Jet Energy Resolution Validation and PrimeTagSvc Test

Shuo Han, Minqia Li, Kaili Zhang, Hao Zhu
1 IHEP

2025-8-11

Validation

- Dataset: /cefs/higgs/mqli/submit_jobs/sub_E240_n1n1h_bb/E240_n1n1h_bb/Reco/rec*.root
- Use the same process as TDR.
- Reconstructed by CEPCSW25.3.7.
- Jet Reconstruction by eekt.
- \circ Jet truth match with ΔE (The same as GenMatch).
- Cut
- $\circ |\cos\theta| < 0.85$.
- Calculation
- $\circ \Delta E = E(RecoJet) E(GenJet).$
- \circ Resolution = $\Delta E/E$ (Use TwoSidedCB to fit the $\Delta E/E$).
- Result
- Shows a decline in 60~80GeV, but is more consistent with TDR than E125_eebb.

PrimeTagSvc

- Dataset: ee \rightarrow bb events generated by whizard1.9.5(91.1876GeV, 200000 events).
- Reconstructed by CEPCSW25.5.0.
- MissingET Package (including PrimeTagSvc)
- Jet Reconstruction by eekt.
- Prediction given by PrimeTagSvc(latest version).
- Confusion Matrix
- \circ Jet truth match with ΔR .

2025-8-11

- Compare the model prediction and the label of truth particle.
- Result
- More than 75% of truth particle can be tagged correctly.

Another test of JetDump.py

Summary

- JER validation
- The Fit result show a decline in 60~80GeV, but is consistent with TDR in general.
- Hao gives the similar result.
- Test of PrimeTagSvc
- Show a good performance on Flavor Tagging and Charge Tagging.

2025-8-11 4

Back Up

2025-8-11 5