the 

same thing in Part One.  

Since you’re a scientist, you may be asking “How does ROOT fit functions?” The answer has to do 

with a general mathematical technique called “function minimization”; in this case, minimizing the 

value of 𝜒2. With interactive ROOT, you can fit 1-, 2-, and 3-dimensional histograms to basic 

distributions with a few mouse clicks. For more complex minimization tasks, you have to write your 

own functions to be minimized; there’s a brief example of this in Part One.  

I should mention that you don’t always fit a function to your data using a 𝜒2calculation. That’s good 



 

5/31/21 Basic Data Analysis Using ROOT Page 99 of 127 

enough if the distribution of your data within each individual bin is gaussian; it’s certainly true for 

all the fits associated with this tutorial.  

However, in physics you can have data vs. function comparisons for which the underlying data 

within a bin is not gaussian; this frequently occurs with fits that include systematic errors (a term I 

describe on page 104). For those cases you need to use a “log-likelihood” test. I won’t discuss this 

further108 but it’s important that you know it exists.  

If you’re interested in this topic, I prepared a Jupyter notebook on how to use a general-purpose 

function minimization program called Minuit from within Python and apply it to histograms I 

created using ROOT.109 You can copy the following file and view it via the notebook server if you 

have questions on this process (and on writing minimization routines): 
cp ~seligman/root-class/minuit-class.ipynb $PWD 

Chi-squared per degree of freedom 

Let’s suppose your supervisor asks to perform a fit on some data. They may ask you about the chi-

squared of that fit. However, that’s just short-hand; what they really want to know is the chi-squared 

for the number of degrees of freedom.  

Take a careful look at the text box in the upper right-hand corner of Figure 48. One of the lines in 

that box is “𝜒2 / ndf”. You’ve already figured that it’s short for “chi-squared for the number of 

degrees of freedom” but what does that actually mean? 

Take another look at Equation 5:  

𝜒2 = ∑
(𝑦𝑖 − 𝑓(𝑥; 𝐴, 𝜇, 𝜎))

2

𝑒𝑖
2

𝑖

 

As I mentioned above, for each individual bin i the data forms a little gaussian distribution of its own 

with a mean of yi. The ei acts as a scale of the difference between yi and the function f(x). So if f(x) is 

a reasonable approximation to yi, (yi-f(x))/ei will be around ±1. You add up those “1”s for each of the 

bins, and you might anticipate that 𝜒2will be roughly equal to i, the number of bins.  

That doesn’t tell the whole story. There are three “free parameters” in the fit: 𝐴, 𝜇, 𝜎. They’re going 

to be varied to make the chi-squared smaller. The net effect is that total number of “degrees of 

freedom” is: 

DOF = number of data points – number of free parameters in the function 

The histogram in Figure 48 has 100 bins, and a gaussian function has three parameters. If you look at 

the figure again, you’ll see 𝜒2 / ndf = 94.56 / 97. It looks like ROOT know how to count the degrees 

of freedom… for simple functions and histogram fits. If you’re using a more sophisticating fitting 

program like Minuit, you may have to figure out the DOF yourself.  

So far so good, but why can’t the 𝜒2be even lower? Wouldn’t it be great if it were zero? No, it 

wouldn’t! 

Mathematicians and statisticians have studied the question: What is the probability that a randomly-

 

108  …because I don’t fully understand it myself. Maybe, at the end of your research work at Nevis, you’ll teach me! 

109  If you don’t know what a “Jupyter notebook” is yet, it means you skipped ahead and haven’t reached Part Two of 

this tutorial. Don’t worry; you’ll get there.  



 

Page 100 of 127 Basic Data Analysis Using ROOT 5/31/21 

generated set of data came from a particular underlying distribution? If you look around the web, 

you’ll find tables that compute this probability for a given 𝜒2 and ndf. When you get to more than a 

couple dozen ndf, there’s a simpler test: see if the ratio 𝜒2 / ndf is around 1. For the particular fit in 

Figure 48, the value of 𝜒2 / ndf = 94.56 / 97 is reasonably close to 1; your supervisor would 

probably accept it. 

What might cause 𝜒2 / ndf to be much greater than 1? 

• There’s something wrong in the routine that’s calculating 𝜒2, either in the code or the 

underlying model. That probably won’t happen if you’re fitting histograms in ROOT with 

simple functions, but I can’t tell you the number of days I’ve spent sweating over a chi-

square calculation that I wrote.110  

• The model that’s being assumed for the function does not have enough parameters. This does 

not mean you can just throw additional parameters into the function for the sake of 

improving the 𝜒2!111 

• The error bars for your data are too small; in other words, there are additional sources of 

error (possibly systematic error; see page 104) which you have not yet included.  

• Function-minimization programs can get “stuck” in a local minimum that’s not the actual 

true minimum; there’s an example of that in Part One (and in that Minuit notebook I 

described above).  

What might cause 𝜒2 / ndf to be much less than 1? 

• Again, something wrong in the 𝜒2 calculation.  

• Too many free parameters in the function you’re using to fit. For an extreme example, 

consider what would happen if we tried to fit Figure 48 with a 100-degree polynomial. Of 

course that function would be able to go through the middle of every yi in the plot and the 

resulting 𝜒2 would be close to zero.112  

• The error bars for your data are too large. This can happen if you’re not careful in how you 

add up your errors; if you simply add all your errors in quadrature (√𝜎0
2 + 𝜎1

2 + 𝜎2
2 + ⋯ ) 

you may have overlooked that some of your errors are correlated; i.e., there are terms 𝜎𝑖𝜎𝑗 

where i≠j. If that’s the case, you have to incorporate an “error matrix” in your 𝜒2 calculation. 

• Someone has gone wrong in your data-analysis process and you’re “tuning” the data to the 

model you want to fit.113  

 

110  …or worse, someone else wrote, then graduated quickly before someone could ask troublesome questions. 

111  In case you think I’m joking: That actually happened during the analysis effort of my thesis experiment. No, I 

wasn’t the one who did it. The issue remained unnoticed for a few years before I uncovered the problem; 

fortunately, we hadn’t published any papers based on that erroneous fit.  

112  See Figure 10 on page 24 for an example.  

113  This can happen accidentally, but there are times it’s deliberate. Famously, a statistical analysis of the results 

recorded by the monk Gregor Mendel showed that he was faking his results to agree with his model of genetic 

inheritance. As it turned out, his model was correct, and the statistical techniques for detecting his fakery did not 

exist during his lifetime. That makes him the luckiest fraud in the history of science.  



 

5/31/21 Basic Data Analysis Using ROOT Page 101 of 127 

 
Figure 49: https://xkcd.com/882/ by Randall Munroe 

https://xkcd.com/882/


 

Page 102 of 127 Basic Data Analysis Using ROOT 5/31/21 

 

“We’re looking for a five-sigma effect” 

Suppose after a long and detailed physics analysis, you finally have a result. Assume it’s in the form 

of a measurement and its associated error.114 Let’s further assume that there’s a null hypothesis 

associated with this measurement: If a particular property did not exist, the measurement would have 

been different.  

 
Figure 50: https://xkcd.com/892/ by Randall Munroe 

Alt-text: “Hell, my eighth grade science class managed to conclusively reject it just based on a classroom experiment. It’s 

pretty sad to hear about million-dollar research teams who can’t even manage that.” 

When physicists consider such a measurement, they ask the question: What is the probability is that 

their measurement is consistent with the null hypothesis; that is, what are the chances that the null 

hypothesis is correct, and that their measurement is just a random statistical fluctuation?  

Let’s take another look at our friend, the gaussian function. When viewed as a probability 

distribution, it indicates the likelihood of a particular measurement being different from the actual 

underlying value.  

Think about this in the context of Figure 49 on page 101. In that cartoon, the scientists perform 20 

tests each with a significance at the 5% level. You would expect that one of the tests would 

randomly be far enough from the “mean of the normal distribution” that you’d get an anomalous 

result. Physicists often can’t perform multiple measurements of the a given result, so they look at 

their results in a different way:115 

 

114  As you’ll learn in the section on systematic errors, starting on page 104, errors are the tough part.  

115  The Large Hadron Collider at CERN cost about $9 billion. Why they can’t build 100 similar nine-mile-wide particle 

colliders so we can make multiple independent measurements of the Higgs boson mass is completely beyond me.  

https://xkcd.com/892/


 

5/31/21 Basic Data Analysis Using ROOT Page 103 of 127 

 
Figure 51: A plot of the normal distribution where each band has a width of 1 standard deviation. 

Source: M. W. Toews, under the CC-by-4.0 license 

When physicists express a measurement versus a null hypothesis, they usually state it in terms of 

“sigma” or the number of standard deviations that it is from the null hypothesis. This is how I think 

of it, even though they don’t usually show it in this way: 

 
Figure 52: What I picture when a physicist says they’ve observed an effect at more than a 5𝝈 level of significance. In this 

imaginary experiment, the result is reported at 22.01 ± 3.52 WeV. So I picture a normal distribution with a mean of 22.01 and 

𝝈=3.52 superimposed on the measurement. Then I count off the number of sigmas between the mean and the null hypothesis. 

In this particular imaginary experiment, the difference is more than 5𝝈 and therefore refutes the null hypothesis. Hence the P 

particle exists!  

In other words, I imagine an assumption that the same normal distribution applies to the null hypothesis and ask if what we 

actually observed could be on the null hypothesis’ probability function.  

At this point, you may be comparing Figure 51 and Figure 52, including the captions, and thinking, 

“Wait a second. A 3𝜎 effect would mean that the odds that the null hypothesis was correct would be 

https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg
https://creativecommons.org/licenses/by/4.0/deed.en


 

Page 104 of 127 Basic Data Analysis Using ROOT 5/31/21 

something like 0.1%, right? In fact, I just looked it up, and the exact value is closer to 0.3%. Isn’t 

that good enough? It’s much better than that xkcd cartoon. Why do physicists insist on a 5𝜎 effect, 

which is around 0.00003% or one in 3.5 million?” 

A 3𝜎 effect is indeed only considered “evidence,” while a 5𝜎 effect is necessary for a “discovery.” 

The reason why is summarized in a quote from a colleague on my thesis experiment: “We see 3𝜎 

effects go away all the time.”  

The reason why 3𝜎 effects “go away” is a deeper study of the data and its analysis procedure. One 

potential cause of such a shift is a change in systematic bias as you work to understand your 

systematic errors.  

Systematic errors 

A statistical error is one that’s due to some inherit randomness in your process of making a 

measurement. A systematic error comes from a consistent bias in that measurement, but you don’t 

know how much that bias is. The systematic error is the limit you assign to the potential range of that 

bias.  

To explain this concept, I like to start with that old statistics example: measuring the size of a table 

with a ruler. You repeat this measurement every day. There are some variances in the day-to-day 

measurement: you tilt your head differently, the light in the room depends on time of day, you’re 

feeling tired that day, etc.  

There’s a reasonable chance that if you were to plot these measurements, the result would look like a 

gaussian distribution. The standard deviation of that distribution would represent the statistical error 

in your measurement.  

To understand the systematic error in the measurement, you have to ask: How do we know that 20cm 

as measured on your ruler is the same as 20cm as measured on mine? Or 20cm as measured by the 

Physics Department of Polytechnic Prep in Birnin Zana? Or the International Committee for 

Weights and Measure in Saint-Cloud, Hauts-de-Seine, France? 

 

 
Figure 53: https://xkcd.com/2073/ by Randall Munroe 

Alt-text: “I’m glad to hear that they’re redefining the meter to be exactly three feet.” 

https://xkcd.com/2073/


 

5/31/21 Basic Data Analysis Using ROOT Page 105 of 127 

I’ll give you a hypothetical chain of reasoning along the lines that a physicist (or a metrologist) 

might use to think about systematic errors. Assume that your ruler is like the one sitting next to my 

desk right now, a cheap one I purchased at a drug store 30 years ago.  

• The ruler is made of plastic. I assume liquid plastic was poured into a mold then allowed to 

harden. What are the thermal characteristics of this particular type of plastic? Does it shrink 

when it’s cooled? Does its shape distort when it gets hot in my apartment? Has it become 

distorted over the past 30 years due to the age of the plastic or the conditions in which I’ve 

stored it? 

• If a metal mold was used to shape the plastic, does it have thermal characteristics of its own? 

It might have been shaped at room temperature, yet plastic is poured into it at some higher 

temperature. Is this temperature variation enough to distort the mold to some degree? 

• How was that mold made? Did it start out as a block and then was shaped at a tool-and-die 

factory? What was the precision of the drill, mill, or press used to create that mold?  

• Who manufactured that drill, mill, or press? How accurate is its tool’s position?  

And so on… 

Your probable reaction to this list is that all these effects are too small to worry about for an actual 

30cm plastic ruler being used to measure a typical living-room table. So let’s consider a more 

realistic scenario for the imaginary experiment mentioned in Figure 52, the discovery of the P 

particle.  

For the purposes of this example, the P particle is hypothesized to be emitted by a rare decay of 

Vb299. The energy of the decay products of Vb299 is measured with a calorimeter. The detector 

setup is located under the Jabari mountains, but even so enough cosmic rays get through to be a 

substantial background for the rare signal they’re trying to detect.  

The calorimeter measures the energy of the particles and returns some value in millivolts. You have 

to calibrate the calorimeter, to translate those millivolts into WeV. The typical way to do this is to 

shoot a beam of particles of known energy at the calorimeter, and see how many WeV corresponds to 

the calorimeter output in millivolts.  

• A calorimeter has some energy resolution. Even if you shoot a beam of known energy into 

one, you’re going to see a spread in the resulting detector response. Perhaps that distribution 

will look like a gaussian, but you’ll still have to fit it. Take another look at Figure 48. There’s 

a fitting error associated with the mean and sigma of the distribution. The width of that 

distribution is your energy resolution; the error in the mean is a systematic error of your 

energy calibration. 116   

• What is the exact energy of that beam of electrons used to calibrate the calorimeter? The 

electrons will be extracted from some type of accelerator and sent through a chain of 

focusing and steering magnets. The final step is to point the calibration beam at the 

calorimeter a bending magnet to select those electrons with a given energy. The mean energy 

of the beam will depend on the magnetic field of the final bending magnet. How well do you 

 

116  For a 𝜒2 fit in one dimension, that uncertainty comes from shifting that parameter and looking at the change in x 

about the minimum when 𝜒2 varies by ±1. I don’t expect you absorb that bit of arcane trivia right now; it’s enough 

to know that any fit to points with error bars will necessarily have error estimates in the fit results.  

 By the way, this is the answer to the statistics question I posed on page 16.  



 

Page 106 of 127 Basic Data Analysis Using ROOT 5/31/21 

know that magnetic field? That will be another source of systematic error.  

• You have to separate the energy signatures of the P particle from those of the cosmic rays 

that pass through the calorimeter. How well can perform the particle identification? You’ll 

apply various analysis cuts (there are examples of this in Parts Three and Four), but there’s 

always a limit to their efficiency, for another source of systematic error.  

• The above were sources of experimental systematic error. Now let’s consider a theoretical 

systematic error: Both Dr. Shuri Wright and Dr. William Ginter Riva have published models 

of the predicted energy spectrum from Vb299 decays involving the P particle. Your 

background separation depends on which model is used. So you perform your analysis for 

both models and treat the difference as a theoretical systematic error.  

You may feel that these examples are as unimportant as the systematic errors I hypothesized for the 

ruler,117 but I picked them from cases within experiments I’ve worked on; the relative sizes of such 

errors are much larger than the errors in a plastic ruler due to a milling machine. If anything, I’ve 

greatly underestimated the number of systematic errors that are considered in a typical physics 

experiment. Here’s a random example: 

 
Figure 54: From ATLAS PUB Note ATL-PHYS-PUB-2018-001 31st January 2018 

Investigation of systematic uncertainties on the measurement of the top-quark mass using lepton transverse momenta  

In case my fictional example left you dubious about the concept of systematic errors, here’s a systematic error table from a 

real physics analysis.  

 

I did a lot of hand-waving to condense what little I know about statistics into twelve pages without (I 

 

117  You might be justified in this impression given the pop-culture references. If you didn’t get the references (I admit I 

maximized the obscurity) then do a web search on Birnin Zana and ask yourself what WeV stands for.  

https://cds.cern.ch/record/2304493?ln=en


 

5/31/21 Basic Data Analysis Using ROOT Page 107 of 127 

hope) getting too bogged down in the math. If you’d like more rigorous explanations of these 

concepts, see the list of statistics books I have on https://www.nevis.columbia.edu/~seligman/root-

class/links.html. 

Anyone can make a measurement. Understanding the error on that measurement is the heart, soul, 

and skill of a physicist. 

 

 

 
Figure 55: https://xkcd.com/2110/ by Randall Munroe 

Don’t laugh too quickly. Adding statistical and systematic errors can be a tricky business. Often an experiment will report 

them separately, and sometimes will plot them in a similar way as this cartoon. For example, in my doctoral thesis, I presented 

a result in this way: 

 𝝈𝝂̅ 𝝈𝝊⁄  (30MeV – 200MeV) = 0.509 ± 0.002 (stat.) ± 0.012 (syst.)  

  

https://www.nevis.columbia.edu/~seligman/root-class/links.html
https://www.nevis.columbia.edu/~seligman/root-class/links.html
https://xkcd.com/2110/


 

Page 108 of 127 Basic Data Analysis Using ROOT 5/31/21 

Part Seven – Advanced Exercises 

If you still haven’t finished the exercises for Parts One, Three, or Four, then keep working on them. 

The following exercises are relevant to larger-scale analyses but may not be relevant to the work that 

you’ll be asked to do this summer. 

If this class is your first exposure to programming, then these exercises are hard. The smart-
aleck footnotes and xkcd cartoons aren’t going to change that. Don’t feel bound by the 
suggested times. Use the references to learn enough about programming to try to get the 
next exercise done by the end of the workshop.  

It’s your choice whether to do the exercises in C++ or Python. I’m going to discuss them in 
C++ terms, mainly because that’s my preferred programming language. Working in pyroot 
will pose its own set of challenges. You’ll learn something either way! 

Before we get to those exercises, let’s consider some more advanced topics in ROOT. 

Working with folders inside ROOT files 

As you worked with the TBrowser, you may have realized that ROOT organizes its internal 
resources in the form of “folders,” which are conceptually similar to the hierarchy of 
directories on a disk. You can also have folders within a single ROOT file.  

Folders are discussed in Chapter 10 in the ROOT Users Guide, but I have not seen the 
approach they describe (the TTask class) used in any experiment on which I’ve worked. 
Instead I’ll focus on ROOT folders in the way they’re more often used (if they’re used at all): 
to organize objects within a file. 

Copy the file folders.root from my root-class directory into your own, and use the ROOT 

TBrowser to examine its contents. 

You’ll see three folders within the file: example1, example2, and example3. Each of these 
folders will be the basis of the next three exercises. 

All three exercises will require you to make a plot of data points with error bars. You’ll want 
to use the TGraphErrors class for this.118 

 

 
Figure 56: http://xkcd.com/688 by Randall Munroe  

 

118  For Python programmers: Because I have a generous soul, I’ll permit you to use matplotlib instead of TGraphErrors 

for your x-y plots. The fact that I have no way to stop you has nothing to do with it.  

http://xkcd.com/688


 

5/31/21 Basic Data Analysis Using ROOT Page 109 of 127 

C++ Container classes 

Go back to the description of the TGraphErrors class. To create a TGraphErrors object, you need to 

supply some arguments. 

These are all different ways to construct a plot with error bars: 

• TGraphErrors() – This is used internally by ROOT when reading a TGraphErrors object 
from a file. You won’t use this method directly. 

• TGraphErrors(Int_t n) – You use this when you just want to supply TGraphErrors with 
the number of points that will be in the graph, then use the SetPoint() and 
SetPointError() methods to assign values and errors to the points. 

• TGraphErrors(const TGraphErrors& gr) – This is called a “copy constructor” in C++, 
and is used when you copy a TGraphErrors object. You can ignore this. 

• TGraphErrors(const TH1* h) – You use this to create a TGraphErrors plot based on 
values in a histogram. 

Now that I’ve given you a guide to four ways to construct a TGraphErrors object, you can 
probably figure out what the others are: to create a graph from the contents of a file, and to 
create plots from either float or double-precision… somethings. 

Those somethings are containers. In ROOT and C++, there are three general categories of 
containers you have to know about. 

Arrays 

Do a web search on “C++ arrays” to learn about these containers.119 Briefly, to create a double-

precision array of eight elements, you could say: 

Double_t myArray[8]; 

To refer to the 3rd element in the array, you might use (remember, in C++ the first element has an 

index of 0): 
Int_t i = 2; 

myArray[i] = 0.05; 

If you’re new to C++, it won’t be obvious that while myArray[2] is a Double_t object, the type of 

the name myArray (without any index) is Double_t*, or a pointer to a Double_t (see page 44). 

Getting confused? Let’s keep it simple. If you’ve created arrays with values and errors… 
Double_t xValue[22]; 

Double_t xError[22]; 

Double_t yValue[22]; 

Double_t yError[22]; 

…and you’ve put numbers into those arrays, then you can create a TGraphErrors with: 
TGraphErrors* myPlot = new TGraphErrors(22,xValue,yValue,xError,yError); 

Did you notice a problem with that example? I had to supply a fixed value for the number of 
points in each array to make the plot. In general, you won’t be able to do that; in fact, in 

 

119  If you’re doing these exercises in Python: You’ll want to read up on numpy arrays instead. Fortunately, numpy 

arrays will automatically be converted to C++ arrays when they’re passed as arguments to ROOT methods. 



 

Page 110 of 127 Basic Data Analysis Using ROOT 5/31/21 

exercises 15 and 16 below you can’t do that. 

In C++, one way to get around this problem is to use “dynamic arrays.” I’ll let you read 
about those on the web (search on “C++ dynamic arrays”), but I’m not going to say more 
about them, because I rarely use them. 

ROOT’s containers 

ROOT’s container classes are described in chapter 16 of the ROOT Users Guide.  

In the TGraphErrrors constructors, the TVectorF and TVectorD classes are containers for 
single- and double-precision real numbers respectively. Click on the class names in the 
ROOT web site to see the clear and detailed explanation of how to use them.120 

I’ll be blunt here, and perhaps editorialize too much: I don’t like ROOT’s collection classes. 
The main reason is that most of them can only hold pointers to classes that inherit from 
TObject. For example, if you wanted to create a TList that held strings or double-precision 
numbers (TString and Double_t in ROOT), you can’t do it.121 

You need to know a little about ROOT’s collection classes to be able to understand how 
ROOT works with collections of objects; exercise 16 below is an example of this. For any 
other work, I’m going to suggest something else: 

C++ Standard Template Library (STL) 

Do a web search on “standard template library”. This will probably take you to SGI’s web site at 

first. Skim a few sites, especially those that contain the words “introduction” or “tutorial”. You don’t 

have to get too in-depth; for example, you probably don’t have enough time today to fully 

understand the concept of iterators. 

Did you guess that STL is my preferred method of using containers in C++? 

The Standard Template Library is an important development in the C++ programming 
language. It ties into the concepts of design patterns and generic programming, and you can 
spend a lifetime learning about them.122 

  

 

120  If you did this and are puzzled by my description, search the web for the definition of “sarcasm.”  

121  In previous versions of this tutorial, I spent a couple of pages discussing object inheritance, and what it means to, 

e.g., “inherit from TObject.” The new ROOT web documentation makes it harder to determine object inheritance; 

you have to actually look at ROOT’s C++ source code. I decided to spare you that as much as possible. 

122  I’ve lost track of the number of your lifetimes I’ve spent. You’re probably tired of the joke anyway. 



 

5/31/21 Basic Data Analysis Using ROOT Page 111 of 127 

Vectors 

For the work that you’ll be asked to do in Parts Seven and Eight, and probably for the rest of 
this summer, there’s only one STL class you’ll have to understand: vectors. Here are the 
basics: 

If you want to use vectors in a program, or even a ROOT macro, you have to put the following near 

the top of your C++ code: 
#include <vector> 

To create a vector that will contain a certain type, e.g., double-precision values: 
std::vector<Double_t> myVector; 

If you want to create a vector with a fixed number of elements, e.g., 8: 
std::vector<Double_t> myOtherVector(8); 

To refer to a specific element of a vector, use the same notation that you use for C++ arrays: 
myOtherVector[2] = 0.05; 

To append a value to the end of the vector, which will make the vector one element longer, use the 

push_back() method: 
myVector.push_back( 0.015 ); 

To find out the current length of a vector, use the size() method: 
Int_t length = myVector.size(); 

Here’s a simple code fragment that loops over the elements of a vector and prints them out. 
for ( size_t i = 0; i != someVector.size(); ++i  ) { 

 std::cout << “The value of element “ << i   

             << “ is “ << someVector[i] << std::endl; 

} 

You have a vector, but TGraphErrors wants a C++ array name. Here’s the trick: 
// Define four vectors. 

std::vector<Double_t> x,y,ex,ey; 

// Put values in the vectors (omitted so you can do it!) 

Int_t n = x.size(); 

TGraphErrors* plot = new TGraphErrors(n, x.data(),  y.data(),  

                                        ex.data(), ey.data()); 

In other words, if v has the type std::vector<Double_t>, then v.data() is equivalent to 

the underlying Double_t array.   



 

Page 112 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 12: Create a basic x-y plot (1-2.5 hours)  

You’re going to re-create that “pun plot” that I showed during my initial talk:123  

 
Figure 57: Can you spot the pun in this plot?  

Hint: It involves the composer of a piece of music for piano and orchestra written in the early 20th century. 

Use the histograms in folder example1 from the file folders.root. The y-values and error bars will 

come from fitting each histogram to a gaussian distribution; the y-value is the mean of the gaussian, 

and the y-error is the width of the gaussian.  

You’ve spent five pages reading about abstract concepts and are probably eager to do some 
work, but there’s still a couple of things you’ll have to figure out. 

(continued on next page)  

 

123  For Python programmers: if you use an appropriate routine from matplotlib, you’ll have to figure out how to get that 

mathematical formula to label the y-axis of the plot. This page may help you get LaTeX expressions (see footnote 

55) into your axes labels: http://matplotlib.org/users/usetex.html    

t [secs]

-110 1 10 210
3

10

F
a

lla
d

io
n

s
n

12

14

16

18

20

22

24

26

28

Number of charged atoms in ’Nights in the Gardens of Spain’

http://matplotlib.org/users/usetex.html


 

5/31/21 Basic Data Analysis Using ROOT Page 113 of 127 

Exercise 12: Create a basic x-y plot (continued)  

First of all, there’s no ntuple in this exercise. You’ll have to create a ROOT or pyroot macro 
to create the graph on your own.124 You’ve seen some macros before (remember c1.C?), 
and you’ll find many more in the ROOT tutorials. 

Want to see more examples of using TGraphErrors? Look at the ROOT tutorials directory. 
The problem is that there are lots of examples; how do you find those that use 
TGraphErrors? I copied the ROOT tutorials directory (see page 61), and then I used the UNIX 
grep command: 

> cd tutorials 

> grep –rl TGraphErrors * 

This will list the names of the files that contain the text “TGraphErrors”. That’s how I found 
out how to draw a TGraphErrors plot inside a ROOT canvas. 

The UNIX grep command is very useful; type man grep to learn about it.125 

You need to figure out how to get the x-values. In this case, it’s relatively simple. There are only six 

histograms in the example1 folder. In TBrowser, double-click on the histograms and read the titles. 

The histograms are numbered from hist0 to hist5; you must derive a formula to go from the 

histogram index to the value of x. 

You already know how to open a ROOT file within a macro (it was part of exercise 10 on page 58), 

but it’s not obvious how to “navigate” to a particular folder within a file. Look at the description of 

the TFile class on the ROOT web site. Is there a method that looks like it might get a directory?  

 

(Continued on next page) 

  

 

124  You could try typing the commands on the ROOT command line one-by-one. Unless you have a shining grasp of 

ROOT concepts and perfect typing skills, you’re going to make mistakes that will involve many quit-and-restarts of 

ROOT. It’s much easier to write and edit a macro (or use a Jupyter notebook).  

125  Another tangent: 

 grep is a program that interprets “regular expressions” (also known as “regexes”), a powerful method for 

searching, replacing, and processing text. More sophisticated programs that use regular expressions include sed, 

awk, and perl; there are also regex libraries in Python and C++. Regexes are used in manipulating text, not 

numerical calculations, so their deep nitty-gritty is rarely relevant in physics. 

 Regular expressions are a complex topic, and it can take a lifetime to learn about them. (You may be tired of the 

joke, but I’m not!) 

 There’s a cool xkcd cartoon about regular expressions. It’s too big to put into a footnote, so you’ll have to click on 

the link yourself: https://xkcd.com/208/  

https://xkcd.com/208/


 

Page 114 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 12: Create a basic x-y plot (continued)  

By now, you’ve probably learned that for ROOT to know where to look to plot, read, or 
write something, it has to know where to “focus.” If an object requires focus in some way, it 
will have a cd() method (short for “change directory”). Based on that hint, and what you can 
see on the TFile web page, something like this might work: 

TDirectory* example1 = inputFile->GetDirectory(“example1”); 

example1->cd(); 

The histograms are numbered 0 to 5 consecutively. It would be nice to write a loop to read 
in “hist0”, “hist1”, … “hist5” and fit each one. But to do that, you have to somehow convert 
a numeric value to a text string. 

If you know C or C++, you already know ways to do this (and in Python it’s trivial). If all this 
is new to you, here’s one way to do it: 

#include <sstream> // put this near the top of your macro 

for ( Int_t i = 0; i != 6; ++i ) { 

 std::ostringstream os; 

 os << “hist” << i; 

 TString histogramName = os.str(); 

 // … do what you need to with histogramName 

} 

 

There are other problems you’ll have to solve: 

• How do you read a histogram from a file? Or the more general question is: How do you get a 
ROOT object from a file?  

Hint: How do you “find” an object in a TFile? (Once you’ve figured this out, look through the 
tutorial files for more clues.) 

• Once you fit a histogram to a gaussian distribution, how do you get the mean and width of the 
gaussian from the fit?  

Hint: The TH1 page lists the method you’ll need. 

 

(Hints continued on next page) 

 
  



 

5/31/21 Basic Data Analysis Using ROOT Page 115 of 127 

Exercise 12: Create a basic x-y plot (continued)  

• In Figure 57, the x-axis is logarithmic. How do you make that change?  

Hint: Remember how you found out how to label an axis? 

• Speaking of axis labels, how do you put in ?  

Hint: look up TLatex in the ROOT web site. You don’t have to declare a TLatex object; just 
put the text codes into the axis label and ROOT will interpret them. 

• How do you get the marker shapes and colors as shown in the plot?  

Some looking around the ROOT web site should give you the answer. 

 

Now you can get to work! 

  

nions

d Falla( )



 

Page 116 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 13: A more realistic x-y plotting task (1-2 hours) 

It took nine pages to set up the previous exercise. It only takes one page to describe this 
one. Don’t be fooled: this exercise is harder! 

Take a look at folder example2 in folders.root. You’ll see histograms and an ntuple named 

histogramList. Right-click on histogramList and Scan the ntuple. On the ROOT text window, you’ll 

see that the ntuple is a list of histogram ID numbers and an associated value. 

Once again, you’re going to fit all those histograms to a gaussian and make an x-y plot. The y values 

and error bars will come from the fits, as in the previous exercise. The x values will come from the 

ntuple; for example, the value of x for histogram ID 14 is 1.0122363. 

I’ll let you pick the axis labels for this graph; don’t make the x-axis logarithmic. 

 

 
Figure 58: http://xkcd.com/1162 by Randall Munroe 

You’ve probably already figured out that you can use MakeSelector on the histogramList 
ntuple, just like you did on page 46. The challenge will be putting together the code inside 
the Process method of the new class with code from the previous exercise. 

In the previous exercise, perhaps you hard-coded the number of histograms in the folder. 
Don’t do that here. You could get the number of histograms from the number of entries in 
the ntuple. 

Or maybe that’s not a good idea; what if there were an entry in the ntuple but no 
corresponding histogram? Keep a separate count of the number of “valid” histograms 
you’re able to read. This means you’ll have to check if you’ve read each histogram correctly. 
C++ tip: If a ROOT operation to read a pointer fails, that pointer will be set to zero (see page 
119). 

http://xkcd.com/1162


 

5/31/21 Basic Data Analysis Using ROOT Page 117 of 127 

Part Eight – Expert Exercises 

Exercise 14: A brutally realistic example of a plotting task (1-2 
hours) 

Now take a look at folder example3. You probably already looked in there and were overwhelmed 

with the number of histograms. 

Here’s the task: it’s another x-y plot, with the y values and error bars from fitting the histograms. 

You only want to include those histograms whose names begin with “plotAfterCuts”; the other 

histograms you can ignore. 

The x values come from the histograms themselves. Double-click on a few histograms to plot them. 

You’ll see that the x values are in the titles (not the names!) of the histograms. 

You’ll be able to re-use code you developed for the previous two exercises. There are some 
new problems to solve: how to get the list of all the histograms in the example3 folder, how 
to test if a histogram’s name begins with “plotAfterCuts”, and how to convert a histogram’s 
title from string form to a number. 

Let’s think about the easier problems first.  

If you’re fairly familiar with C or C++, you probably already know how to convert strings into 
numbers. If you’re not, then I suggest you take a look at the description of the TString class 
on the ROOT web site; the Atof() method looks interesting.  

The TString class is pretty good about converting string formats implicitly.126 You probably 
already figured out how to look up getting the title from a histogram. The method returns 
“const char *” but something like this will work: 

TString title = histogram->GetTitle(); 

What about testing if the text in a TString begins with “plotAfterCuts”? Take another look at 
the TString web page. Is there a method that looks like it might help you with that test? 

  

 

126  Yet another digression: There are three main ways of handling strings in ROOT/C++: 

- The original way from the older language C, as an array of char: char oldStyleString[256]; 

- A newer way, added to the C++ language: std::string newStyleString; 

- The ROOT way: TString rootStyleString; 

 Which is better? My attitude is that none of them is best. In a ROOT program, I tend to use TString; if my program 

doesn’t use ROOT, I use std::string for string variables and arrays of char for constant strings. 

 Until recently, C++ didn’t have the built-in text manipulation facilities of languages like perl or Python. This can be 

important in a physics analysis procedure; while your calculations are based on numbers, manipulating files or 

program arguments can be based on strings. A language update, C++11, has a “regex” library for handling regular 

expressions; this can also be found in ROOT’s cling.  

 In Python, all this is much simpler. (Hint: import re) 



 

Page 118 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 14 (continued) 

The next problem is trickier: How do you get a list of objects in a directory?127 

By now you’ve got the hang of the above hint: I want to “Get” a “List” of objects in a 
directory. When I worked on this problem, I went to the TFile web page and looked for 
methods with names that began with “GetList”. Nothing there, so I went to the parent class 
TDirectoryFile, continuing to search for “GetList.” Nothing there, so I went to its parent128 
TDirectory. I found something, clicked on the name of the method… then pounded my head 
against the desk.129 

I finally got the answer by using the UNIX grep command to search through the ROOT 
tutorials directory for the text “GetList”. There are many files there with a “GetList…” call, 
but one file name stood out for me. Since I had read the TList web page first, I could see 
that the answer was there. But it’s sloppily written and you’ll have to change it. 

To understand what you’d have to change, you’ll have to know a little bit about class 
inheritance. In C++, the practical aspect of class inheritance is that you can use a pointer to 
a base class to refer to a derived class object; if class Derived inherits from class Base, you 
can do this: 

Base* basePointer = new Derived(); 

If that’s a little abstract for you, consider this in terms of the classes with which you’ve 
worked. Any of the following is correct in C++:130 

TH1D* doublePrecisionHistogram = new TH1D(…); 

TH1* histogram = new TH1D(…); 

TObject* genericRootObject = new TH1D(…); 

Why does this matter? Because ROOT does not read or write histograms, functions, ntuples, 
nor any other specific object. ROOT reads and writes pointers to class TObject. After you 
read in a TObject*, you’ll probably want to convert it to a pointer to something useful.   

 

127  For Python programmers: This discussion of object inheritance is relevant to you as well, but you deal with it in a 

different way. Look up the Python type() and isinstance() functions. 

128  TFile’s “grandparent.” 

129  I suppose the programmer thought that they would write the documentation for GetList later.  

 Here’s a tip for writing code that will make you a hero: “later” does not exist. (As of 2016, the ATLAS collaboration 

collected over 35 fb-1 of data, and they still haven’t discovered evidence of “later”!) Treat the comments as part of 

the code-writing process. If you have to edit the code, edit the comments. 

 Yes, I know it’s a pain. But pounding your head on a desk is a bigger pain. It’s the biggest pain of all when you 

realize that you wrote the code yourself six months ago, have completely forgotten what it means, and must now 

spend an hour figuring it out. It would have taken five seconds to write a comment. 

130  How do you figure out which classes derive from where? As I noted in footnote 121 on page 72, the only way to 

find out in the current ROOT documentation is to search ROOT’s C++ source code, which you can browse via the 

links to the .h files in the class’ web page. Welcome to the wild adventure hunt that is ROOT! 



 

5/31/21 Basic Data Analysis Using ROOT Page 119 of 127 

Exercise 14 (continued) 

In C++, the simplest way to attempt to convert a base class pointer to a derived class 
pointer something like this (assuming genericRootObject is a TObject*): 

TH1* histogram = (TH1*) genericRootObject; 

If ( histogram == NULL ) 

{ 

 // The genericRootObject was not a TH1* 

} 

else 

{ 

 // The genericRootObject was a TH1*; you can use it for things like: 

 histogram->FillRandom(“gaus”,10000); 

 histogram->Draw(); 

} 

If I didn’t put that test in there and just tried histogram->FillRandom(“gaus”,10000), and 
histogram==NULL, then the program would crash with a segmentation fault.131  

 

 
Figure 59: http://xkcd.com/371 by Randall Munroe 

Why did I just take two pages to go over such a dry topic? 

• Understanding object inheritance makes it clear why the macros that ROOT 
automatically creates for you use pointers, why ROOT’s container classes only 
contain TObject*, why the default canvas is a TCanvas* c1, etc. 

• It’s so when you see a line like this in the ROOT tutorials, you have an idea of what 
it’s doing: using a TKey to read in a TObject*, then converting it to a TH1F*: 

h = (TH1F*)key->ReadObj(); 

Now you should have an idea of how to edit this line to do what you want to do… and how 
to check if what you’ve read is actually a histogram or is some other object that was placed 
inside that folder. 

 

131  If you haven’t encountered a segmentation fault yet in this tutorial, you’re either very lucky or very good at 

managing your pointers. Now you know why it happens: someone tried to call a method for an object that wasn’t 

there. 

http://xkcd.com/371


 

Page 120 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 15: Data reduction (1-2 hours) 

Up until now, we’ve considered ntuples that someone else created for you. The process by 
which a file that contains complex data structures is converted into a relatively simple 
ntuple is part of a larger process called “data reduction.” It’s a typical step in the overall 
physics analysis chain.  

As I implied in the first day of this tutorial, perhaps you’ll be given an ntuple and told to 
work with it. However, it’s possible you’ll be given a file containing the next-to-last step in 
the analysis chain: a file of C++ objects with data structures. You’d want to extract data 
from those structures to create your own ntuples.132 

Copy files whose names contain “Example” from my root-class directory: 
> cp ~seligman/root-class/*Example* $PWD 

The file exampleEvents.root contains a ROOT tree of C++ objects. The task is to take the event 

information in those C++ objects and reduce it to a relatively simple ntuple. 

First, take a look at ExampleEvent.h. You’re not going to edit this file. It’s the file that someone else 

used to create the events in the ROOT tree. If you’re given an ExampleEvents object, you can use 

any of the methods you see to access information in that object; for example: 
ExampleEvent* exampleEvent = 0; 

// Assume we assign exampleEvent somehow. 

Int_t numberLeptons = exampleEvent->GetNumberLeptons(); 

For this hypothetical analysis, you’ve been told that the following information is to be put into the 

ntuple you’re going to create: 

- the run number; 

- the event number; 

- the total energy of all the particles in the event; 

- the total number of particles in the event. 

- a boolean indicator: does the event have only one muon? 

- the total energy of all the muons in the event; 

- the number of muons in the event; 

The task is to write the code to read the events in exampleEvents.root and write an ntuple to a 

different file, exampleNtuple.root. 
 
  

 

132  If you’re trying to get through the advanced exercises using Python, this one may stump you; it certainly stumps me. 

I know of no simple way of loading a C++-based ROOT dictionary using Python. Something like this may be a 

start: 

ROOT.gInterpreter.ProcessLine('#include "ExampleEvent.h"') 

ROOT.gSystem.Load("./libExampleEvent.so") 



 

5/31/21 Basic Data Analysis Using ROOT Page 121 of 127 

Exercise 15 (continued) 

After what you’ve done before, your first inclination may be to open exampleEvents.root 
directly in ROOT and look at it with the TBrowser. Try it. 

It doesn’t fail, but you’ll get an error message about not being able to find a dictionary for 
some portions of the ExampleEvent class.133 I mentioned this earlier in footnote 33 on page 
27: it’s possible to extend ROOT’s list of classes with your own by creating a custom 
dictionary. Only classes that have a dictionary defined can be fully displayed using the ROOT 
browser. 

Try to see how much of the ExampleEvent tree you can see without the dictionary. Then 
restart ROOT and type the following ROOT command: 

[] gSystem->Load("libExampleEvent.so"); 

This causes ROOT to load in the code for a dictionary that I’ve pre-compiled for you.134 Now 
you can open the exampleEvents.root using a TFile object and use the ROOT browser to 
navigate through the ExampleEvent objects stored in the tree. 

As you look at the file, you’ll see that there’s a hierarchy of objects. There’s only one object 
in the file, exampleEventsTree. Inside that tree, there is only one “branch”, 
exampleEventsBranch.  

That’s a bit of a clue: a ROOT ntuple is actually a TTree object with one Branch for every 
simple variable. 

 

(Continued on the next page)  

 

133  If you didn’t get such a message, then you probably copied my entire root-class directory to your working 

directory. That’s OK, but you might want to temporarily create a new directory, go into it, start ROOT, and open the 

file just so you can see the error message. That way you’ll know how it looks if you have a missing-dictionary 

problem. 

134  This library may not work if you’re on a different kind of system than the one on which I created the library. If you 

get some kind of load error, here’s what to do:  

 Copy the following additional files from my root-class directory if you haven’t already done so: 

 LinkDef.h 

ExampleEvent.cxx 

BuildExampleEvent.cxx 

BuildExampleEvent.sh 

 Run the UNIX command script with: 

 > sh BuildExampleEvent.sh 

 This will (re-)create the libExampleEvent shared library for your system. It will also create the program 

BuildExampleEvent, which I used to create the file exampleEvent.root. 

 If you’re running this on a Macintosh, the name of the library will be libExampleEvent.dylib; that’s the name to use 

in the gSystem->Load() command in the Mac version of ROOT. 



 

Page 122 of 127 Basic Data Analysis Using ROOT 5/31/21 

Exercise 15 (continued) 

At this point, you could use MakeSelector() to create a ROOT macro for you, but I suggest 
that you only do this to get some useful code fragments to copy into your own macro.135 
Some additional hints: 

- The first line of your ROOT macro for this exercise is likely to be the library load 
command on the previous page. 

- If you’re writing a stand-alone program, instead of loading the library you’ll have 

#include “ExampleEvent.h” 

and include libExampleEvent.so on the line you use to compile your code. 

- Look at the examples in the tutorials/tree directory, on the TTree web page, and in 
the macro you created with MakeSelector (if you chose to make one). 

- Yes, the ampersands are important! 

One more hint:  

How do you tell if a lepton is a muon or an electron? I’m not talking about their track length 
in the detector, at least not for this example. I’m talking about what indicator is being used 
inside this example TTree. 

There’s a standard identification code used for particles. The Particle Data Group developed 
it, so it’s called the “PDG code”. There are methods in the TTree that return this value (e.g., 
LeptonPDG). You can find a complete list of codes at 
http://pdg.lbl.gov/2002/montecarlorpp.pdf. For this exercise, these will do:  

Particle PDG 
Code 

e−   11 

e+ −11 

µ−   13 

µ+ −13 

If the sign of the PDG codes for leptons seems puzzling to you, recall that under the usual 
particle-physics nomenclature, electrons are assigned a lepton number L of +1, positrons 
are assigned L=-1, and so on.  

Get to work!136 

 

135  Why don’t I want to you use MakeSelector here? The answer is that some physics experiments only use ROOT to 

make ntuples; they don’t use it for their more complex C++ classes. In that case, you won’t be able to use 

MakeSelector because you won’t have a ROOT dictionary. It’s likely that such a physics experiment would have its 

own I/O methods that you’d use to read its physics classes, but you’d still use a ROOT TTree and branches to write 

your ntuple. 

136  Since I wrote this exercise in the mid-2000s, a new class has been added to ROOT: TNtuple. It may make the 

process of writing ntuples easier for you. Take a look! 

http://pdg.lbl.gov/2002/montecarlorpp.pdf


 

5/31/21 Basic Data Analysis Using ROOT Page 123 of 127 

 
 

Figure 60: https://xkcd.com/1862/ by Randall Munroe 

Alt-text: Each particle also has a password which allows its properties to be changed, but the cosmic censorship hypothesis 

suggests we can never observe the password itself—only its secure hash.  

https://xkcd.com/1862/


 

Page 124 of 127 Basic Data Analysis Using ROOT 5/31/21 

Wrap-up 

The last four exercises that make up Parts Seven and Eight are difficult. I chose those tasks because 

they represent the typical kind of work that I find myself doing whenever I use ROOT: pulling 

together documentation from different places, translating the examples into the work I’m actually 

doing… and pounding my head against the desk whenever there are no comments, or I get yet 

another segmentation fault.137 

If you’d like to see how I solved those same exercises, you’ll find my code in PlotGraphs.C (for 

exercises 13-15) and MakeNtuple.C (for exercise 16).138 

Good luck!139 

 

 
Figure 61: http://xkcd.com/722 by Randall Munroe 

Alt-text: “This is how I explain computer problems to my cat. My cat usually seems happier than me.” 

  

 

137  Now you know the reason for my going bald! 

138  Maybe you’re thinking, “Wow! It’s lucky I turned to the last page before I actually started doing any of the work!” 

Take my word for it: reading my solutions is not a substitute for working through the problem yourself.  

139  Total lifetimes used up: up to ten, depending on if you chose to learn both ROOT/C++ and pyroot, which tangents 

you took, how much LaTeX you learn, if you read the section on statistics, and whether you choose a career in 

physics. I generously give any remaining lives back to you.  

http://xkcd.com/722


 

5/31/21 Basic Data Analysis Using ROOT Page 125 of 127 

Version History 

2021 

This year I had some extra time to teach the tutorial. I asked for suggestions from the working 

groups at Nevis for additional topics. One of them was to teach the students some common concepts 

that physicists use in statistics. The result was longer than I’d like, since statistics is a big topic that’s 

worthy of its own courses and texts. This doesn’t have much to do with ROOT, so I created a new 

Part Six on the topic, bringing the total number of parts to eight.  

2020 

I sincerely hope that by the time you read this, the impact of the 2020 pandemic will have faded into 

irrelevance. There could be no organized summer student program at Nevis that year, and certainly 

no in-person ROOT tutorial. However, I decided to update the tutorial anyway.  

The primary changes were to Part Five:  

• I moved more optional material into Part Five, so it would be less distracting for those going 

through the tutorial page-by-page, but still be available as a reference.  

• I offered more detailed options for installing ROOT and Jupyter on your laptop.  

2019 

Included “intermediate topics” in a new Part Five, to act as a reference for useful material that the 

students may not immediately need for summer research. This brings the number of parts to seven. 

2017 

We now have a Jupyterhub-based notebook installation available to Nevis students. I’ve 

incorporated this into the lessons. It’s now a six-part course, but the part introducing notebooks is 

quite short.  

2016 

I’ve edited the Python portion to use IPython instead of the “vanilla” Python console.  

The ROOT web site has changed, and its class documentation is now even worse than it was before. 

(Yay!) I’ve done my best to revise this course for those changes.  

2015 

Many changes in response to feedback from the working groups: 

• Upgrade to ROOT 6, which affected the exercises and examples for Part Four and Five.  

• The TreeViewer is back in the course.  

• A few more “this is what it should look like” figures added (along with more xkcd cartoons).  

• Most of the working groups now have their students use Python for their summer work.  

• The C++ portion on creating a code skeleton for reading an ntuple now uses the newer 



 

Page 126 of 127 Basic Data Analysis Using ROOT 5/31/21 

MakeSelector method instead of the older MakeClass method.  

2014 

At the request of some of the experimental groups, I added a parallel track in pyroot, the Python 

wrapper around ROOT. The student can choose to learn ROOT/C++, pyroot, or both. This increased 

the size of the tutorial to five parts, but up to three of these parts are optional.  

2010 

In response to student feedback, what had been one full day of work was split into two half-day 

classes. Instead of eliminating the advanced exercises, I divided the two days of the 2009 class into 

four parts, each part roughly corresponding to a half-day’s work. This allows each student to set their 

own pace and gives experienced programmers a challenge if they need it.  

2009 

I was asked to expand the class to two full days. In past years, many students weren’t able to 

complete all the exercises that were intended to be done in a single day. I added a set of advanced 

exercises for students who knew enough C++ to get through the original material quickly, but 

allowed for the rest of the students to do in two days what earlier classes had been asked to do in 

one. 

 



 

5/31/21 Basic Data Analysis Using ROOT Page 127 of 127 

 
Figure 62: https://xkcd.com/2224/ by Randall Munroe  

 

https://xkcd.com/2224/

	ROOT Workshop 2021
	Basic Data Analysis Using ROOT
	Introduction
	A guide to this tutorial

	Part One – The Basics
	Getting started with the Nevis particle-physics desktops
	Getting started using your laptop
	Mac and Linux
	Windows
	Connecting to the notebook server
	Installing ROOT on your laptop

	A Brief Intro to Linux
	A Brief Intro to Linux (continued)
	A Brief Intro to Linux (optional)

	Walkthrough: Setting up ROOT (5 minutes)
	Walkthrough: Starting ROOT (5 minutes)
	Walkthrough: Plotting a function (15 minutes)
	Walkthrough: Plotting a function (continued)

	Walkthrough: Plotting a function (continued)
	Exercise 1: Detective work (10 minutes)
	Walkthrough: Working with Histograms (15 minutes)
	Walkthrough: Working with Histograms (continued) (10 minutes)

	Walkthrough: Saving and printing your work (15 minutes)
	Walkthrough: The ROOT browser (5 minutes)
	Walkthrough: Fitting a histogram (15 minutes)
	Walkthrough: Fitting a histogram (continued)
	Walkthrough: Fitting a histogram (continued)


	Walkthrough: Saving your work, part 2 (15 minutes)
	Walkthrough: Variables in ROOT NTuples/Trees (10 minutes)
	Walkthrough: Variables in ROOT NTuples/Trees (continued)

	Using the Treeviewer
	Correlating variables: scatterplots (10 minutes)
	New variables: expressions (10 minutes)
	Restricting values: cuts (10 minutes)
	Restricting values: cuts (continued) (optional)



	Part Two – The Notebook Server
	Starting with Jupyter (5 minutes)
	Your first notebook (10 minutes)
	Magic commands (5 minutes)
	Markdown cells (5 minutes)
	Markdown
	HTML
	LaTeX

	The ROOT C++ kernel (5 minutes)

	Decisions
	C++ or Python?
	Command-line or notebook?
	In favor of notebooks
	Against notebooks
	Issues with our notebook server

	Diagonalizing the 2x2 decision matrix

	Part Three – The C++ Path
	Walkthrough: Simple analysis using the Draw command (10 minutes)
	Pointers: A too-short explanation (for those who don't know C++ or C) (5 minutes)
	Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes)
	Walkthrough: Using C++ to analyze a Tree (10 minutes)
	Walkthrough: Using C++ to analyze a Tree (continued)
	Walkthrough: Running the Analyze macro (10 minutes)
	Walkthrough: Making a histogram with Analyze (15 minutes)
	Walkthrough: Making a histogram with Analyze (continued)

	Exercise 2: Adding error bars to a histogram (5 minutes)
	Exercise 3: Two histograms in the same loop (15 minutes)
	Exercise 4: Displaying fit parameters (10 minutes)
	Exercise 5: Scatterplot (10 minutes)
	Walkthrough: Calculating our own variables (10 minutes)
	Exercise 6: Plotting a derived variable (10 minutes)
	Exercise 7: Trig functions (15 minutes)
	Walkthrough: Applying a cut (10 minutes)
	Exercise 8: Picking a physics cut (15 minutes)
	Exercise 9: A bit more physics (15 minutes)
	Exercise 10: Writing histograms to a file (10 minutes)
	Exercise 11: Stand-alone program (optional) (60 minutes or more if you don’t know C++)
	Exercise 11: Stand-alone program (continued)


	Part Four – The Python with pyroot Path
	A brief review (5 minutes)
	Differences between C++ and Python
	Walkthrough: Simple analysis using the Draw command (10 minutes)
	Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes)
	Walkthrough: Using Python to analyze a Tree (10 minutes)
	Walkthrough: Using the Analyze script (10 minutes)
	Walkthrough: Using the Analyze script (continued)

	Exercise 2: Adding error bars to a histogram (5 minutes)
	Exercise 3: Two histograms in the same loop (15 minutes)
	Exercise 4: Displaying fit parameters (10 minutes)
	Exercise 5: Scatterplot (10 minutes)
	Walkthrough: Calculating our own variables (10 minutes)
	Exercise 6: Plotting a derived variable (10 minutes)
	Exercise 7: Trig functions (15 minutes)
	Walkthrough: Applying a cut (10 minutes)
	Exercise 8: Picking a physics cut (15 minutes)
	Exercise 9: A bit more physics (15 minutes)
	Exercise 10: Writing histograms to a file (10 minutes)
	Exercise 11: Stand-alone program (optional) (30 minutes)

	Part Five – Intermediate topics (for both ROOT/C++ and pyroot)
	References
	Advanced histogramming notes
	Mean and StdDev, with weights
	Alternate gaussian parameterization
	Automatic histogram binning
	Histogram arithmetic

	Directories
	JupyterLab
	Dataframes
	uproot
	coffea
	Vectorization (speeding up array loops)
	Installing ROOT on your own computer
	Docker
	Changing the port
	Changing the directory
	Changing the container
	Docker container notes

	Singularity
	Anaconda
	Other packaged distributions
	The hard way: compiling ROOT and Jupyter from scratch


	Part Six – A too-brief and too-long introduction to statistics
	Gaussian
	Chi-squared
	Chi-squared per degree of freedom
	“We’re looking for a five-sigma effect”
	Systematic errors

	Part Seven – Advanced Exercises
	Working with folders inside ROOT files
	C++ Container classes
	Arrays
	ROOT’s containers
	C++ Standard Template Library (STL)
	Vectors


	Exercise 12: Create a basic x-y plot (1-2.5 hours)
	Exercise 12: Create a basic x-y plot (continued)
	Exercise 12: Create a basic x-y plot (continued)
	Exercise 12: Create a basic x-y plot (continued)

	Exercise 13: A more realistic x-y plotting task (1-2 hours)

	Part Eight – Expert Exercises
	Exercise 14: A brutally realistic example of a plotting task (1-2 hours)
	Exercise 14 (continued)
	Exercise 14 (continued)

	Exercise 15: Data reduction (1-2 hours)
	Exercise 15 (continued)
	Exercise 15 (continued)

	Wrap-up

	Version History
	2021
	2020
	2019
	2017
	2016
	2015
	2014
	2010
	2009


