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Motivations

▶ Many previous reports at this conference have mentioned π meson.

▶ Process π+(p) → π+(p′)γ∗ with space-like momentum transfer Q2 ≡ −(p′ − p)2
is theoretically clean.

⟨π+(p′)|jem
µ (0)|π+(p)⟩ = Fπ(Q2) (p + p′)µ

▶ Factorization theorem established at leading-power.
▶ Key targets for the forthcoming EIC experiments at BNL with high precision.

R. Abdul Khalek et al., Nucl. Phys. A 1026, 122447 (2022), arXiv:2103.05419 [physics.ins-det].



Motivations

▶ Next-to-leading order calculation:
▶ R. D. Field et al (1981), F.-M. Dittes et al (1981), R. S. Khalmuradov et al (1985)

⇐ wrong hard kernel
▶ M. H. Sarmadi (1982), E. Braaten et al (1987) ⇐ correct hard kernel, wrong

IR-subtraction
▶ Melic et al (1999) ⇐ correct

▶ Next-to-next-leading order calculation:
▶ L.-B. Chen, W. Chen, F. Feng, and Y. Jia, Phys. Rev. Lett. 132, 201901 (2024),

arXiv:2312.17228 [hep-ph]⇐ covariant trace method

▶ In this work, we calculate the pion electromagnetic form factor (EMFF) within a
rigorous factorization framework, which include the complete analysis of the
evanescent operator mixing.



Definition & Kinematics

π+(p) → π+(p′) + γ∗ (1)

q = p′ − p is a spacelike four vector. Then we define Q2 = −q2 ≥ 0.

▶ (Space-like) Pion EMFF can be defined as

⟨π+(p′)|jem
µ (0)|π+(p)⟩ = Fπ(Q2) (p + p′)µ + F̃π(Q2) (p − p′)µ, (2)

jem
µ (x) =

∑
u,d

eq q̄(x)γµq(x) . (3)

▶ Employing the vector-current conservation condition leads to

F̃π(Q2) = 0 (4)

▶ Isospin symmetry indicates

Fπ− (Q2) = −Fπ(Q2), Fπ0 (Q2) = 0. (5)

▶ Electric charge conservation indicates

Fπ(0) = 1. (6)

▶ Since current operator is Hermitian jem,†
µ = jem

µ

Fπ(Q2) = F∗
π(Q2) ⇒ �Fπ(Q2) is a real valued quantity. (7)



Hard-collinear factorization

⟨π+(p′)|jem
µ (0)|π+(p)⟩ = Fπ(Q2) (p + p′)µ, Q2 = −(p′ − p)2 (8)

For large Q2,

Q2 = −q2 → ∞ or Q2 ≫ Λ2
QCD (9)

the pion mass mπ and light quark mass mu,md can be neglected.

We introduce two light-cone momentum n, n̄ (n · n̄ = 2)

pµ = (n · p) n̄µ

2
, p′

µ = (n̄ · p′)
nµ

2
, n · p ∼ n̄ · p′ ∼ O(

√
Q2) (10)

The transverse momenta are quite small, quark and anti-quark are almost collinear.

ku = yp′, kd̄ = (1− y)p′, ku = xp, kd̄ = (1− x)p (11)

x and y determine the share of the longitudinal momentum.



Hard-collinear factorization

At leading power in the Λ2
QCD
Q2 expansion, we obtain the hard-collinear factorization

Fπ(Q2) = (eu − ed)
4παs(ν)

Q2
f2π
∫

dx
∫

dy T1(x, y,Q2, ν, µ)ϕπ(x, µ)ϕπ(y, µ) , (12)

where x, y are momentum fraction carried by u-quark.

fπ = (130.2± 1.2) MeV is pion decay constant.

ν is the renormalization scale and µ is the factorization scale.

Non-perturbative quantity — leading-twist pion LCDA ϕπ

⟨π+(p′)|ū(τ n̄) [τ n̄, 0] γµ γ5 d(0)|0⟩ = −i fπ p′
µ

∫ 1

0
dx eix τ n̄·p′ ϕπ(x, µ) , (13)

The hard kernel T1(x, y,Q2, ν, µ) can be calculated perturbatively in terms of the αs.

The non-perturbative contributions are absorbed in the leading-twist pion light-cone
distribution amplitude (LCDA) ϕπ , which can be calculated in Lattice QCD or
extracted from other process, e.g., pion-photon transition form factor.

In our work, we calculate the hard kernel T1(x, y,Q2, ν, µ) to NNLO.



Operator basis

In two-loop amplitude, there are three operators generated from bare two-loop
calculation,

Õ2(s, t) =
[
(χ̄uWn̄)(0)γ⊥

ρ1
(W†

nξu)(0)
] [

(ξ̄dWn)(tn̄)γ⊥
ρ1

(W†
n̄χd)(sn)

]
,

Õ3(s, t) =
[
(χ̄uWn̄)(0)γ⊥

ρ1
γ⊥
ρ2

γ⊥
ρ3

(W†
nξu)(0)

] [
(ξ̄dWn)(tn̄)γ⊥

ρ3
γ⊥
ρ2

γ⊥
ρ1

(W†
n̄χd)(sn)

]
,

Õ4(s, t) =
[
(χ̄uWn̄)(0)γ⊥

ρ1
γ⊥
ρ2

γ⊥
ρ3

γ⊥
ρ4

γ⊥
ρ5

(W†
nξu)(0)

]
[
(ξ̄dWn)(tn̄)γ⊥

ρ5
γ⊥
ρ4

γ⊥
ρ3

γ⊥
ρ2

γ⊥
ρ1

(W†
n̄χd)(sn)

]
.

The operator in the definition of LCDA is

O1(s, t) =
[
(χ̄uWn̄)(0)/nγ5(W†

n̄χd)(sn)
] [

(ξ̄dWn)(tn̄)/̄nγ5(W†
nξu)(0)

]
. (14)

Fierz ordering ?



Operator basis

Õ2(s, t) =
[
(χ̄uWn̄)(0)γ⊥

ρ1
(W†

nξu)(0)
] [

(ξ̄dWn)(tn̄)γ⊥
ρ1

(W†
n̄χd)(sn)

]
,

Õ3(s, t) =
[
(χ̄uWn̄)(0)γ⊥

ρ1
γ⊥
ρ2

γ⊥
ρ3

(W†
nξu)(0)

] [
(ξ̄dWn)(tn̄)γ⊥

ρ3
γ⊥
ρ2

γ⊥
ρ1

(W†
n̄χd)(sn)

]
,

Õ4(s, t) =
[
(χ̄uWn̄)(0)γ⊥

ρ1
γ⊥
ρ2

γ⊥
ρ3

γ⊥
ρ4

γ⊥
ρ5

(W†
nξu)(0)

]
[
(ξ̄dWn)(tn̄)γ⊥

ρ5
γ⊥
ρ4

γ⊥
ρ3

γ⊥
ρ2

γ⊥
ρ1

(W†
n̄χd)(sn)

]
.

O1(s, t) =
[
(χ̄uWn̄)(0)/nγ5(W†

n̄χd)(sn)
] [

(ξ̄dWn)(tn̄)/̄nγ5(W†
nξu)(0)

]
(15)

Õ2, Õ3 and Õ4 can be reduced to O1 by Fierz transformation, but valid only in four
dimensions.

Õ2 =
1

4
O1, Õ3 = O1, Õ4 = 4O1. (d = 4) (16)

The computation of the bare amplitude in dimensional regularization with D = 4− 2ϵ.

So that the above relations cannot be used directly.



There are UV divergence and IR divergence in the amplitudes.

The calculations need to be carried out in D = 4− 2ϵ until the all divergences are
canceled.

therefore it is necessary to include the evanescent operators,

O2 = Õ2 −
1

4
f2(ϵ)O1 ,

O3 = Õ3 − f3(ϵ)O1 ,

O4 = Õ4 − 4f4(ϵ)O1 . (17)

O2 = O3 = O4 = 0 if d = 4.

Directly reduce the amplitude to O0 (covariant trace method) may lead to incorrect
results, for example,

The one-loop QCD corrections to the hard spectator-scattering kernels for the
topological penguin amplitudes in the charmless hadronic B decays.

Beneke Jager, Nucl. Phys. B 768, 51 (2007)

Nucleon Form Factors
Huang, Shi, Wang, Zhao, Phys. Rev. Lett. 135, 061901 (2025)



NNLO QCD Computation

Hard kernel can be expand in αs/4π

T1 = T(0)
1 +

αs
4π

T(1)
1 +

( αs
4π

)2
T(2)
1 (18)

The hard-scattering amplitude can written as

Πµ =⟨u(p′
1) d̄(p′

2)|jem
µ (0)|u(p1) d̄(p2)⟩ ,

=(p + p′)µ (eu − ed)
(4π)2

Q4

∑
k

∑
l

[(Zααs
4π

)l+1

A(l)
k ⊗ ⟨Ok⟩(0)

]
, (19)

where l is the number of loop, ⟨Ok⟩(0) represents the bare matrix element.
Zα is the denotes the renormalization constant of the αs.
{A(l)

k } are the coefficients which contain the loop integrals.

After the standard renomarization, there are still IR-divergence in amplitudes, or the
UV divergence in the bare operators.

The UV-renormalized Ok can be expanded as

⟨Ok⟩ =
∑

i

∑
l=0

( αs
4π

)
Z(l)

ki ⊗ ⟨Oi⟩(0) (20)



▶ The diagrams are generated by FeynArts, and there are 1066 diagrams contribute.
1889(1602) diagrams generated in nf = 3(2).

▶ Target integrals are reduced with FIRE and 57 master integrls are solved by
canonical differential equations.

▶ Canonical form is obtained with Lee’s algorithm as implemented in the program
Libra.

R. N. Lee, JHEP 04, 108 (2015), arXiv:1411.0911 [hep-ph].

R. N. Lee, Comput. Phys. Commun. 267, 108058(2021), arXiv:2012.00279 [hep-ph].

d⃗I(⃗x; ϵ) = ϵ

(
6∑

k=1

Bk d log Wk (⃗x)
)

I⃗(⃗x; ϵ), (21)

where Wk ∈ {x, y, x̄, ȳ, x − y, x̄ − y}.
▶ Boundary condition is fixed using the PSLQ algorithm with 100 digits numerical

results given by AMFlow at three distinct kinematic points.
X. Liu and Y.-Q. Ma, Comput. Phys. Commun. 283,108565 (2023), arXiv:2201.11669 [hep-ph].



Computation of Z(2)
21

▶ Similar to the 2-loop ERBL kernel calculation...

Z(2)
21 = −Moff(2)

21 +
3∑

j=1

Moff(1)
2j ⊗ Moff(1)

j1 (22)

...

▶ 33 diagrams that exchange gluon between u- and d-quark contribute.
▶ δ-function generated by Wilson line Feynman rules is expressed as δ(x) = Discx 1

x

Discx′
∫ dD l1dD l2

(iπD/2)2

1

[l21 − m2][l22 − m2][(l1 + l2 + x p)2 − m2][(l1 + l2 + p)2 − m2]

1

n · l1 + x′
.

▶ Targets with linear propagators are reduced to about 30 master integrals.
▶ Master integrals are partly checked by AMFlow.
▶ Some diagrams are independently checked by evanescent mixing from γγ∗ → π0.

J. Gao, T. Huber, Y. Ji, and Y.-M. Wang, Phys. Rev. Lett. 128, 062003 (2022), arXiv:2106.01390 [hep-ph].

▶ The final expression of Z(2)
21 is independent of the IR regulator as expected,

providing a consistency check for our results.



Expression of T(0)
1

T(0)
1 =

CF
Nc

1

2xy
(23)

At LO,

Fπ(Q2) = (eu − ed)
4παs(ν)

Q2
f2π
∫

dx
∫

dy T(0)
1 ϕπ(x, µ)ϕπ(y, µ) , (24)



Expression of T(2)
1

Collecting all pieces together results in a lengthy expression of T(2)
1

T(2)
1 = 1×

1

1− x
×

(CA − 2CF)CF(540CAζ3 − 360CFζ3 + 630CFζ4)

60Nc

+ G(0, x)× 1

(1− x)(1− x − y)
×

(CA − 2CF)2CF(−6ζ2 + 18ζ3)

12Nc

+ G(0, y)3 ×
1

x(x − y)
×

C3
F

6Nc

+ G(0, x)G(1, 1, y, x)× 1

xy
×

CF(−7C2
A + 3CACF + 5C2

F)

Nc
+ more than 3000 terms

where CA and CF are color factors and ζ(n) is the Riemann zeta function.

G(...) is multiple polylogarithms (MPLs), which are defined by G(x) ≡ 1 and

G(l1, l2, . . . , ln, x) ≡
∫ x

0

dt
t − l1

G(l2, . . . , ln, t) , (25)

G(
−→
0 n, x) ≡

1

n!
lnn x . (26)



Asymptotic form factor

Fπ(Q2) = (eu − ed)
4παs(ν)

Q2
f2π
∫

dx
∫

dy T1(x, y,Q2, ν, µ)ϕπ(x, µ)ϕπ(y, µ) , (27)

Asymptotic pion LCDA

ϕAsy
π = 6 x (1− x), (28)

Performing the two-fold convolution (with PolyLogTools) results in
C. Duhr and F. Dulat, JHEP 08, 135 (2019), arXiv:1904.07279 [hep-th].

FAsy
π =(eu − ed)

4π αs
Q2

2 f2π
{
1 +

( αs
4π

)[
9 ln

(
ν2

Q2

)
+

79

3

]
+
( αs
4π

)2 [
81 ln2 ν2

Q2
+ 538 ln ν2

Q2

−
(
560

9
ζ2 +

128

9
ζ3 − 120

)
ln µ2

Q2

−
1100

9
ζ2 −

1736

3
ζ3 − 24 ζ4 +

3280

9
ζ5 +

13136

9

]}
. (29)

where ν is the renomarization scale and µ is the factorization scale.



Numerical analysis
▶ ϕπ models needed to calculate Fπ(Q2)

Fπ(Q2) = (eu − ed)
4παs(ν)

Q2
f2π
∫

dx
∫

dy T1(x, y,Q2, ν, µ)ϕπ(x, µ)ϕπ(y, µ) ,
(30)

▶ Expanding ϕπ in Gegenbauer polynomials

ϕπ(x, µ) = 6 x (1− x) +
∞∑

m=0,2,4,...

am(µ)C3/2
m (2x − 1) . (31)

Model I : ϕπ (x, µ0) =
Γ (2 + 2απ)

Γ2 (1 + απ)
(xx̄)απ ,with απ (µ0) = 0.585+0.061

−0.055

S. J. Brodsky et al, Phys. Rev. D 77, 056007 (2008), arXiv:0707.3859 [hep-ph].

G. S. Bali et al, JHEP 08, 065 (2019), [Addendum: JHEP 11, 037 (2020)], arXiv:1903.08038 [hep-lat].

Model II : {a2, a4, a6, a8} (µ0) = {0.181(32), 0.107(36), 0.073(50), 0.022(55)} ,
S. Cheng et al, Phys. Rev. D 102, 074022 (2020), arXiv:2007.05550 [hep-ph].

Model III : {a2, a4} (µ0) = {0.149+0.052
−0.043,−0.096+0.063

−0.058} ,

N. G. Stefanis, Phys. Rev. D 102, 034022 (2020), arXiv:2006.10576 [hep-ph].

Model IV : {a2, a4, a6} (µ0) = {0.196(32), 0.085(26), 0.056(15)}, µ0 = 2GeV .

I. Cloet et al, arXiv:2407.00206 [hep-lat].



Model I : ϕπ (x, µ0) =
Γ(2+2απ)

Γ2(1+απ)
(xx̄)απ ,with απ (µ0) = 0.585+0.061

−0.055 determined by
the lattice result a2(µ0) = 0.116+0.019

−0.020 at µ0 = 2GeV.
▶ ν2 = Q2, µ2 = 1/2Q2.
▶ NNLO correction: about 30% ∼ 50% at Q2 ∈ [5, 20]GeV2.
▶ Soft contribution: about 25%.
▶ Bebek 78 (Wilson Synchrotron Laboratory-LEPP,1978) and JLab08 (Jefferson

Lab Collaboration,2008) are experiment data.
Bebek et al., Phys. Rev. D 17, 1693 (1978) Jefferson Lab Collaboration Phys. Rev. C 78, 045203 (2008)

▶ LAT24 is the Lattice date.
Ding, Gao, Hanlon, Mukherjee, Petreczky, Shi, Syritsyn, Zhang, Zhao, Phys.Rev.Lett. 133, 181902 (2024).



▶ Errors come from ν2 ∈ [1/2, 2]Q2, µ2 ∈ [1/4, 3/4]Q2.



Summary

▶ We have endeavored to accomplish the two-loop computation of the pion EMFF
analytically.

▶ NNLO QCD correction can bring about a sizable impact.
▶ Future studies

▶ Inclusion of massive quark loops.
▶ N3LO QCD corrections.
▶ ...

Thank you for your attention!
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