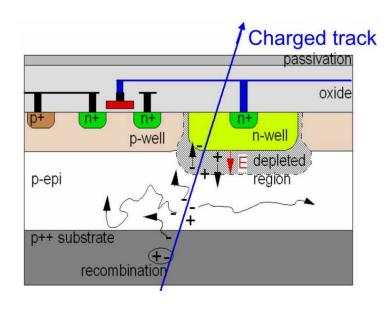
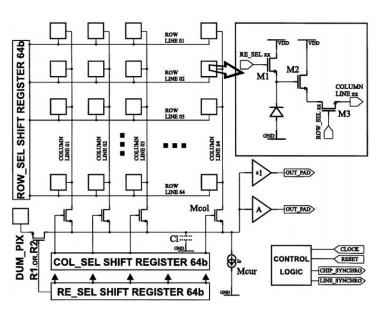
第五章半导体探测器

董明义 dongmy@ihep.ac.cn

目 录

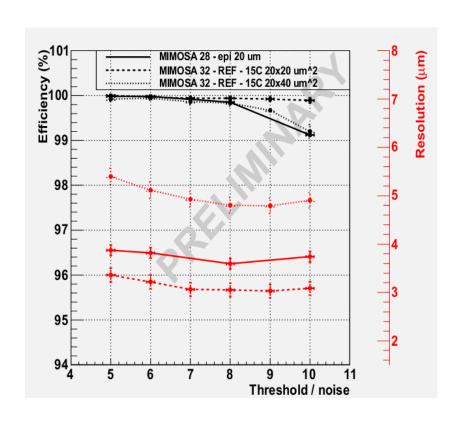

- § 5-1半导体探测器基础
- § 5-2半导体探测器种类
- § 5-3半导体探测器参数
- § 5-4半导体探测器的应用简介
- § 5-5半导体探测器在高能物理中的应用
- § 5-6半导体探测器的发展

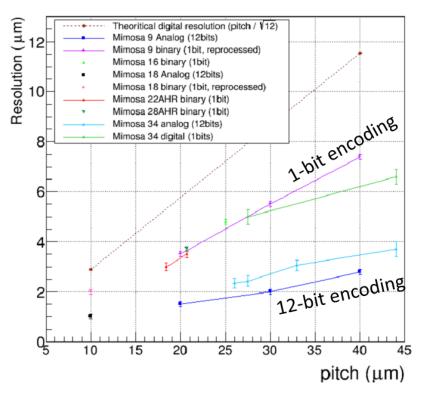

§ 5-5半导体探测器在高能物理中的应用

- •一、高能物理实验对半导体探测器的需求
- •二、粒子径迹重建
- 三、硅微条探测器
- 四、硅像素探测器
 - ▶ 1.混合型像素探测器(Hybrid)
 - › 2. 单片集成式像素探测器(Monolithic)
 - 2.1 DEPFET
 - 2.2 SOI
 - 2.3 CMOS像素探测器
 - 2.4 CMOS像素探测器的应用
- 五、低增益雪崩探测器(LGAD)
- 六、半导体光电探测(转换)器件

2.3 CMOS像素探测器

- CPS(CMOS pixel sensor)又称为MAPS(monolithic active pixel sensor),法国Strasbourg IPHC研究所在上世纪开始研发的基于商业CMOS工艺的像素探测器
- 在重掺杂的p++型硅衬底上外延一层轻掺杂的p型外延层,这层外延层就是探测器的灵敏层,外延层上分别制作n阱和p阱。n阱与外延层构成pn结作为电荷收集电极,电子学器件制作在p阱中。
- 带电粒子穿过时,在外延层中电离,外延层上耗尽区很薄,大部分区域是非耗尽的,因此 这些电子空穴对主要是靠热扩散进行传播。空穴被衬底吸收,而电子则由于外延层势垒的 存在,只能沿着外延层做横向扩散,当扩散到n阱附近时,将很快会被n阱吸收,典型的收 集时间大约为100ns
- p阱内电子学电路用来对收集到的信号进行预处理,晶体管M1是复位器,在读取完成后用来清除收集的电荷; M2是源跟随器,用来放大信号; M3是行选择器,用来选通某一行进行读出,通过控制电路,可以逐行扫描读出。




CPS像素芯片的主要特点

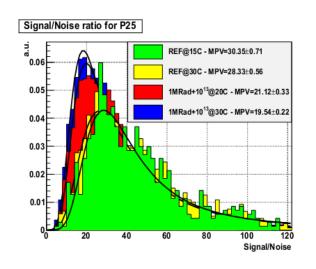
- 单片集成型, sensor和读出电子学在同一个芯片上
 - > P type Si
 - > Signal created in low doped thin epitaxial layer
 - > ~ 80 e⁻ /µm, total signal ~ O(1000 e-)
- 扩散型电荷收集方式
 - > Limited depleted region
 - > By thermal diffusion
 - ➤ Charge sharing → resolution
- 高颗粒度和良好的信噪比
 - > 非常好的空间分辨率和探测效率
 - > 功耗较小,
 - > 较好的抗辐照性能
- 可以在室温下工作
 - > From 0°C up to 30-40 °C if necessary
- 基于工业标准的CMOS工艺
 - Advantages on costs, yields, fast evolution of the technology, Possible frequent submissions

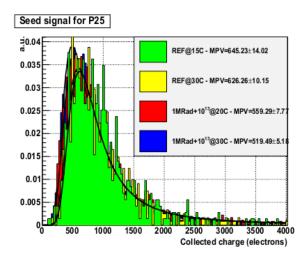
主要性能:空间分辨率

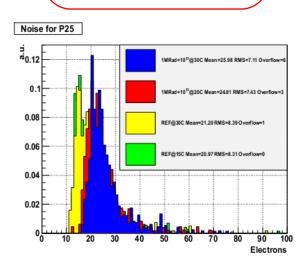
Mimosa resolution vs pitch

- 电荷扩散,一次击中被若干像素收集(charge sharing)
- 像素尺寸(cluster in several pixels)
- 读出形式(discriminator or ADC)
- 典型的空间分辨: 3.2μm for 20μm×20μm pixel size

Pixel Dim. $[\mu m^2]$	20×20	22×33	20×40
$\sigma^{bin}_{sp}[\mu m]$	3.2 ± 0.1	5. / 5.5	5.4 ± 0.1

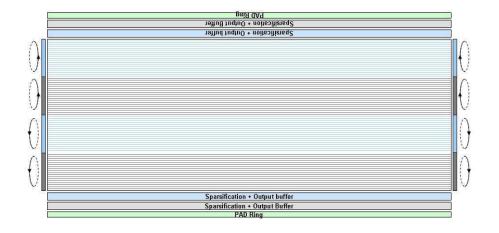

抗辐照性能

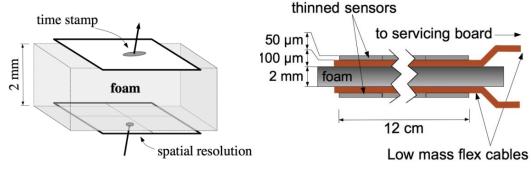

- 辐照导致性能下降
- MIMOSA28已经验证的抗辐照能力: 3×10¹²neq /cm² + 150 kRad at 35 ℃
- MIMOSA32: combined dose of 1 MRad and 10¹³neq/cm²

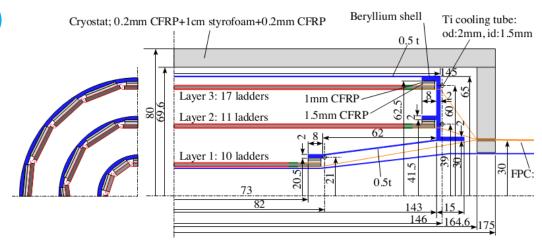

> SNR: 21 @20 °C, 19 @30 °C

> Detection efficiency : 99%

Radiation load	0 + 0		$ extstyle 3 \cdot 10^{12} \; extstyle extstyle n_{eq} / extstyle extstyle extstyle extstyle 10^2 + 300 \; extstyle extstyl$		$^{\prime}$ 10 13 n $_{eq}$ /cm 2 + 1 MRad	
Coolant temperature	15°C	30° C	20°C	30°C	20°C	30° C
SNR	30.4 ± 0.7	28.3 ± 0.6	22.0 ± 0.3	23.0± 0.3	21.1 ± 0.3	19.5 ± 0.2
Detection Efficiency	99.86 \pm 0.14 %	99.59 \pm 0.14 %	99.63 ± 0.13 %	99.49 \pm 0.16 %	99.34 \pm 0.19 %	99.35 ± 0.13 %

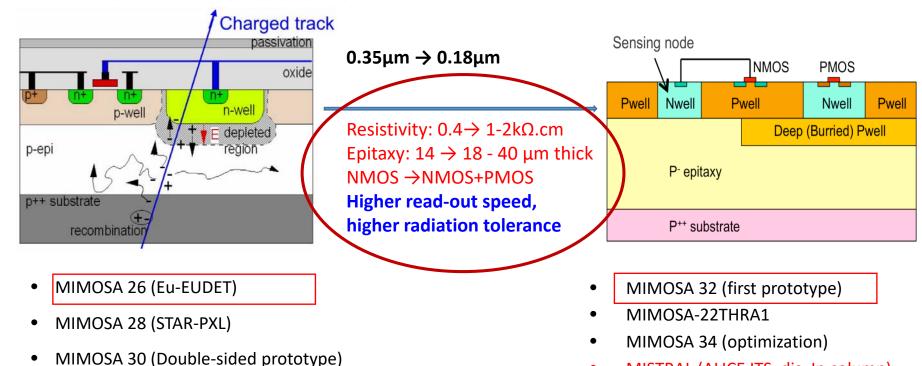



读出速度


- 读出速度与芯片大小,读出方式等相关
 - > MIMOSA28: 2cm×2cm, T_{ro} 200 μs/帧 (200ns/行像素)
 - » MIMOSA32: 5.2mm×3.3mm, T_{r.o.} 32 μs/帧(200ns/row)
 - > ASTRAL: 3cm×1cm, T_{ro} 15μs/帧
- 怎么提高读出速度?
 - □ 长条形的像素设计
 - Less row per column
 - Allow in pixel discriminator
 → r.o ≥2 × faster
 - 更多并行化读出
 - 2 or 4 rows readout simultaneously
 → r.o ≥2-4 × faster
 - Subarrays read out/in→ r.o ≥2-4 × faster
 - □ 改变读出方式(rolling shutter→ global shutter)

物质量(material budget)

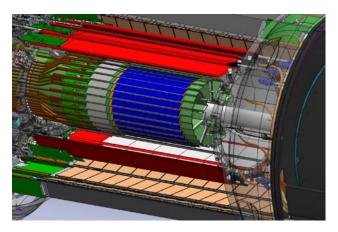
- STAR 探测器模块: 0.37%X₀/layer
 - Senser: thinned to 50μm
 - Cable: Low mass flex cable
- 双面模块结构
 - one side: high-resolution senser the other side: fast senser
 - First prototype: 0.6%X ₀/ladder validated with 100GeV test beam
 - > 0.35%X ₀/ladder (0.18%X ₀/layer) under construction
- 芯片低功耗 \rightarrow 气体冷却 (air or cool N_2),减少探测器的物质
 - > MIMOSA28: 150 mW/cm²
 - ASTRAL: 100 mW/cm²



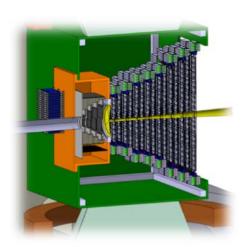
CPS芯片工艺改进

MIMOSA 31 (with 4-bit ADC)

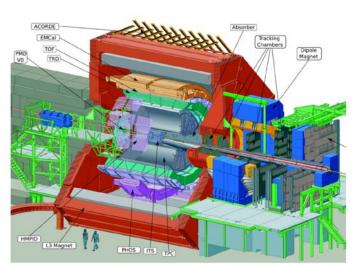
- CPS芯片的具有高颗粒度和良好的信噪比,MAPS芯片发展至今已有三十多个版本
- 为满足未来高能物理实验的需求,进行工艺改进及设计优化
 - ▶ 列甄别改进为像素内甄别设计以减小功耗、提高读出速度,代表性的两款芯片ALPIDE (Self-triggered读出方式)和ASTRAL(Rolling shutter读出方式)
 - > 采用更厚的高阻外延层(>1kOhm) CMOS工艺,通过更高的偏压,使sensor的外延层全耗尽,以提高电荷收集效率和空间分辨,即HR、HV-CMOS



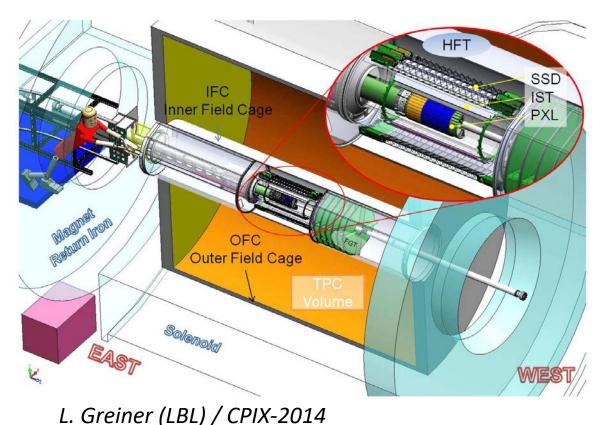
ASTRAL (ALICE ITS, dis. In pixel)


MISTRAL (ALICE ITS, dis. In column)

2.4 CPS像素探测器的应用

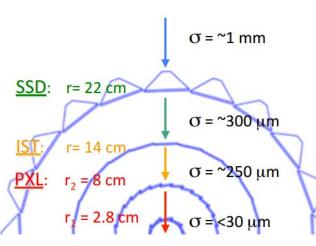

- EUDET 像素探测器束流望远镜系统
 - > 6 x Mimosa26 planes
 - Successfully operating since 2008
- STAR 顶点探测器,国际上单片型像素探测器在高能物理实验中首次应用,2014年已成功取数
- > CBM @ FAIR: 2016开始取数
- 已经准备好或未来的应用
 - ALICE @ LHC: 内径迹室的升级 (~10 m²).
 - ILD @ ILC: 顶点探测器预研
 - CEPC: 顶点探测器预研

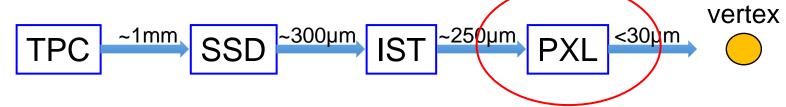
STAR HFT (0.16m²-356M pixels)



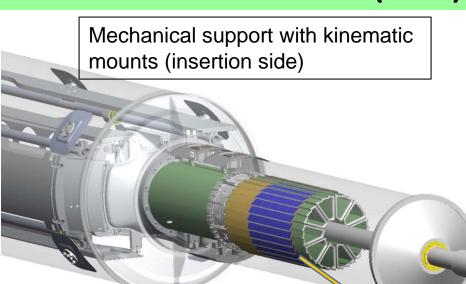
CBM MVD (0.08m²–146M pixels)

ALICE ITS Upgrade (10m²-12Gpixel)


应用1: STAR顶点探测器


TPC – Time Projection Chamber (main tracking detector in STAR)

HFT – Heavy Flavor Tracker

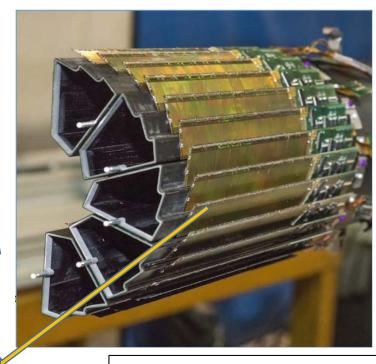

- •SSD Silicon Strip Detector
- •IST Inner Silicon Tracker
- •PXL − Pixel Detector •r = 2.8, 8 cm

Tracking inward from the TPC with graded resolution:

STAR Pixel Detector (PXL)

Insertion from one side

- 2 layers
- 10 sectors total (in 2 halves)
- 4 ladders/sector
- Air cooling

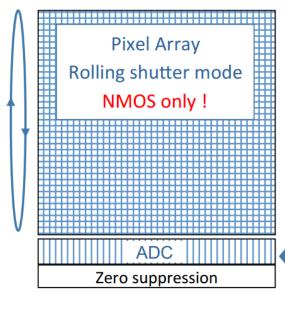

Ladder with 10 MAPS sensors ($\sim 2 \times 2$ cm each)

RDO Buffers / Drivers MAPS MAPS

L. Greiner (LBL) / CPIX-2014

Key dates

- 3-sector prototype May 2013
- Full detector Jan 2014

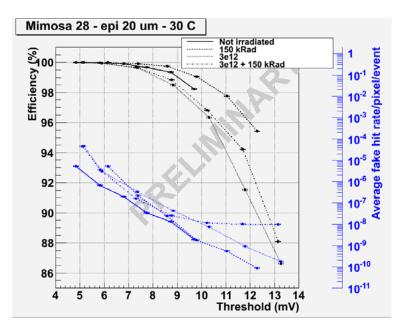


carbon fiber sector tubes (~ 200 µm thick)

2-layer kapton flex cable with Al traces

_____ 20 cm

STAR Pixel Detector (PXL)



NMOS only in pixel array

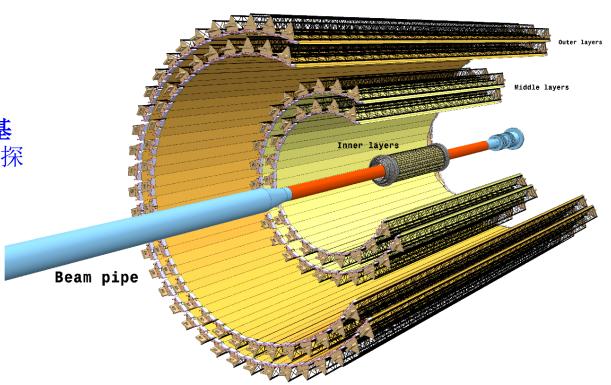
CMOS

- RO architecture: rolling Shutter column parallel readout with integrated zero suppression logic
- Technology: AMS 0.35 μm
- Reticle size: (2x2 cm²)
- Pixel pitch: 20.7μm
- Array size: 928 x 960
- Integration time: 185.6 μs
- In pixel CDS
- Sensors thinned to 50μm
 High Res Si option

STAR PXL – Detector Design Characteristics

DCA Pointing resolution	(12 ^(*) ⊕ 24 GeV/p·c) μm
Layers	Layer 1 at 2.8 cm radius Layer 2 at 8 cm radius
Pixel size	20.7 μm X 20.7 μm
Hit resolution	3.7 μm ^(*) (6 μm geometric)
Position stability	6 μm rms (20 μm envelope)
Radiation length first layer	$x/X_0 = 0.39\%$ (Al conductor cable)
Number of pixels	356 M
Integration time (affects pileup)	185.6 μs
Radiation environment	20 to 90 kRad / year 2*10 ¹¹ to 10 ¹² 1MeV n eq/cm ²
Rapid detector replacement	~ 1 day

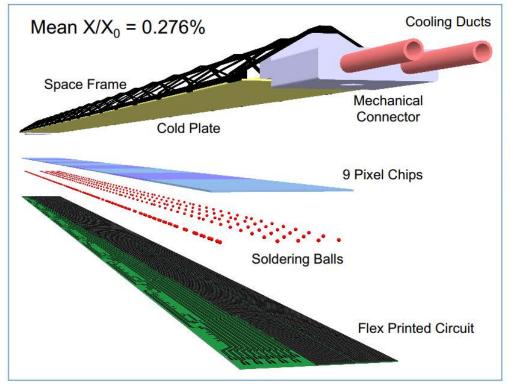
L. Greiner (LBL) / CPIX-2014

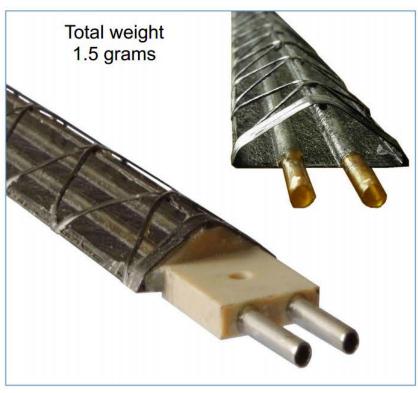

• 356M pixels on ~0.16m² of Silicon

^(*) Simple geometric component, cluster centriod fitting gives factor of ~1.7 better

应用2: ALICE ITS 升级

10m²,约12G pixels

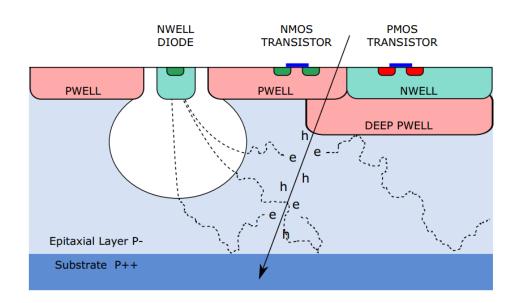

规模最大,性能优异的基 于CPS芯片的单片型像素探 测器



- 7-layer barrel geometry based on CMOS pixel sensor
- r coverage:23–400mm
- η coverage: | η|≤1.22 For tracks from 90% most luminous region

- 内桶3层 (Inner Barrel layers)
- 外桶4层 (Outer Barrel layers)
- 物质量/层:0.3%X₀(IB), 1%X₀(OB)

ALICE ITS探测模块



- 低物质量模块设计
- 包含冷却系统

ALICE ITS芯片

CMOS Pixel Sensor using TowerJazz 0.18 µm CMOS Imaging Process

TowerJazz 0.18µm CMOS

Feature size: 180nm

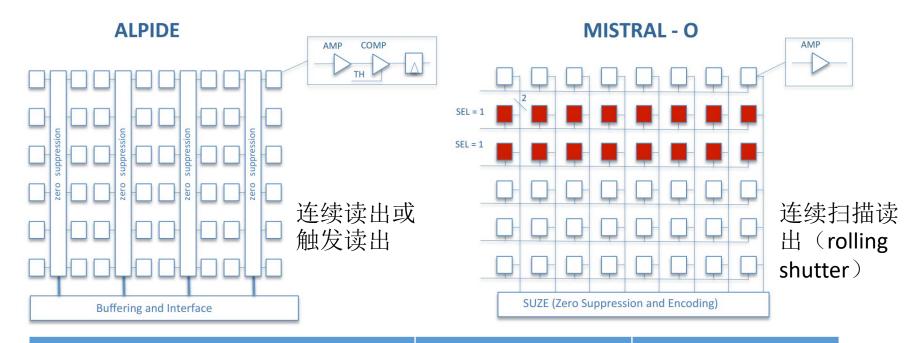
Metal layers: 6

Suited for high-density, low-power Gate

oxide 3nm

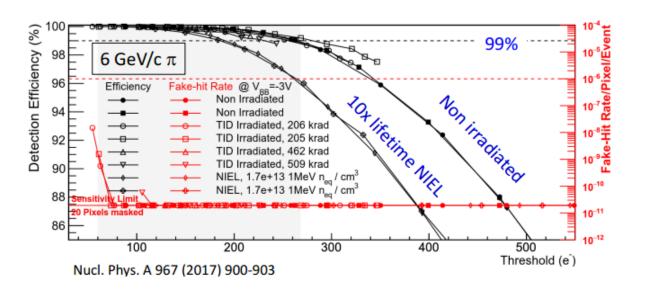
Circuit radiation-tolerant

- P型衬底上的高阻 (>1kΩcm) p型外延层, 厚度20μm-40μm
- 小n-well diode(直径2-3 μm),约1/10像素尺寸→低电容
- 合适的工作偏压增加n-well附近的耗尽层
- 可以使用p-well,电路设计更灵活

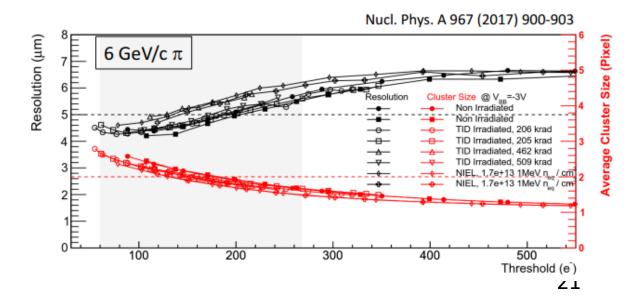

芯片参数要求

Parameter	Inner Barrel	Outer Barrel	
Silicon thickness	50 μm		
Spatial resolution	5 μm 10 μm		
chip dimensions	15 mm x 30 mm		
Power density	< 300 mW/cm ² < 100 mW/cm ²		
Event time resolution	< 30 μs		
Detection efficiency	> 99%		
Fake hit rate	< 10 ⁻⁵ per readout frame		
TID radiation hardness (*)	2700 krad	100 krad	
NIEL radiation hardness (*)	1.7x10 ¹³ 1MeV n _{eq} /cm ²	10 ¹² 1MeV n _{eq} / cm ²	

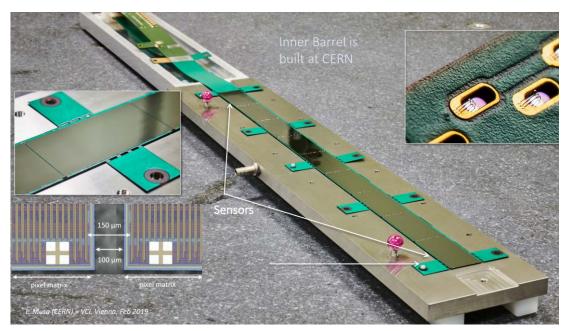
 $^{(*)}$ 10 imes radiation load integrated over approved program (~6 years of operation)

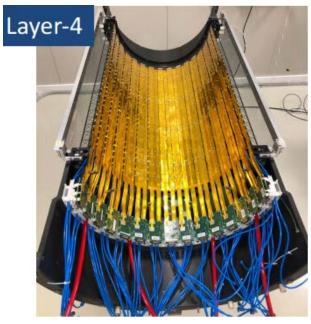

两款芯片

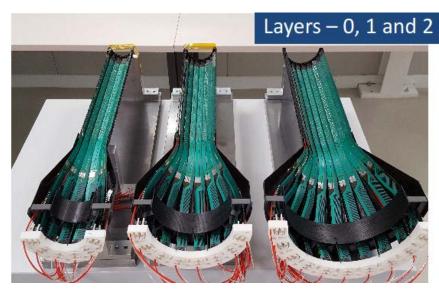
两款分别来自CERN和IPHC的芯片,读出方式不一样

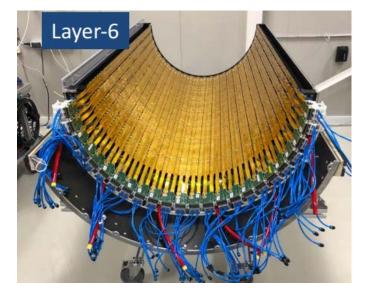

parameters	ALPIDE	MISTRAL-0
Chip size (mm×mm)	15×30	15×30
Dead area (mm×mm)	1.1×30	1.1×30
Pixel size (μ m $ imes$ μ m)	28×28	36×64
Readout speed (µs)	<2	~20
Power consumption (mW/cm²)	<40	97 (可能减小到73) 2

ALICE Pixel DEtector (ALPIDE)

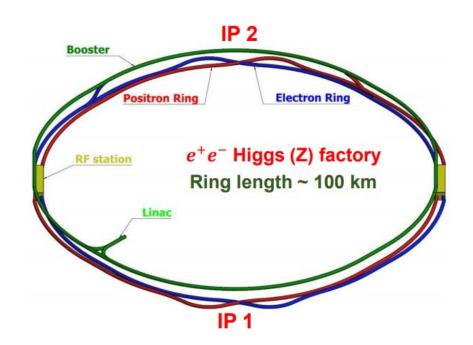


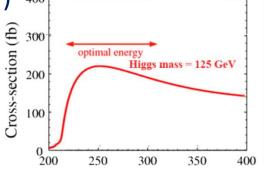

- Large operational margin with only 10 masked pixels (0.002%), fake- hit rate < 2 x 10⁻¹¹ pixel/event
- Non irradiated and TID/NIEL chips similar performance

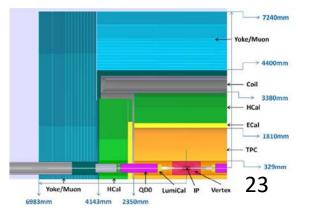

- 5 μm resolution @ 200
 e⁻ threshold
- Chip -to chip negligible fluctuations



探测器组装



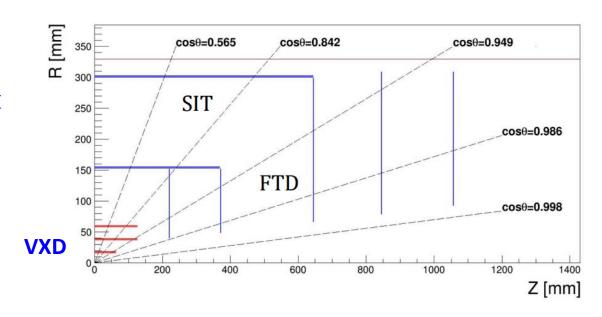



应用3. CEPC顶点探测器

- CEPC (Circular electron position collider) is proposed as e⁺e⁻
 Higgs (Z) factory
 - > The collider ring is about 100km
 - > $E_{cm} \approx 240 \text{GeV}$, luminosity $\sim 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, 2 IP, 1M Higgs in 10 years
 - > can also run at the Z、 W
 - Precision measurement of the Higgs boson (and the Z boson)

• **CEPC – possible** accelerator based particle physics program in China after the BEPCII (Beijing electron position collider) 400

CEPC 顶点探测器研究


主要的性能指标: resolution on the track impact parameter

$$\sigma_{r\phi} = 5 \,\mu\text{m} \oplus \frac{10}{\text{p(GeV)}\sin^{3/2}\theta} \,\mu\text{m}.$$

- ▶ 最内层的空间分辨(Spatial resolution near the IP): ≤3 μm
 - 小像素尺寸: digital pixel 16μm
- > 物质量(Material budget): ≤ 0.15% X ₀/layer
 - ▶ 薄芯片: 50 μm
 - ▶ 低功耗 (可以风冷却): <50 mW/cm²
 - ▶ 极低物质量的机械结构: 双面型探测模块
- ▶ 像素击中率(Pixel occupancy):≤1%
 - ▶ 小像素尺寸: 16 μm
 - ▶ 高读出速度: ~ few-20 μs
- 第一层探测器的半径(radius of the first layer)~1.6 cm(CDR指标)
 - ▶ 高读出速度: ~ few-20 μs
 - ▶ 强抗辐照能力: Ionizing dose: ~1 Mrad/ year, Non-ionizing: ~10¹² n_{eq}/ (cm² year)

顶点探测器设计

- 共6层,包含3层 double-sided模块
- 最内层空间分辨 率要求: 2.8μm

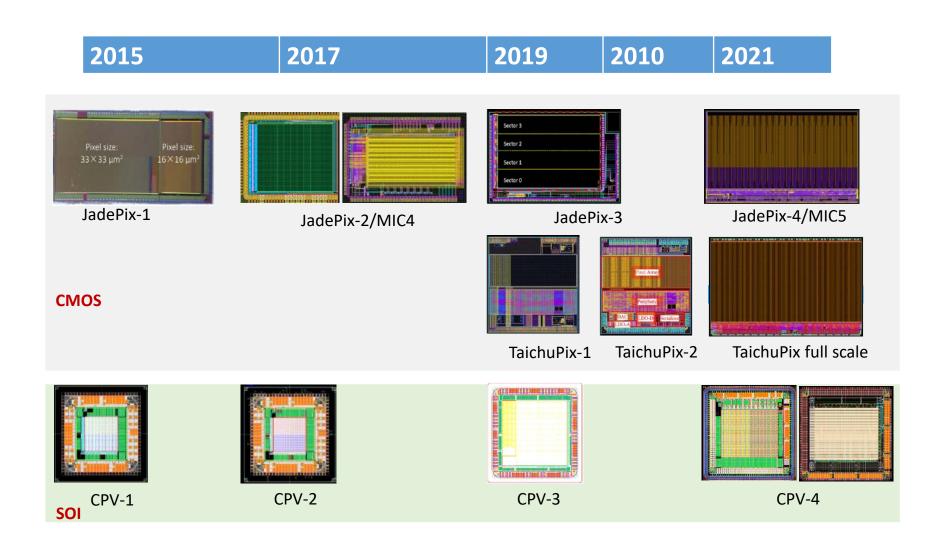
	R (mm)	z (mm)	cos θ	$\sigma_{\rm sp} (\mu {\rm m})$	Readout time (μs)
Layer 1	16	62.5	0.97	2.8	20
Layer 2	18	62.5	0.96	6	1-10
Layer 3	37	125.0	0.96	4	20
Layer 4	39	125.0	0.95	4	20
Layer 5	58	125.0	0.91	4	20
Layer 6	60	125.0	0.90	4	20

芯片研发

• CMOS pixel sensor:

> 2015, 2017两次流片: JadePix1, JadePix2, MIC4,

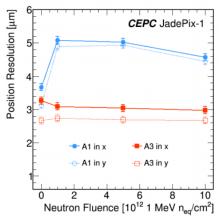
> 2019年流片: JadePix3, TaichuPix1

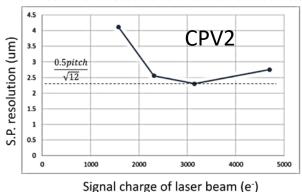

> 2020年流片: TaichuPix2

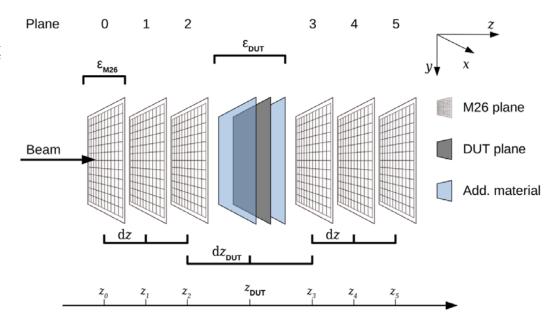
> 2021年流片: TaichuPix full size, JadePix4等

• SOI: CPV1, CPV2, CPV3(2019), CPV4_3D (2020), CPV5_3D (2023)

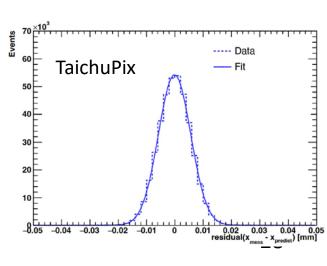
	JadePix1	JadePix2	MIC4	JadePix3
Architecture	Roll. Shutter + Analog output	Roll. Shutter + In pixel discri.	Data-driven r.o. + In pixel discri.	Roll. shutter + end of col. priority encoder
Pitch (µm²)	33 × 33 /16 × 16	22 × 22	25 × 25	16 × 26 16 × 23.11
Power con. (mW/cm²)			150	~ 55*
Integration time (µs)*		40-50	~3	~100
Prototype size (mm²)	3.9 × 7.9 (36 individual r.o)	3 × 3.3	3.1 × 4.6	10.4 × 6.1
Main goals	Sensor optimization	Small binary pixel	Small pixel + Fast readout+ nearly full functional	Smaller pixel + Low power + fully functional


芯片研发

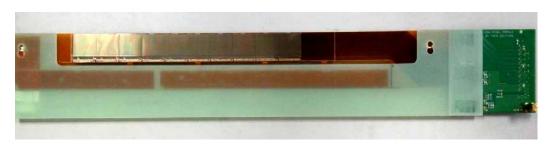

芯片性能研究

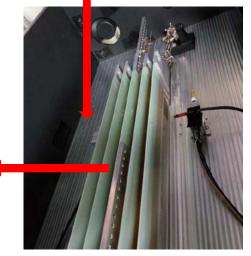

• 芯片性能研究方法


- > 放射源测试: 噪声、响应等
- > 激光测试: 初步检查性能
- > 束流测试: 性能标定

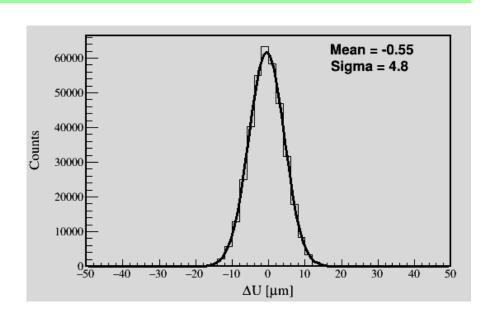


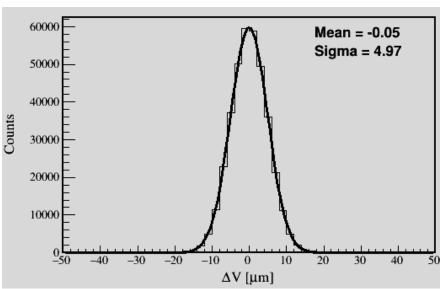
S.P. resolution measured as a function of threshold

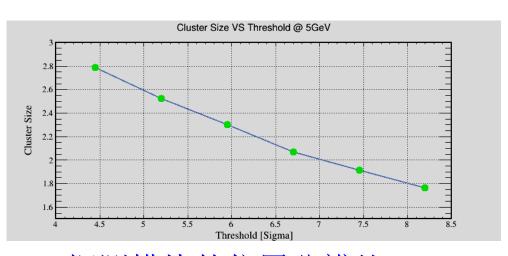


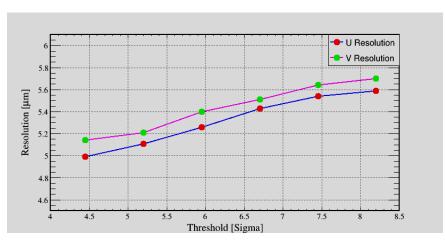


探测器模块研制及测试

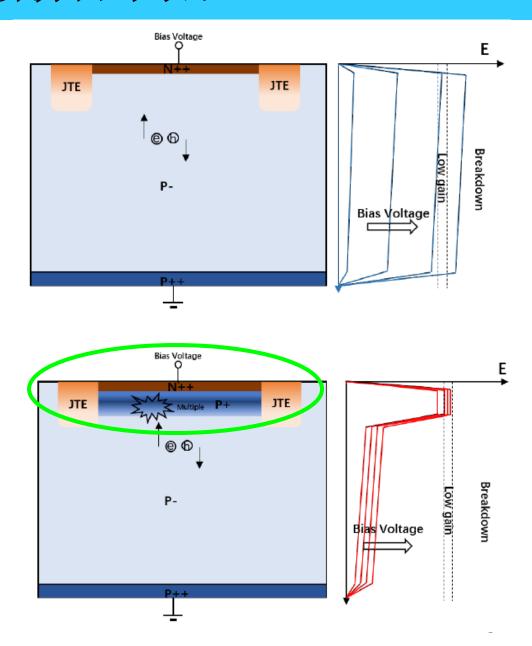


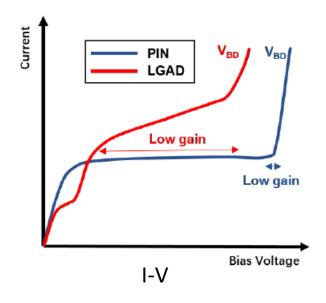





- 低物质量($0.37\% X_0$)、高芯片位置精度($^{\sim}10\mu m$)探测模块批量的研制
- 探测器模型系统在德国DESY进行束流测试

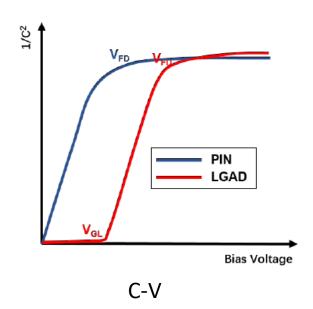
探测器模块束流测试

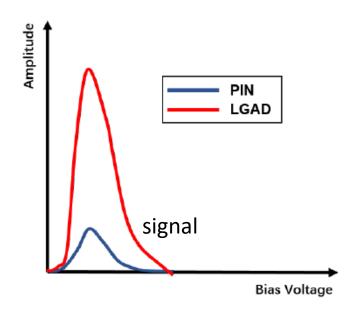



·探测模块的位置分辨约5μm

五、低增益雪崩探测器(LGAD)

- LGAD(Low-Gain-Avalanche-detector) 结构在N++电极下通过 离子注入多了一层P+ 增益层
- 在外加偏压时,其内部形成的高电场区能够让载流子发生倍增
- 实现信号放大
- 低增益(10-几十)


LGAD I-V和C-V



- 增益层中的高电场可以在较宽的电压范 围内约束在低增益所需的电场区间而不 会超过击穿电场阈值,实现对入射粒子 信号的低增益放大
- LGAD 存在两个特征电压值

▶ V_{GL}: 增益层耗尽电压

▶ V_{FD}: 全耗尽电压

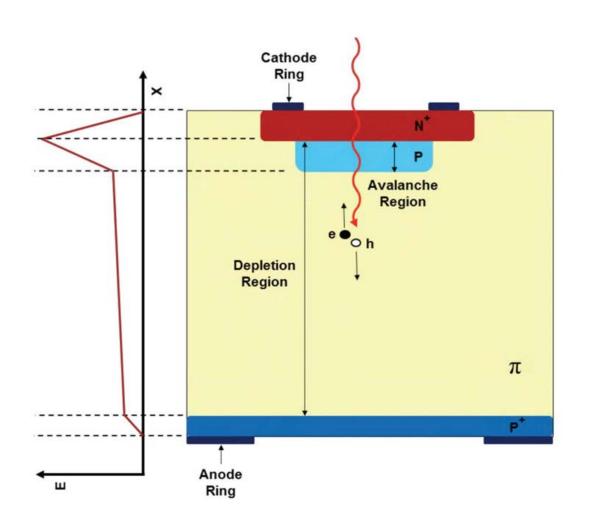
时间分辨

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNoise}^2 + \sigma_{Distortion}^2 + \sigma_{Jitter}^2 + \sigma_{TDC}^2$$

$$\sigma_{Jitter} = \frac{N}{dV/dt} \approx \frac{t_{rise}}{S/N}$$

$$\sigma_{TimeWalk} = \left[t_{rise} * \frac{V_{th}}{S}\right]_{RMS} \propto \left[\frac{N}{\frac{dV}{dt}}\right]_{RMS}$$

- Signal slope dV/dt rules:
 - -> 快信号:薄芯片
 - ->有增益、信号大
 - ->快电子学
- 采用恒比定时法(CFD)修正

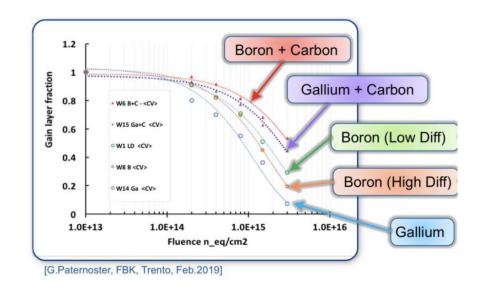

 $\sigma_{LandauNoise}^2$

- 不均匀电荷沉积引起的信号波动
- 减小sensor的厚度可以降低该项

 $\sigma_{Distortion}^2$

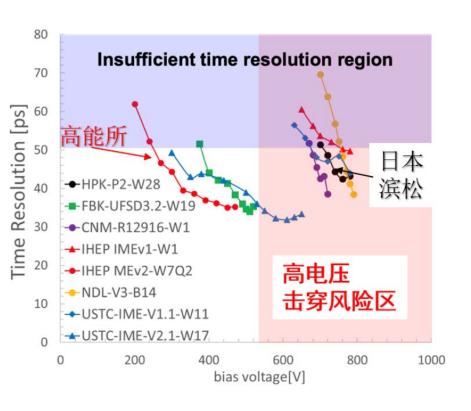
• 要求电场均匀

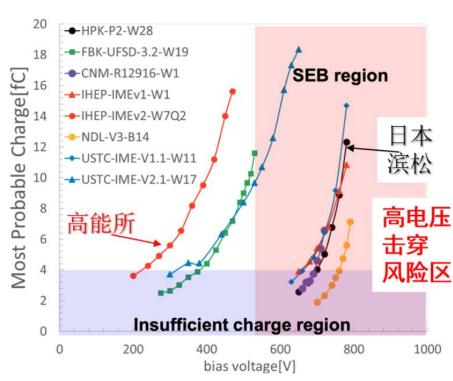
LGAD信号时间特性


• 快信号,很好的时间分辨性能

• 信号时间特性依赖 于体硅(厚度)和 增益层

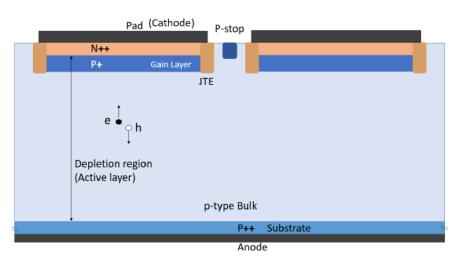
• 时间分辨可达到 30ps, 甚至更小

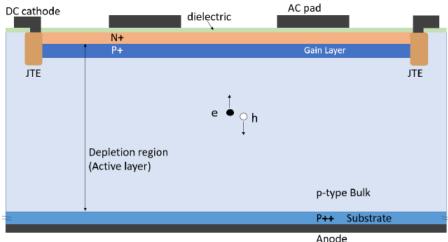

抗辐照性能


- 辐照后,增益区硼掺杂失去活性,LGAD传感器增益下降(Acceptor removal)
- 且LGAD器件的电荷收集性能与时间分辨率随着辐照量的增加而变差

- 增益区进行碳注入可提高抗辐照性能
 - ▶ 不同的碳注入剂量和热处理条件:存在最优的碳注入剂量与退火条件。这个情况下,辐照后的器件具有最小的受主移除率(反映了器件的抗辐照性能)
 - ▶ LGAD中掺杂的碳可替代硼与辐照在晶格中形成的间隙的反应,医此,碳注入有助于抑制硼受体的去除

LGAD抗辐照性能举例



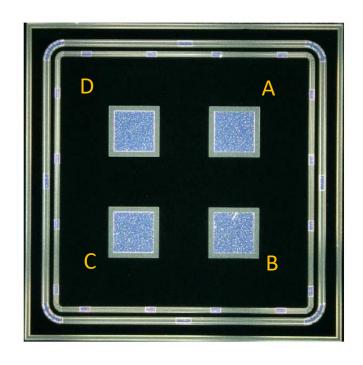


- LGAD器件辐照后(2.5×10¹⁵ cm⁻²等效中子):
 - ▶ 在低于400V的电压下可以实现收集足够的电荷(>4fC)
 - >可以达到30-50ps的时间分辨特性

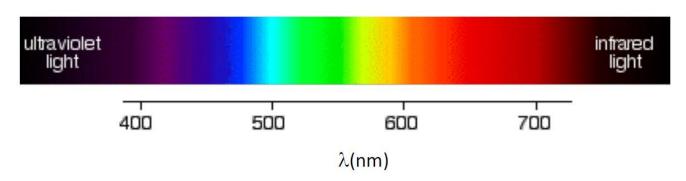
AC-LGAD

- 与LGAD的金属焊盘连接到N⁺⁺层不同,AC-LGAD的金属AC-pads通过薄电介质(Si₃N₄、SiO₂)与N⁺层分离,
- AC-LGAD的主要性能特点
 - » 无死区(100%填充)
 - > 在实现高时间分辨的前提下,实现空间分辨
 - ▶ 时间分辨可达到30ps
 - > 位置分辨: < 10μm

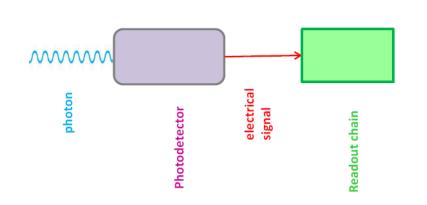
AC-LGAD

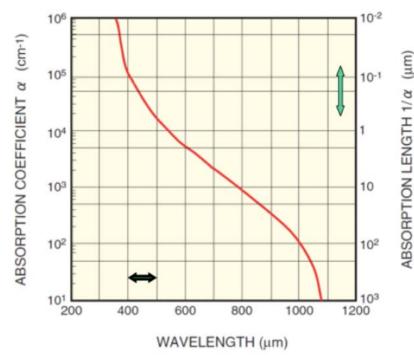

- AC-pads形状:正方形,长方形等
- Pad size: 可以为mm量级
- 相邻pad输出信号幅度与粒子击中位置(距每个pad的距离)相关

$$X = X_0 + k_x \left(\frac{q_A + q_B - q_C - q_D}{q_A + q_B + q_C + q_D}\right) = X_0 + k_x m$$

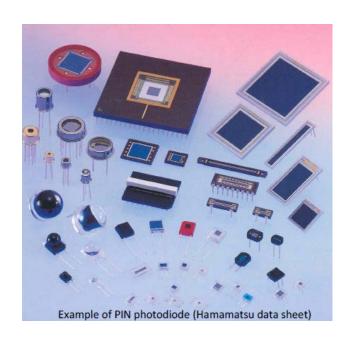

$$Y = Y_0 + k_y \left(\frac{q_A + q_D - q_B - q_C}{q_A + q_B + q_C + q_D}\right) = Y_0 + k_y n$$

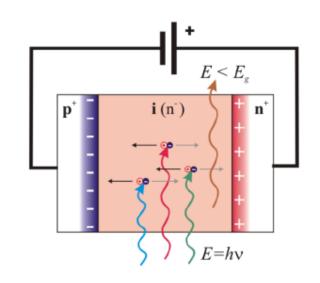
Correction factor: k_x k_y

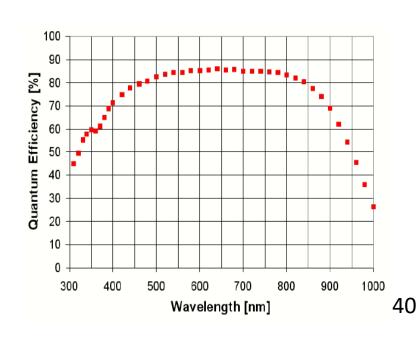

$$k_x = L \frac{\sum (m_{i+1} - m_i)}{\sum (m_{i+1} - m_i)^2}$$
 $k_y = L \frac{\sum (n_{i+1} - n_i)}{\sum (n_{i+1} - n_i)^2}$



六、半导体光电探测(转换)器件

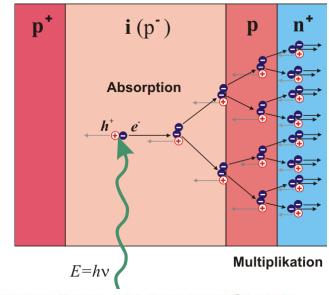

- 光电转换、光电子收集和信号倍增
- 光敏感
- 光电效应过程



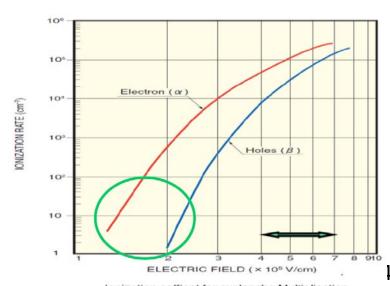


Pin-Diode

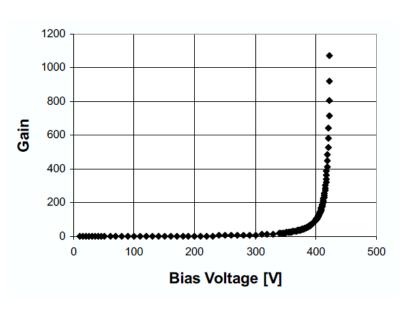
- PIN光电二极管是硅传感器首次大规模应 用于微光探测的器件
- 为了在高能物理实验中找到光电倍增管的替代品(磁场下使用)
- 高量子效率(QE): 700nm时约80%
- 无放大,增益=1

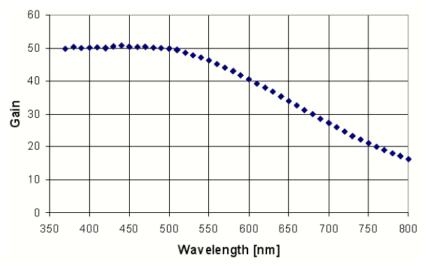

Avalanche Photodiode (APD)

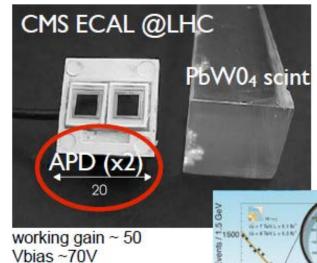
- pn结上加较高反向偏压(50-200 V)
- 耗尽区形成高电场(~10⁵ V/cm)
- 电子和空穴可以获得足够的能量,进一步 引起电离产生更多的电子和空穴,产生雪 崩放大



- ~10⁵电场下,空穴的碰撞电离系数比电 子要低得多,实际上只有电子雪崩过程
- 雪崩过程是单向的,当载流子到达耗尽 区的边界时,它会自行猝灭

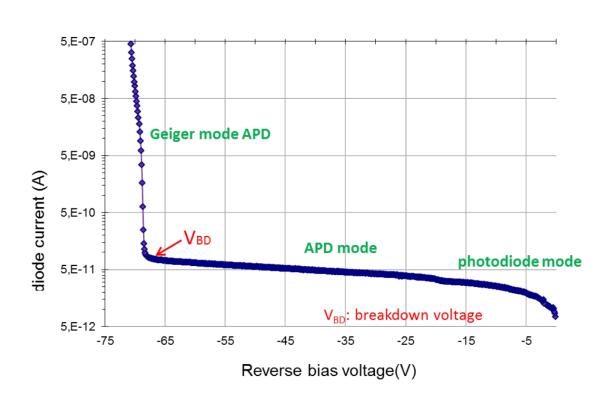



Ionization coefficients α for electrons and β for holes


11

CMS电磁量器APD

- APD in CMS Ecal (约12万片)
- 偏压: 50-200 V
- 高QE,500nm时为80%
- 增益 = 50-100
- 随温度和偏置电压变化较大: DG=3.1%/ 和-2.4%/℃(增益=50)



)

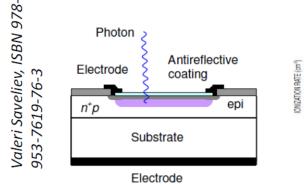
Geiger mode -APD

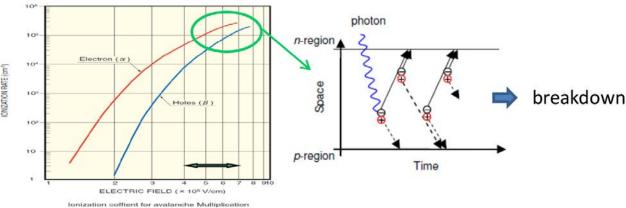
进一步提高偏压, 超过V_{bias} > V_{breakdown}

• 信号变化情况?

Geiger mode -APD

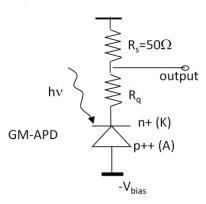
- $V_{bias} > V_{BD}$
- G ⇒ ∞
- single photon level

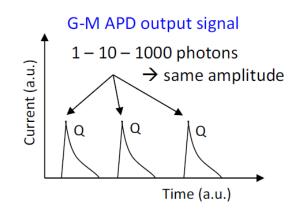

APD


- $V_{APD} < V_{bias} < V_{BD}$
- G = M (50 100)
- Linear-mode operation

Photodiode

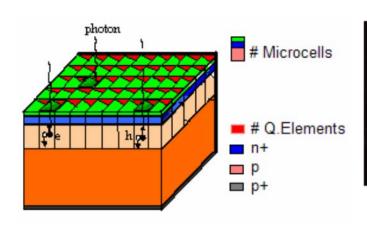
- $0 < V_{bias} < V_{APD}$ (few volts)
- G = 1
- Operate at high light level (few hundreds of photons)

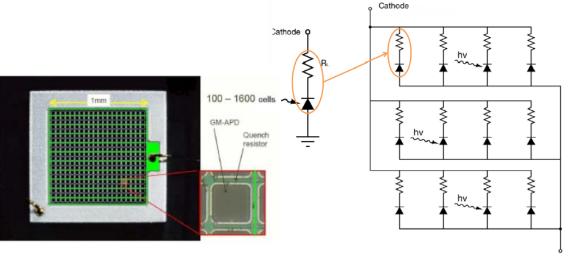

Geiger mode -APD



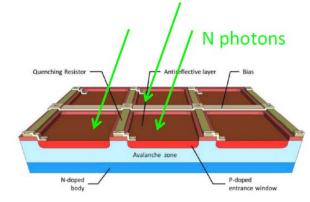
- 两种类型的载流子都参与了盖革模式雪崩过程,产生了自维持的雪崩电流,电流随时间呈指数级上升并达到击穿条件。
- 雪崩过程中没有内部"关断",必须通过串联电阻器上的电压降来淬灭:淬灭电阻

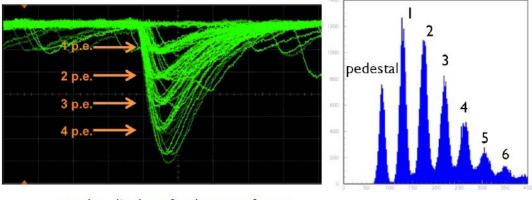
equivalent electrical circuit

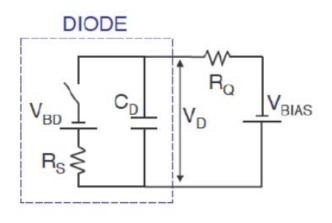




 $G = 10^5 - 10^6$

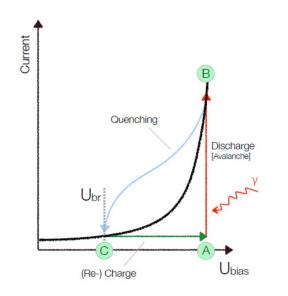

输出信号幅度与入射 光子的数量无正比关 系,因此不能测量入 射光强信息


SiPM


- **GM APD** (单元)组成阵列:几百个**/mm²**,并行连接
- 每个单元反向偏置击穿以上的偏压
- 单独串联电阻器形成盖革击穿自 猝灭
- 每个单元都是独立的,当被光子激发时,它们会发出相同的信号
- 输出信号与入射光子的数量成正比

overlap display of pulse waveforms

SiPM



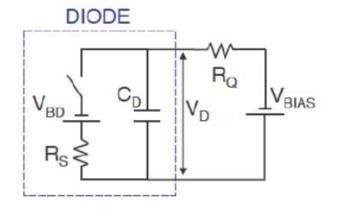
击穿电压 V_{BD} :

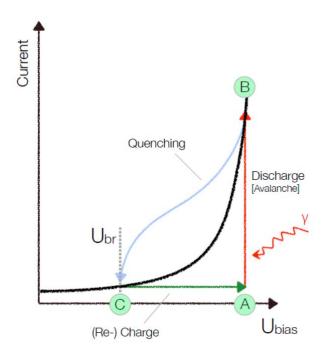
R_Q: 淬灭电阻
 R_S: Si衬底串联电阻 (<<R_Q)
 C_D: 二极管电容

V_{BIAS}:偏置电压 (V_{BIAS} > V_{BD})

• GM-APD的基本工作过程: 静态模式、放电、淬火和恢复阶段

静态模式


- 开关打开
- 除非光子被吸收或发生暗事件,否则电 流保持稳定


放电阶段

- A → B: 雪崩触发,开关闭合
- C_D 以时间常数 $(T_R = R_S \times C_D)$ 放电,输出信号
- 在这个阶段, 雪崩倍增在GM-APD内部进行, 电流逐渐增长

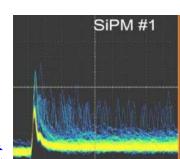
SiPM

• GM-APD的基本操作模式:静态模式、放电、淬火和恢复阶段

淬灭阶段(B→C):

- R_Q两端的电流,导致二极管中的电压降低
- 通过倍增区的电荷载流子越来越少,从 而使光电流淬灭,防止发生进一步的盖 革模式雪崩
- 雪崩淬火
- 开关打开

恢复阶段 $(C \rightarrow A)$:


- C_D通过R_Q充电,时间常数τ=R_Q×C_D
- 系统重置
- GM-APD返回静态模式,准备检测新光子

SiPM 主要参数

• 光子探测效率: 载流子产生、雪崩触发几率、探测器填充因子

PDE =
$$Q_{\varepsilon} \cdot P_{\text{trig}} \cdot \varepsilon_{\text{geom}} - Q\varepsilon = (1 - R) \xi [1 - e^{-\alpha d}]$$

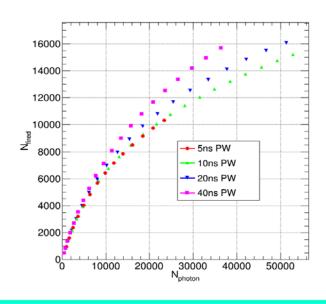
R光反射率, e-/h对的收集效率, 耗尽层中吸收的光子通量的比例

• 噪声水平: 暗计数率 (DCR) 、后脉冲 (After-pulses) 、串扰

非光生载流子触发(结周围的体或表面耗尽区中生成);后脉冲:雪崩过程中捕获的载流子会产生延迟的二次脉冲,跟杂质和缺陷在带隙中产生深能级相关;二次光子传播到相邻单元引起光学串扰

- 时间特性: 快上升时间,几百ps $1 e^{-t/T_R}$
- 信号形状:恢复时间,几十到百ns $e^{-t/\tau}$
- 增益: 定义为多数载流子在一个单元中产生的电荷 $Gain = \frac{Q_{cell}}{e} = \frac{C_D \times (V_{bias} V_{BD})}{e}$
- 温度相关性: V_{bias}与温度相关,增益随温度变化,需要加入补偿

SiPM 主要参数

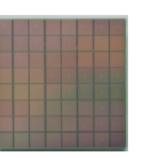

$$N_{firedcells} = N_{total} \cdot (1 - e^{-\frac{N_{photon} \cdot PDE}{N_{total}}})$$

 $N_{\text{firedcells}}$: number of excited cells

 N_{total} : total number of cells

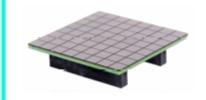
 $N_{\text{photon}}\text{:}\ \text{number of incident photons in a pulse}$

- 抗辐照性能
 - » 暗电流增加
 - ▶ 击穿电压变化
 - ▶ 增益和PDE变化(依赖偏置电压函数的)
- 几何尺寸、封装: 大尺寸SiPM, 阵列封装



HAMAMATSU

S13361-3050NE-08


8x8 channels

1 channel= 3 x 3 mm²
3584 cells (50 x 50 μm²) /channel

Sensl

ArrayJ-60035

8x8 channels

1 channel= 6 x 6 mm² 20 or 35 μm

SiPM 主要应用

- 量能器: CALICE AHCAL, CMS HCAL upgrade, GlueX, COMPASS II, PANDA, PEBS...
- 契伦科夫探测器: IACT (FACT, MAGIC CTA, ASTRI), RICH (Belle II, ALICE), DIRC (PANDA), JEM-EUSO, ...
- 中微子实验: T2K, NEXT, GERDA, ...
- 医学应用: PET, TOF-PET, PET-MRI, dose monitoring, radio-isotopic probes
- 其他:

§ 5-6半导体探测器的发展

- —、Sensor
 - 1. MAPS
 - 2. Passive CMOS
 - 3. Sensors for 4D-tracking
 - 4. 用于极端辐照环境下sensor
 - 5. 宽禁带半导体
- •二、半导体互联技术
- 三、半导体模拟工具

MAPS

- 更小工艺尺寸实现更小的像素尺寸,以及芯片拼接技术(stitching)实现更大面积的芯片,满足顶点探测器中超高精度以及极低物质量的要求
- 具有更强抗辐照能力的像素设计和更高计数能力的MAPS 芯片(在1×10¹⁵~1×10¹⁶ n_{eq} cm⁻² 非电离能量沉积 (NIEL)后有足够的电荷收集效率; 具有单事件干扰 (SEU)和单事例效应(SEE)容错能力和功率优化逻辑, 高数据量处理能力), 满足高精度tracker的要求
- 实现足够高的时间分辨能力
- 相对大一点的像素尺寸和极低的功耗设计,应用于径迹和量能器等大面积探测器

Passive CMOS

- 仅有两层金属层,无晶体管等有源器件,信号像标准的 硅微条传感器一样通过wire or bump bonding连接读出
 - ▶ 大面积生产相对便宜(成熟的CMOS工艺线)
 - > 对特定CMOS工艺的依赖性不如有源传感器或读出电子器件的依赖性强,更多的生产商可以选择(AMS/TSI, ESPROS, IBM, Lfoundry, TowerJazz, Toshiba, XFAB等)
 - > 大多数设计规则与传感器设计中使用的大型结构无关
 - 》相对较容易将设计移植到新的生产线(生产商),并可以能在 较短时间内实现
- 通常需要后处理来添加注入和金属化实现背面的欧姆接触

Sensors for 4D-tracking

• 位置测量(3维)+时间测量

- 》除了位置分辨的要求,还要求具有很高的时间分辨能力(单点分辨: 50-100ps或更小)
- »消除高事例率和高本底下的事例堆积,通过时间上的差异区分不同事例,在粒子簇射的详细重建中实现更高的径迹精度。

• 基本参数要求

- ▶ 充足的电荷量(>3 fC)
- ▶ 较窄信号宽度(<200-300 ps)
- > 均匀的响应
- > 低电容
- > 高效率
- ▶ Low-Gain Avalanche Diodes (LGAD),带柱或沟槽的3D芯片,BiCMOS MAPS(利用SiGe晶体管低噪声和高增益特性)等

用于极端辐照环境下sensor

- 高辐射本底的应用环境,尤其是接近对撞点的定点探测器
 - 》通过低通量下测量的损伤参数(空间电荷的引入率、捕获概率、暗电流)预测高通量下的性能被证明过于悲观
 - ▶ 已经有10¹⁵ -10¹⁶ neq cm⁻² 辐照后性能的测量验证
 - ▶基本性能参数(可以评估的): 迁移率、电离系数、带电 缺陷的引入、俘获中心等。
 - » 对硅在极端辐照下(5-10×10¹⁶ neq cm⁻²)特性的变化知 之甚少
 - ▶局限性于研究技术本身,以及产生极端辐射水平下的设施

宽禁带半导体探测器

- 宽禁带半导体探测器,如金刚石、SiC等
 - ▶ 电离能大,同样能量沉积下产生电子-空穴对少(SiC是Si的一半),
 - ▶ 高温下低暗电流、低噪声,可以确保足够的信噪比。另外高击穿电场允许在高内部电场下工作,最大限度地减少了载流子传输时间和俘获概率。

• 金刚石探测器

- 全刚石传感器研究最多:探测器级多晶合成金刚石(pCVDD),其电荷收集距离达到400 μm,未来将提高到500 μm,并提高整个wafer电荷收集距离的均匀性($10\% \rightarrow 2\%$)
- ho 抗辐照性能: $λ = 16 \mu m$ @ $10^{17} cm^{-2} 24 GeV proton$, ε = λ/d = 3.4% @ $d = 500 \mu m$, λ (Schubweg) 定义为载流子被捕获前传输的平均 距离)
- ▶ 3D金刚石探测器具有更好的抗辐照性能。3D金刚石探测器计划用在高亮度LHC(HC-LHC) ATLAS上作为束流状态检测器 (BCM)

宽禁带半导体探测器

• SiC探测器

- ▶起初: 材质品质低、wafer尺寸小(50mm)、生产公司少
- 》目前:广泛应用于功率器件,作为GaN LED的衬底的应用, 推动了SiC的发展,标准晶圆尺寸达到150mm
- » SiC传感器所需的高质量材料通常通过化学气相(CVD)沉积外延生长。外延可以精确控制晶体薄膜的厚度、掺杂和均匀性。目前高纯度探测器级的外延厚度达到150 μm
- > 主要技术挑战(发展方向)
 - 高品质的抗辐照材料
 - 时间分辨性能
 - 可靠的模拟仿真模型
 - 与工业界合作生产高成品率的大面积平面探测器
 - 为极端辐照条件下的应用发展圆柱形电极(激光、湿法蚀刻、深度RIE)

宽禁带半导体探测器

• 创新的2D材料

石墨烯、过渡金属二硫族化合物(如MoTe₂)等

》利用其固有特性来探索快速信号采集(ps)、高空间分辨率(μ m)、超薄活性膜(Π nm)、高抗辐射性能(Grad或1 \times 10¹⁶ n_{eq} cm⁻²)

半导体互联技术

- 3D探测器(3D-vertical stacking layers by TSV 或3D with columns or trenches)和4D-tracker采用monolithic或hybrid 探测器
- Hybrid: sensor和ASIC采用不同的技术工艺
 - Sensor: passive CMOS、LGAD、平面或3D硅、平面或3D金刚石等
- Sensor和ASIC间的互联技术主要为晶圆级后处理技术,包括包括2D bump、后道工序(BEOL)层沉积和3D集成技术等
 - 不同晶圆尺寸和传感器材料类型的工艺能力: 在65nm技术节点或以下生产的200mm和300mm读出芯片(ROC), 150/200/300mm硅传感器晶圆,单片/小尺寸金刚石晶圆
 - 对整体探测器低物质量的需求要求用于超薄晶片的互联技术
 - 更小的互联尺寸: 互连间距从标准的50μm减少到25 μm左右, 甚至低于20 μm

模拟软件工具

- Technology Computer-Aided Design (TCAD) , 主要为半导体行业开发,主要由工艺和器件模拟器组成。
 - 工艺模拟用于模拟传感器的各种制造步骤,以获得真实的掺杂过程和结构。
 - > 器件模拟器包含设计最先进器件所需的传输和物理模型

• 辐照性能模拟

- > 主要在于要模拟的结构尺寸,以及实现由体损伤和表面损伤引起的辐射损伤效应的合适的模型
- ▶ 有些半导体材料(SiC、GaN等)物理模型与真实情况不一致, 有些半导体材料(金刚石)数值模型工具不存在
- 通过高辐照环境下的实验数据对模拟模型的优化很重要

• Allpix²软件框架

- > 将TCAD模拟的电场与粒子与物质相互作用的Geant4模拟相结合,
- > 可用于研究硅传感器的性能模拟、束流测试模拟等

结语

- 探测器为高能物理实验提供了测试平台,由于高能物理测量精度的需求,半导体探测器迅速发展,种类丰富,技术日新月异
- 半导体探测器(硅微条探测器与硅像素探测器)在 高能物理实验中已经有非常广泛的应用,未来有建 成全硅探测器的趋势及要求
- 目前的技术大都是特殊需求,不是工业标准,技术 及成品率有待提高,成本是一个问题
- 高能物理与探测器技术相互促进发展