# Charmed baryon decays

Form Factors and CP Violation; Puzzles and Opportunities

第二届重味物理前沿论坛研讨会







刘佳韦

Sep 13

2025



## Exclusive semileptonic decays



Lattice QCD: 
$$\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell \dots$$

#### Inclusive decays

Heavy quark expansion:  $\Lambda_c \to X\ell^+$ ,  $\tau(\Lambda_c)$ ...

#### Interactions at hadron level

Small released energy,  $\chi \text{PT}$ :  $\Xi_c^0 \to \Lambda_c^+ \pi^- \dots$ 

## • $SU(3)_F$ analysis



2-body, 3-body, semileptonic...

Most general but requires (too) many parameters

Data driven / fruitful

$$\mathscr{B}\left(\Lambda_c^+ \to \Lambda e^+ v_e\right) (\%)$$

• Theoretical predictions range widely.

• Lattice predictions are consistent with data for  $\Lambda_c^+$  decays.





$$\mathcal{B}\left(\Lambda_c^+ \to ne^+ v_e\right) (\%)$$

Theoretical predictions range widely.

- Lattice predictions are consistent with data for  $\Lambda_c^+$  decays.
- Handling of phase space and the running of form factors generate main differences in  $SU(3)_F$  analysis.



- Use \*  $\tau_{\Xi_c^0} = 0.15$  ps instead of 0.118 ps.
- So far, there is **no** literature that can explain satisfactorily the smallness of it.
- What's worse, the  $SU(3)_F$  symmetry :



• It is around 0.3 instead! Both are  $c \to s$ , and large  $SU(3)_F$  breaking is unexpected.

$$\mathcal{B}\left(\Xi_c^0 \to \Xi^- e^+ v_e\right) (\%)$$



- Use \*  $\tau_{\Xi_c^0} = 0.15$  ps instead of 0.118 ps.
- So far, there is *no* literature that can explain satisfactorily the smallness of it.
- What's worse, the  $SU(3)_F$  symmetry :





• A possible explanation: [2110.04179]

$$\Xi_c = \cos\theta \ \Xi_c^{\overline{3}} + \sin\theta \ \Xi_c^{\overline{6}}$$

• The form factors of  $\Xi_c^{\overline{3}}$  and  $\Xi_c^{6}$  destructively interfere. With  $\theta \approx 25^\circ$ , the data can be explained: [2210.07211]

$$\mathcal{B}(\Xi_c^0 \to \Xi'(1520)\ell^+\nu_\ell) \approx 5 \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^+ \to \Xi'(1520)\ell^+\nu_\ell) \approx 1.3\%$$

$$\Xi_c \xrightarrow{s} q$$

$$\{s,q\} \Xi'$$

• Unfortunately, it was soon realized from lattice QCD, sum rules and LFQM that the mixing angle is tiny.

[2103.09436, 2303.17865, 2305.08050, 2309.05432, 2309.16386]



## Semileptonic decays (exclusive): Future aspects

#### Probing other charmed baryons



#### Triple product asymmetries



Vanish in the SM.



NP unlikely shares the same complex phase with the SM.



$$\mathcal{T}_p(\Lambda_c^+ \to \Lambda e^+ \nu_e) = -0.021 \pm 0.041_{\rm stat} \pm 0.001_{\rm syst}$$
 $\mathcal{T}_p(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) = 0.068 \pm 0.055_{\rm stat} \pm 0.002_{\rm syst}$ .

First principle / reliable



#### Inclusive decays

Heavy quark expansion:  $\Lambda_c \to X\ell^+$ ,  $\tau(\Lambda_c)$ ...





Data driven / fruitful

## Inclusive decays - theory

Pole mass, non-perturbative input

$$\frac{1}{m_a} \mathrm{Im} \big( A_{a \to a} \big) = \frac{i}{2m_a} \int \left\langle T \left( \mathcal{H}_{eff}(x) \mathcal{H}_{eff}(0) \right) \right\rangle d^4 x = \frac{1}{m_a} \sum_{n \in \mathcal{N}} \frac{m_Q^k}{m_Q^n} \left\langle C_n O_n \right\rangle$$
Separating energy scales  $M_W \gg m_Q \gg \Lambda_{QCD}$ 

$$\mathcal{H}_{eff} C_n \left\langle O_n \right\rangle$$
singlet octet

$$\frac{1}{m_a} \operatorname{Im} \left( \underbrace{ \frac{Q}{q_2} \underbrace{q_2}{q_3} \underbrace{Q}_{q_3} + \underbrace{\frac{Q}{q_3}} \underbrace{\frac{Q}{q_1}}_{q_1} + \underbrace{\frac{Q}{q_2} \underbrace{\frac{Q}{q_3}}_{q_1} \underbrace{\frac{Q}{q_2}}_{q_2} + \underbrace{\frac{Q}{q_3}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_2} + \underbrace{\frac{Q}{q_3} \underbrace{\frac{Q}{q_1}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_2} + \underbrace{\frac{Q}{q_3} \underbrace{\frac{Q}{q_1}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_2} + \underbrace{\frac{Q}{q_3} \underbrace{\frac{Q}{q_1}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_3} \right)}_{\text{$\alpha$ (4\pi)^2 m_Q^2}} = \Gamma_{\text{total}}$$

#### Inclusive decays - theory

$$(m_b, m_c, \Lambda_{QCD}) = (4.8, 1.5, 0.3)$$
 GeV

$$\left(\left(\frac{\Lambda_{QCD}}{m_b}\right)^3, \left(\frac{\Lambda_{QCD}}{m_c}\right)^3, 16\pi^2\right) \approx \left(\frac{1}{4000}, \frac{1}{125}, 160\right)$$

• The dim-6 operators are of order  $\mathcal{O}(10^{-2})$  and  $\mathcal{O}(1)$  relative to the dim-3 ones.

$$\frac{1}{m_a} \operatorname{Im} \left( \underbrace{ \frac{Q}{q_2} \underbrace{q_2}{q_3} \underbrace{Q}_{q_3} + \underbrace{\frac{Q}{q_3}} \underbrace{\frac{q_3}{Q}}_{q_1} + \underbrace{\frac{Q}{q_2} \underbrace{\frac{q_3}{Q}}_{q_1} \underbrace{\frac{Q}{q_1}}_{q_2} \underbrace{\frac{q_3}{Q}}_{q_1} + \underbrace{\frac{Q}{q_2} \underbrace{\frac{q_3}{Q}}_{q_1} \underbrace{\frac{Q}{q_2}}_{q_2} + \underbrace{\frac{Q}{q_3} \underbrace{\frac{q_2}{Q}}_{q_1} \underbrace{\frac{q_2}{Q}}_{q_3} + \underbrace{\frac{Q}{q_3} \underbrace{\frac{q_2}{Q}}_{q_1} \underbrace{\frac{Q}{q_2}}_{q_2} + \underbrace{\frac{Q}{q_3} \underbrace{\frac{q_2}{Q}}_{q_1} \underbrace{\frac{Q}{q_1}}_{q_2} + \underbrace{\frac{Q}{q_3} \underbrace{\frac{q_2}{Q}}_{q_3} + \underbrace{\frac{Q}{q_3} + \underbrace{\frac{Q}{Q}}_{q_3} + \underbrace{\frac{Q}{Q}}_{q_3} + \underbrace{\frac{Q}{q_3} + \underbrace{\frac{Q}{Q}}_{q_3} + \underbrace{\frac{Q$$

## Inclusive decays - theory

• At LO,  $\Xi_c$  receives dim-6 corrections but  $\Lambda_c^+$  does not!

$$\Gamma_{\Xi_c}^{\text{SL}} = \Gamma_{\Xi_c}^{\text{SL}}(\text{dim-3}) + \Gamma_{\Xi_c}^{\text{SL}}(\text{dim-6}) \ge \Gamma_{\Lambda_c^+}^{\text{SL}}$$

$$\mathcal{B}(\Xi_c^0 \to Xe^+) \ge \frac{3}{4} \mathcal{B}(\Lambda_c^+ \to Xe^+) \ge 3\%$$

• BCSIII reveals the 90% saturation of: [2212.03753]

$$\mathcal{B}(\Lambda_c^+ \to Xe^+) = (4.06 \pm 13)\% \approx 1.1 \mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$$

• From  $\mathcal{B}(\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell) = (1.05 \pm 0.20) \%$  we have

$$\frac{\mathcal{B}(\Xi_c^0 \to Xe^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^-e^+\nu_e)} \ge 2$$



#### Inclusive decays - numerical results

Hai-Yang Cheng (LO + NRQM), March 19, 2018

|                                  | $\Gamma^{ m dec}$ | $\Gamma^{\mathrm{ann}}$ | $\Gamma^{ m int}_{-}$ | $\Gamma_+^{	ext{int}}$ | $\Gamma_{ m SL}$ | $\Gamma^{ m tot}$ | $\tau(10^{-13}s)$ | $	au_{ m expt}(10^{-13}s)$ |
|----------------------------------|-------------------|-------------------------|-----------------------|------------------------|------------------|-------------------|-------------------|----------------------------|
| $\overline{\Lambda_c^+}$         | 1.012             | 1.883                   | -0.209                | 0.021                  | 0.308            | 3.015             | 2.18              | $2.00 \pm 0.06$            |
| $_{\scriptscriptstyle 5}\Xi_c^+$ | 1.012             | 0.115                   | -0.189                | 0.353                  | 0.524            | 1.854             | 3.55              | $4.42 \pm 0.26$            |
| $\Xi_c^0$                        | 1.012             | 2.160                   |                       | 0.351                  | 0.524            | 4.083             | 1.61              | $1.12^{+0.13}_{-0.10}$     |
| $\Omega_c^0$                     | 1.155             | 0.126                   |                       | 0.346                  | 0.520            | 2.855             | 2.31              | $0.69 \pm 0.12$            |

By the end of the work, I was very disappointed because  $[\ldots]$  the predicted  $\Omega_c$  lifetime  $[\ldots]$  opposite to the experiment.

LHCb, June 8, 2018

$$\tau(\Omega_c^0) = (2.68 \pm 0.24 \pm 0.10) \times 10^{-13} s$$

Belle II, Aug 17, 2022

$$\tau(\Omega_c^0) = (2.43 \pm 0.58 \pm 0.11) \times 10^{-13} s$$

Shows predictive power of HQE in charm!



## Inclusive decays - numerical results

• The prediction of  $\Lambda_c^+ \to Xe^+$  is consistent with the data of  $(4.06 \pm 0.13)\,\%$  .

• For  $\Lambda_c^+, \Xi_c$  the HQE of  $\Gamma_3 > \Gamma_6 > \Gamma_7$  holds but not for  $\Omega_c$ .

•  $\mathscr{B}(\Xi_c^0 \to Xe^+)$  is consistent with the lattice result of  $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) \approx (3.58 \pm 0.12)\,\%$  together with the ansatz of lowest bound-state saturation.

• We are working on both dim-7 NLO and doubly charmed baryons predictions.

Hai-Yang Cheng, Chia-Wei Liu (NLO + HBM), May 1, 2023

| $\mathbf{B}_c$ |     | $\Gamma_3^{ m SL}$ | $\Gamma_6^{ m SL}$ | $\Gamma_7^{ m SL}$ | $\mathcal{B}_e^{\mathrm{SL}}(\%)$    |
|----------------|-----|--------------------|--------------------|--------------------|--------------------------------------|
| $\Lambda_c^+$  | LO  | $0.40(13)_m$       | 0.01               | 0                  | $8.25(78)_m(44)_{\mu}(37)_4(37)_s$   |
|                | NLO | $0.35(11)_m$       | 0.01               | -                  | $4.57(42)_m(24)_\mu(21)_4(13)_s$     |
| $\Xi_c^0$      | LO  | $0.40(14)_m$       | 0.36               | -0.15              | $8.99(58)_m(29)_{\mu}(25)_4(43)_s$   |
|                | NLO | $0.35(12)_m$       | 0.18               | -                  | $4.40(45)_m(22)_{\mu}(19)_4(30)_s$   |
| $\Xi_c^+$      | LO  | $0.40(14)_m$       | 0.35               | -0.15              | $18.59(26)_m(22)_{\mu}(19)_4(39)_s$  |
|                | NLO | $0.35(12)_m$       | 0.18               | -                  | $8.57(20)_m(5)_{\mu}(5)_4(44)_s$     |
| $\Omega_c^0$   | LO  | $0.42(14)_m$       | 1.22               | -0.83              | $13.51(42)_m(10)_{\mu}(8)_4(23)_s$   |
|                | NLO | $0.37(12)_m$       | 0.61               | -                  | $1.88(1.33)_m(47)_{\mu}(40)_4(85)_s$ |

[2305.00665]

#### Exclusive semileptonic decays



Lattice QCD: 
$$\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell \dots$$

Inclusive decays

Heavy quark expansion: 
$$\Lambda_c \to X\ell^+$$
,  $\tau(\Lambda_c)$ ...

Interactions at hadron level

Small released energy,  $\chi \text{PT: } \Xi_c^0 \to \Lambda_c^+ \pi^- \dots$ 

•  $SU(3)_F$  analysis



2-body, 3-body, semileptonic...

Most general but requires (too) many parameters

Data driven / fruitful

### Exclusive decays - pole model



$$J^{P}(B_{-}^{*}) = \frac{1}{2}^{-} \rightarrow \text{parity violated} \qquad b_{c} \frac{g_{B_{-}^{*}B_{n}M}}{m_{c} - m^{*}} + b_{n}^{*} \frac{g_{B_{c}B_{-}^{*}M}}{m_{n} - m^{*}}$$

$$b_c \frac{g_{B^*B_nM}}{m_c - m^*} + b_n^* \frac{g_{B_cB^*M}}{m_n - m^*}$$

$$J^{P}(B_{+}^{*}) = \frac{1}{2}^{+} \to \underset{\text{parity conserved}}{\text{parity conserved}} \left( a_{c} \frac{g_{B_{+}^{*}B_{n}M}}{m_{c} - m^{*}} + a_{n}^{*} \frac{g_{B_{c}B_{+}^{*}M}}{m_{n} - m^{*}} \right) \gamma_{5}$$

#### Exclusive decays - pole model

Pole model:

Heavy flavor conserving decays Chiral limit  $m_{\Xi_O} \approx m_{\Sigma_O}$  holds **excellently**!

$$\overline{u}_{n}\left(b_{c}\frac{g_{B_{-}^{*}B_{n}M}}{m_{c}-m^{*}}+b_{n}^{*}\frac{g_{B_{c}B_{-}^{*}M}}{m_{n}-m^{*}}\right)u_{c}=-\frac{1}{f_{\pi}}\overline{u}_{n}\left(b_{c}g_{B^{*}B_{n}}-b_{n}^{*}g_{B_{c}B^{*}}\right)u_{c}=-\frac{1}{f_{\pi}}\langle B_{n}|\left[Q_{5},\mathcal{H}_{eff}^{PV}\right]|B_{c}\rangle$$

- Pole contributions are expected to be dominated.
- Soft pion limit is reliable.

$$\frac{1}{M_{\Xi_c} - M_{\Sigma_c} + i \frac{\Gamma_{\Sigma_c}}{2}}$$

$$\frac{1}{4 \text{ MeV}}$$

$$\begin{array}{c}
 & \xrightarrow{\pi^{-}} \\
 & \xrightarrow{c} \\
 & \xrightarrow{s} \\
 & \xrightarrow{d}
\end{array}$$

$$\begin{array}{c}
 & \xrightarrow{\pi^{-}} \\
 & \xrightarrow{c} \\
 & \xrightarrow{d}
\end{array}$$

$$\begin{array}{c}
 & \xrightarrow{\sigma^{-}} \\
 & \xrightarrow{\sigma^{-}$$

Both  $(\overline{dc})(\overline{cs})$  and  $(\overline{du})(\overline{us})$  contribute

P. Y. Niu, Q. Wang and Q. Zhao, PLB 826, 136916 (2022); S. Groote and J. G. Körner, EPJC 82 297 (2022).

# Branching fractions in units of $10^{-3}$

| Mode                                                            | $(CLY)^2$    |              | Gronau                       | Voloshin            | Niu             | HYC                    | This work      | $\operatorname{Exp}$ |
|-----------------------------------------------------------------|--------------|--------------|------------------------------|---------------------|-----------------|------------------------|----------------|----------------------|
|                                                                 | [1512.01276] | [1503.06088] | [1603.07309]                 | [1911.05730]        | [2111.14111]    | [2204.03149]           | [2209.00257]   |                      |
| $\Xi_c^0 \to \Lambda_c^+ \pi^-$                                 | 0.17         | < 3.9        | $0.18^{+0.23}_{-0.13}$       | $> 0.25 \pm 0.15$   | $5.8 \pm 2.1$   | $1.76^{+0.18}_{-0.12}$ | $7.7 \pm 1.2$  | $5.4\pm1.1$          |
|                                                                 |              |              | $1.34 \pm 0.53$ <sup>a</sup> |                     |                 |                        |                | [2007.12096]         |
| $\Xi_c^+ \to \Lambda_c^+ \pi^0$                                 | 0.11         |              | < 0.2                        | —<br>Without charm- | $11.1 \pm 4.0$  | $3.03^{+0.29}_{-0.22}$ | $15.8 \pm 1.6$ | _                    |
|                                                                 |              |              | $2.01 \pm 0.80$ <sup>a</sup> | exchange            |                 |                        |                |                      |
| $\Xi_b^- \to \Lambda_b^0 \pi^-$ $\Xi_b^0 \to \Lambda_b^0 \pi^0$ | 7.0          | 1.9 - 7.6    | $6.4 \pm 4.3$                | $8\pm3$             | $1.4\pm0.7$     | $4.67^{+2.29}_{-1.83}$ | $9.4 \pm 1.3$  | $8.9 \pm 3.1$        |
| $\Xi_b^0 \to \Lambda_b^0 \pi^0$                                 | 2.5          | 0.9 - 3.7    | $3.2 \pm 2.1$                |                     | $0.17 \pm 0.15$ | $2.87^{+1.20}_{-0.99}$ | $5.8 \pm 0.7$  | [2307.09427]<br>—    |

$$\mathcal{B}(\Xi_c^0 \to \Lambda_c^+ \pi^-) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = 0.38 \pm 0.06$$



Phase space+CKM gives  $6 \times 10^{-3}$  suppression! 50 times larger than naive.

#### Exclusive decays - pole model

Reliability is not guaranteed in  $\Delta c = -1$  transitions and it yields no complex phases which *contradicts* the data:

**2024:** Measurements of the *strong phase* in  $\Lambda_c^+ \to \Xi^0 K^+$ 



$$\delta_P - \delta_S = -1.55 \pm 0.27(+\pi), \quad \alpha = 0.01 \pm 0.16$$

\* CP even and Cabibbo-favored.

**2024:** Measurements of *strong phases* in  $\Lambda_c^+ \to \Lambda \pi^+, \Lambda K^+$ 

PRL **133**, 261804 (2024)

$$(\beta_{\pi}, \beta_{K}) = (0.368 \pm 0.019 \pm 0.008, 0.35 \pm 0.12 \pm 0.04).$$

 $^st$  Confirmed the discovery of large strong phases in charmed baryon decays.



First principle / reliable



Number assumptions parameters

•  $SU(3)_F$  analysis

2-body, 3-body, semileptonic...

Most general but requires (too) many parameters

Data driven / fruitful

## • SU(3) flavor perspective of charmed baryon decays

By far, the only *reliable* (?) way is the  $SU(3)_F$  symmetry.

```
PRD 54, 2132 (1996), PRD 93, 056008 (2016), NPB 956, 115048 (2020)

JHEP 09, 035 (2022), JHEP 03, 143 (2022), PRD 109, 114027 (2024) ...
```



## SU(3) flavor perspective of charmed baryon decays



The large  $\chi^2$  is mainly contributed by two channels:

|                                                   | PDG             | $SU(3)_F$ conserved | $SU(3)_F$ broken [2506.19005] |
|---------------------------------------------------|-----------------|---------------------|-------------------------------|
| $10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$       | $1.43 \pm 0.32$ | $2.72 \pm 0.09$     | $2.9 \pm 0.1$                 |
| $10^2 \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$ | $2.9 \pm 1.3$   | $6.82 \pm 0.36$     | $6.0 \pm 0.4$                 |

Both of them are the normalized channels in  $\Xi_c^{0,+}$ !

Same underestimations occurs in  $\Xi_c^0 \to \Xi^- e^+ \nu_{\rho}$ .

|                                                 | PDG                              | $SU(3)_F$       | Lattice         | Lattice         |
|-------------------------------------------------|----------------------------------|-----------------|-----------------|-----------------|
| $10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e)$ | $1.05 \pm 0.20$ $2.12 \pm 0.13*$ | $4.10 \pm 0.46$ | $2.38 \pm 0.44$ | $3.58 \pm 0.12$ |
|                                                 |                                  | [2110.04179]    | [2103.07064]    | [2504.07302]    |

\*Using  $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (2.9 \pm 0.1) \%$ 

[2504.07302]

## Final state rescattering

Strategy in 2404.19166:



## Final state rescattering

•  $A_{CP}$  in the same size with the ones in D meson!

$$A_{CP} \left( \Xi_c^0 \to \Sigma^+ \pi^- \right) = (0.71 \pm 0.16) \times 10^{-3}$$
  
 $A_{CP} \left( \Xi_c^0 \to pK^- \right) = (-0.73 \pm 0.19) \times 10^{-3}$ 

In the U-spin limit, we have that

$$A_{CP}\left(\Xi_{c}^{0}\to\Sigma^{+}\pi^{-}\right)=-A_{CP}\left(\Xi_{c}^{0}\to pK^{-}\right).$$
 EPJC 79, 429 (2019)



Two topological diagrams are in the same size, leads to  $A_{CP} \sim \left| 2 {\rm Im} (V_{cs}^* V_{us} / V_{cd}^* V_{ud}) \right| \sim 10^{-3}$  .

## • Final state rescattering

| Channels                      | $\mathcal{B}$ | $A_{CP}$                  | $A^{lpha}_{CP}$          | Channels                     | $\mathcal{B}$ | $A_{CP}$                | $A^{lpha}_{CP}$         |
|-------------------------------|---------------|---------------------------|--------------------------|------------------------------|---------------|-------------------------|-------------------------|
| $\Lambda_c^+ 	o p \pi^0$      | 0.18(2)       | -0.01(7) $0.01(15)(45)$   | -0.15(13) $0.55(20)(61)$ | $\Xi_c^0 \to \Sigma^+ \pi^-$ | 0.26(2)       | $0 \\ 0.71(15)(6)$      | 0 $-1.83(10)(15)$       |
| $\Lambda_c^+ \to n \pi^+$     | 0.68(6)       | 0.0(1) $-0.02(7)(28)$     | 0.03(2) $0.30(13)(41)$   | $\Xi_c^0 \to \Sigma^0 \pi^0$ | 0.34(3)       | -0.02(4) $0.44(24)(17)$ | 0.01(1) $-0.43(31)(16)$ |
| $\Lambda_c^+ \to \Lambda K^+$ | 0.62(3)       | 0.00(2) $-0.15(13)(9)$    | 0.03(2) $0.50(9)(21)$    | $\Xi_c^0 \to \Sigma^- \pi^+$ | 1.76(5)       | 0.01(1) $0.12(6)(2)$    | -0.01(1) $-0.22(5)(21)$ |
| $\Xi_c^+ \to \Sigma^+ \pi^0$  | 2.69(14)      | -0.02(6) $0.05(7)(8)$     | 0.07(4) $-0.23(3)(15)$   | $\Xi_c^0 	o \Xi^0 K_{S/L}$   | 0.38(1)       | $0 \\ 0.18(3)(5)$       | 0 -0.38(2)(11)          |
| $\Xi_c^+ \to \Sigma^0 \pi^+$  | 3.14(10)      | 0.00(1) $0.05(8)(7)$      | -0.02(1) $-0.24(6)(13)$  | $\Xi_c^0 \to \Xi^- K^+$      | 1.26(4)       | 0.00(1) $-0.12(5)(2)$   | 0.01(1) $0.21(4)(2)$    |
| $\Xi_c^+ \to \Xi^0 K^+$       | 1.30(10)      | 0.00(0) $0.01(6)(17)$     | -0.02(1)<br>-0.23(9)(52) | $\Xi_c^0 \to pK^-$           | 0.31(2)       | 0 -0.73(18)(6)          | 0 $1.74(11)(14)$        |
| $\Xi_c^+ \to \Lambda \pi^+$   | 0.18(3)       | -0.01(2)<br>-0.31(21)(13) | 0.0(0) $0.96(25)(44)$    | $\Xi_c^0 	o n K_{S/L}$       | 0.86(3)       | 0 -0.14(3)(4)           | $0 \\ 0.27(2)(7)$       |
| $\Xi_c^+ \to pK_s$            | 1.55(7)       | 0 -0.13(3)(4)             | $0 \\ 0.22(3)(7)$        | $\Xi_c^0 \to \Lambda \pi^0$  | 0.06(2)       | 0.02(3) $-0.12(18)(10)$ | 0.0(1) $0.69(8)(43)$    |

# Charming puzzles and opportunities await!

## Inclusive decays:

Exp:  $\Omega_c^0 \to X\ell^+\nu_\ell$ ,  $\Xi_c \to X\ell^+\nu_\ell$ .

Theory: NLO of dim-7 operators.





## Exclusive decays:

Exp:  $\Xi_c^0 \to \Xi^- \pi^+$ , CPV.

Theory: LD physics and CPV.





## Inclusive decays - numerical results

$$L_{\Lambda_b}^{q_I} = -3.2 \pm 1.6 \& -2.38 \pm 0.11 \pm 0.34 \pm 0.22$$
 From QCD and HQET sum rules [2305.00665] [PLB 387, 371(1996)]

| Model               | $(\mathcal{B}_Q,q)$   | $(\Lambda_b,q_I)$ | $(\Xi_b,q_I)$ | $(\Xi_b, s)$ | $(\Omega_b,s)$ | $(\Lambda_c,q_I)$ | $(\Xi_c,q_I)$ | $(\Xi_c,s)$ | $(\Omega_c,s)$ |
|---------------------|-----------------------|-------------------|---------------|--------------|----------------|-------------------|---------------|-------------|----------------|
|                     | $L^q_{\mathcal{B}_Q}$ | -5.44             | -5.15         | -5.88        | -34.12         | -4.83             | -4.87         | -5.34       | -31.63         |
| $\mathrm{BM}^{\;a}$ | $S^q_{\mathcal{B}_Q}$ | 2.44              | 2.32          | 2.74         | -5.41          | 1.96              | 1.98          | 2.32        | -4.65          |
|                     | $P^q_{\mathcal{B}_Q}$ | -0.27             | -0.25         | -0.20        | -0.62          | -0.44             | -0.44         | -0.34       | -1.12          |
|                     | $L^q_{\mathcal{B}_Q}$ | -13(5)            | -14(5)        | -18(6)       | -126(60)       | -5.1(15)          | -5.4(16)      | -7.4(22)    | -46(14)        |
| NRQM                | $S^q_{\mathcal{B}_Q}$ | 7(2)              | 7(2)          | 9(3)         | -21(10)        | 2.5(8)            | 2.7(8)        | 3.7(11)     | -7.7(23)       |
|                     | $P^q_{\mathcal{B}_Q}$ | 0                 | 0             | 0            | 0              | 0                 | 0             | 0           | 0              |



Bag is localized and cannot be 3-momentum eigenstate.
Underestimate a factor of 2.

[2305.00665]