

JOI on vertex detector optimization

Jialin Li

2025/8/20

饮水思源•爱国荣校

Introduction

- - \gt 11 classes: b, \overline{b} , c, \overline{c} , s, \overline{s} , u, \overline{u} , d, \overline{d} , Gluon
- Test the performance of JOI and the measurement of H->CC/SS in different CEPC vertex detector parameters.

Setup

Generator: Whizard + Pythia6 + Fast simulation(Delphes)

Training: ParN

8 Parameters: inner radius(\mathbf{R}) and resolution($\mathbf{\delta}$) range [0.5, 2] vs baseline

$$R_{rad} = \frac{R_{inner}}{R_{baseline}}$$
, $R_{res} = \frac{\delta_{inner}}{\delta_{baseline}}$

	R (mm)	z (mm)	$ \cos \theta $	σ (μ m)
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Effect on impact parameter

- 8 Both d_0 and z_0 resolutions increase linearly with smaller inner radius and worse spatial resolution.
- Inner radius has a much stronger impact than resolution.
- Distributions show narrower peaks for smaller R_rad(right panel), confirming improved tracking precision.

JOI Confusion matrix of Rrad

Trace: 5.76, 5.98, 6.20, 6.35

2ir

Baseline

0.7ir

0.5ir

JOI Confusion matrix of Res

Trace: 5.92, 5.98, 6.00, 6.01

2vtx

Baseline

0.7 vtx

0.5 vtx

Tagging Efficiency and mis-id rate

Misidentification rates (top):

- b→s increases significantly with larger inner radius;
- → g→s stay stable. Gluon originate from the primary vertex; the misidentification is unaffected clear.

Efficiency (bottom):

> c-jet and s-jet tagging efficiencies drop as radius increases.

Trace of JOI

• vtx: 5.98 -0.05 *
$$log2(\frac{new}{baseline})$$

(a) ir: 5.98 -0.27 *
$$\log 2(\frac{new}{baseline})$$

6 Orange line drops sharply with increasing R_{rad} confirming radius dominance. (5 times of R_{res})

Measurement of H->CC

- Inner radius has a greater impact than spatial resolution.
- ⑥ The best configuration improves the branching ratio uncertainty by ~3.8%, while the worst worsens it by ~3.5% compared to baseline.

$$\frac{\delta \mathcal{B}}{\mathcal{B}} = \frac{\sqrt{s+b}}{s}$$

Configuration	$c\bar{c}(10^3)$	$b\bar{b}(10^3)$	$s\bar{s}$	$gg(10^3)$	Uncertainty (10^{-3})
baseline	24.4	1.26	11.0	1.92	6.81
$R_{\rm res} = 0.5$	24.5	1.21	8.95	1.85	6.78
$R_{\rm res} = 2$	24.0	1.21	12.9	1.99	6.88
$R_{\rm rad} = 0.5$	25.6	0.75	5.54	1.75	6.55
$R_{\rm rad} = 2$	23.2	1.54	1.61	2.04	7.05

Measurement of H->SS

- Backgrounds (especially gg) dominate.
- Significance reaches 4.76σ with Rrad=0.5
- The best configuration enhances the significance by ~7.7%, while the worst reduces it by ~4.3% relative to baseline.

$$S = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right) - s\right)}$$

Configuration	$s\bar{s}$	$b\bar{b}$	$c\bar{c}$	qq	Significance
				00	
baseline	70.9	0	10.0	224.6	4.42σ
$R_{\rm res} = 0.5$	64.1	0	7.6	179.4	4.45σ
$R_{\rm res} = 2$	64.4	0	10.3	181.4	4.41σ
$R_{\rm rad} = 0.5$	70.2	0	6.2	189.4	4.76σ
$R_{\rm rad} = 2$	64.8	0	11.5	203.2	4.23σ

Best result @kaili

- Setup: TDR+Fast+P8+ParT
- Trace is 6.834

	(CEPC			TDR Fast Pythia ParT TruthID							
	b	0.798	0.139	0.020	0.016	0.003	0.001	0.001	0.002	0.001	0.001	0.017
	Ē	0.147	0.790	0.015	0.021	0.002	0.003	0.002	0.001	0.001	0.002	0.016
	с	0.008	0.009	0.809	0.045	0.029	0.021	0.017	0.006	0.007	0.013	0.037
	Ē	0.009	0.009	0.042	0.811	0.021	0.028	0.006	0.017	0.013	0.007	0.037
	s	0.002	0.001	0.013	0.012	0.646	0.077	0.021	0.058	0.053	0.037	0.080
Truth	Ē	0.001	0.002	0.011	0.013	0.079	0.644	0.057	0.020	0.037	0.054	0.081
	и	0.001	0.002	0.010	0.006	0.024	0.075	0.442	0.053	0.098	0.185	0.103
	ū	0.002	0.001	0.006	0.010	0.076	0.024	0.054	0.440	0.187	0.097	0.102
	d	0.002	0.002	0.007	0.011	0.062	0.056	0.092	0.180	0.408	0.077	0.104
	ā	0.001	0.002	0.011	0.007	0.056	0.061	0.181	0.091	0.077	0.407	0.105
	g	0.013	0.013	0.023	0.024	0.051	0.050	0.050	0.049	0.045	0.044	0.639
		Ø	Ý	C	ć	6 Pr	ح edicte	১ ed	\(\)	δ	8	Ø,

Conclusion and Next plan (submitted to JHEP)

- Vertex detector parameters, especially inner radius, play a critical role in flavor tagging performance.
- ⓑ For H→ $s\bar{s}$: Best configuration yields ~7.7% gain in significance, Worst case results in ~4.3% loss.
- ⊗ 4.76σ for H→ $s\bar{s}$ brings CEPC closer to discovering this rare Higgs decay mode.
- According to Kaili's latest results, the improvement of JOI suggests that H→ss measurement may achieve ≥5σ significance.

Backup

Simulation Validation (Delphes vs. Geant4)

3*3 Full simu

