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Reminder of lecture 1 and 2 @

@ We have introduce GPDs as a way to encode the non-perturbative
information contained in DVCS (at leading power)

@ We have studied their properties and interpreted them as probability
densities on the lightcone

@ We have seen that they are connected to the EMT through their
moments

@ We have realised that the properties of QCD provide theoretical
constraints on GPDs
» Polynomiality
> Positivity
@ We had no time to show that positivity and polynomiality can be
fulfilled together, but this is indeed the case.
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Evolution properties of GPDs
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UV singularities of operators E

e Coming back to our matrix element for arbirtary z:

m P+ S (<2) W (=2 2)w (2) Im P - D)
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UV singularities of operators @

e Coming back to our matrix element for arbirtary z:

e BECDED G e

singular when z2—0

@ Need to treat short-distance (=UV) singularities

Need to renormalise our non-local operator J

@ When z2 — 0 working with renormalised quark fields g = (Z) 1
is not enough to treat the UV singularity

Two approaches
@ Renormalisation of local operators

@ Renormalisation using “in partons’ matrix elements
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Operator Product Expansion E

@ The idea is to “Taylor expand” an operator:

5(-2) 7 () = ent2)0™0)
N
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@ It provides an order by order correction in perturbative theory, and a
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Operator Product Expansion @

@ The idea is to “Taylor expand” an operator:
P(=3) 7 (5) = 2 en(2)0"(0)
N

@ Then the renormalisation of local operators can be performed
perturbatively

@ It provides an order by order correction in perturbative theory, and a
clear comprehension of the renormalisation procedure
Renormalisation constant are momentum independent, you handle
simple products not convolutions

@ But it requires to “resum” the renormalised local operators afterward:
we saw already when talking about polynomiality that these operators
are given by Mellin moment of GPDs — solve the inverse moment
problem

o Caveat: operator mixing !
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Partons in partons GPDs @

@ Instead of moments, one can consider partons-in-partons GPDs

7 7

1+¢pP

partons-in-partons GPD
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partons-in-partons GPD

@ Possible to look because the singularity is a property of the operator,
not of the external states.
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Partons in partons GPDs @

@ Instead of moments, one can consider partons-in-partons GPDs

7 7

(1+&)P (1-¢gPpP

partons-in-partons GPD

@ Possible to look because the singularity is a property of the operator,
not of the external states.

For that purpose, MS is well suited
GPDs (3D structure, pressure) become scheme dependent !
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First order computation E

@ On top of scheme, one should also choose a gauge, we picked the
lightcone one, where AT = 0.
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lightcone one, where AT = 0.

@ Consequence: it complicates the gluon propagator, but reduce the
Wilson line to unity !
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First order computation @

@ On top of scheme, one should also choose a gauge, we picked the
lightcone one, where AT = 0.

@ Consequence: it complicates the gluon propagator, but reduce the
Wilson line to unity !

@ We are left in the quark sector with:

(1+6P (1-gPp
0000000000000

@ Why are these graphs diverging, while there is no closed loop 7

@ Because only k™ is constraint by momentum conservation, k= and k|
are integrating out
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Sketching the computation E

@ Write down the amplitude in terms of Fourier transform
V1—€ [dz7 -yt A2k -
1 X)z 1 z D}I/U k
2N, / 2 © (2m)s—2¢© a5 D" (k)
X g2 Tr [tayu S((1+&)pt — kv S(k— (1= &)pt v top]

&

1672 Faeq(x,8) =
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@ Write down the amplitude in terms of Fourier transform
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Sketching the computation @

@ Write down the amplitude in terms of Fourier transform
V1—€ [dz7 -yt A2k -
1 X)z 1 z D}I/l/ k
2N, / 2 © (2m)s—2¢© a5 D" (k)
X g2 Tr [tayu S((1+&)pt — kv S(k— (1= &)pt v top]

&
1672
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e Compute traces
@ Integrate over k™ ensuring momentum conservation
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Sketching the computation @

@ Write down the amplitude in terms of Fourier transform

/1 _ 2 - _ 4—2¢ X _
1-¢ / dz el(l—x)z pT d k e—lk+Z iéabDMU(k)
2N, 27 (2m)4—2¢

X g2 Tr [tayu S((1+&)pt — kv S(k— (1= &)pt v top]

&
1672

Fq«—q(Xy 5) =

e Compute traces
@ Integrate over k™ ensuring momentum conservation

@ Integrate over k= using Residue Theorem
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Sketching the computation @

@ Write down the amplitude in terms of Fourier transform

\/ 1- i(1—x)z~ pt d4_26k —iktz— iéapry(k)

16 —— Fq«—q(X §) = (2m)e2e©

x gzuz‘TY [t7uS((L+E)pT — K)y " S(k — (1 - €)pT v tsp]

e Compute traces

@ Integrate over k™ ensuring momentum conservation
@ Integrate over k= using Residue Theorem

@ You end up with terms behaving like

d2—26kJ_ 1
f(X7§) X /_6
(2m)2—2c k2
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Sketching the computation @

@ Write down the amplitude in terms of Fourier transform

\/ 1- i(1—x)z~ pt d4_26k —iktz— iéapry(k)

16 1672 Fq‘—‘?(x §) = (2m)4—2¢ €

x g uZ‘TY [t7uS((L+E)pT — K)y " S(k — (1 - €)pT v tsp]

e Compute traces

@ Integrate over k™ ensuring momentum conservation
@ Integrate over k= using Residue Theorem

@ You end up with terms behaving like

dZ—ZGkJ_ 1
f(X7§) X /_6
(2m)2—2c k2

Final result

1
; dy x & > :
H' X, &t 1) = ZI" y —yAs\), € { 6yt €
( 5 ) /_1 ‘}/| ,_/<y I 5( ) “eg(yg )
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Renormalisation group E

@ The previous equation is nice, but interesting on a limited range in 12
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Renormalisation group @

@ The previous equation is nice, but interesting on a limited range in 12
@ On a wide range of 1 we would expect deviations from as behaviour

@ Take advantage of the Callan-Symanzik equations.

Renormalisation Group

@ Knowing the GPD at a scale u we want to know how it behaves at
p+dp
@ we describe perturbatively the impact of this du leap

H(X7§7 t,,LL+d,LL) — H(Xvéa t7 /'L)

@ we obtain like this a first-order integro-differential equation

@ a5 becomes “exponentiated”
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Evolution equations for GPDs E

dz; e

(X dy “4i y X’ 5’) (Y. §

P = 2 ) =i g Z: - T Qs
(Z a) 50 / Il din p? Y <Z y e

j=9.8
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Evolution equations for GPDs

dde’J y' X’as’ ) _1

i X y.§
Py ( = as) = lim Z / = <; ;as;e>
€ | u
z' =0 i oyl ding z'y
Non-Singlet Case
dHps(x: & top) _ as(p) [*dy o X f
P = :P Hq 9 K t’
dln(u) an oy Tema k) st tm) )
Singlet Case
dHI(x 0 x & 0 x &

( d(ln(g ;_u)) _as(p) ! d_y Pacq ¥l x Pacsg yox <H§(y,§, t, M))
HE(x,&,tup) | 0 x & 0 x H&(y, &, t,
din(n) ar Jo ¥y \Po, x) Pors ;,g (v,& t, 1)

V.
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Evolution equations for GPDs @

dz; e

(X dy “4i y X’ S’) (Y. §

P = 2 ) =i g Z: - T Qs
(Z a) 50 / Il din p? Y <Z y e

j=9.8

Non-Singlet Case

dHRs(x & top) — as(p) dy?o (X 5) His(y, & t, 1)

din(p) — 4r Jo y 777 )
Singlet Case
dH? x,&,t, 0 X 0 X
( Zj(m(éﬂ; F")) _ as(/j,) 1 d_y :Pq<_q v é :PCH—g y? § <Hg(y’ §7 t, M))
dHE(x,&,t,p - 0 x & 0 X H& t
ain(w) 4 0o Y :Pg<—q Y x :Pg<—g ;75 (_)/75, 7#)
V.
The P distributions can in principle be computed in pQCD )
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DGLAP connection @

@ Splitting function have been computed at:

» LO (as)
D. Mueller et al., Fortsch.Phys. 42 101-141, 1994
X. Ji PRD55, 7114-7125, 1997
A. Radyushkin, PRD56, 5524-5557, 1997
» NLO (a2)

A. Belitsky et al., Nucl.Phys. B574, 347-406, 2000
V.M. Braun et al., JHEP, vol. 02, p. 191, 2019

» N2LO (a2) (non singlet only)

V.M. Braun et al.,JHEP 06, 037, 2017.
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V.M. Braun et al.,JHEP 06, 037, 2017.

@ In the limit A — 0, the H9(x,0,0, 1) = g(x, )
— immediate consequence: one should recover the DGLAP evolution

equations
lim P <Xa §> = PpcLap (X>
£—0 y X y
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ERBL connection @

e For |x| < [¢|, a pair of quark-antiquark
propagates along the lighcone in the
t-channel sharing a fraction u of g
system momentum along the lightcone

@ Situation very similar to distribution
amplitudes for mesons
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ERBL connection

@ For [¢| =1, this interpretation holds

for the entire x-range

@ We recover there, the so-called ERBL

evolution equations

e»1 \y' x

Cédric Mezrag (Irfu-DPhN)

Iim fP <X £> = PERBL (X,y)

e For |x| < [¢|, a pair of quark-antiquark
propagates along the lighcone in the
t-channel sharing a fraction u of g
system momentum along the lightcone

@ Situation very similar to distribution
amplitudes for mesons

&
ERBL
< 5
-1 ] [G] T x
fa) la}
ERBL
-1
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Moments analysis | @

@ Why GPDs bridge the gap between two different distributions: PDF
and Distribution Amplitudes for mesons?
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@ Why GPDs bridge the gap between two different distributions: PDF
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Moments analysis | @

@ Why GPDs bridge the gap between two different distributions: PDF
and Distribution Amplitudes for mesons?
@ Because they are defined with the same operator !

PDFH(WPWJ( ) *w( )ITrP>

DA%(OWJ( )*w( )IfrP)

@ Same operator — same OPE — same renormalisation of local
operators — same anomalous dimensions:

1 n+11
n=2CF |2+ ——— 2> =
7 Fl 2Tt D)nt2) ; k}

But why do we have DGLAP and ERBL evolution equations then 7
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Moments analysis | @

@ Why GPDs bridge the gap between two different distributions: PDF
and Distribution Amplitudes for mesons?
@ Because they are defined with the same operator !

PDFH(WPWJ( ) *w( )ITrP>

DA%(OWJ( )*w( )IfrP)

@ Same operator — same OPE — same renormalisation of local
operators — same anomalous dimensions:

n+1

1 1
*MM‘QZJ

k=2

¥n = 2CF

But why do we have DGLAP and ERBL evolution equations then ?

@ Yet, evolution equations are written for matrix elements, not only
operators.
— therefore evolution equations are different !
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Moments analysis I
Conformal Moments a
@ The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer
polynomials (non-singlet):

3
2

/duVNs(v, u)C2(2u—1) x vpCa(2v — 1)
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Moments analysis I
Conformal Moments @
@ The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer
polynomials (non-singlet):

/duVNs(v, u)C2(2u—1) x vpCa(2v — 1)

o Remember, for GPD u = 125 —2u—1= %

— we expect the C,?/Z(x/f) to play an important role w.r.t. the
evolution kernel
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Moments analysis I
Conformal Moments @
@ The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer

polynomials (non-singlet):

3
/duVNs(v, u)C2(2u—1) x vpCa(2v — 1)

o Remember, for GPD u = 125 —2u—1= %

— we expect the C,?/2(x/§) to play an important role w.r.t. the
evolution kernel
@ However we need them to be finite in the forward limit— rescaling

G2 (x/€) = €7CY*(x/€) so that lime_ £"C/?(x/€) = x"
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Moments analysis I
Conformal Moments @
@ The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer
polynomials (non-singlet):

/duVNs(v, u)C2(2u—1) x vpCa(2v — 1)

14X

@ Remember, for GPD v = :5 —2u—1= %
— we expect the C,?/2(x/§) to play an important role w.r.t. the
evolution kernel

@ However we need them to be finite in the forward limit— rescaling
G (x/€) = €nC*(x/€) so that lime_,o " Co/*(x/€) = X

@ In addition, in the forward limit, the Mellin moment do not mix:

dlf(y) [/dxan(x7u)] _ asz(:)%/dxan(xaﬂ)
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Moments analysis I
Conformal Moments @
@ The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer
polynomials (non-singlet):

/duVNs(v, u)C2(2u—1) x vpCa(2v — 1)

14X

@ Remember, for GPD v = :5 —2u—1= %
— we expect the C,?/2(x/§) to play an important role w.r.t. the
evolution kernel

@ However we need them to be finite in the forward limit— rescaling
G (x/€) = €nC*(x/€) so that lime_,o " Co/*(x/€) = X

@ In addition, in the forward limit, the Mellin moment do not mix:

dlf(y) [/dxan(x7u)] _ asz(:)%/dxan(xaﬂ)

5

GPD Conformal moments f&"C3/2(5)H(x,§)
do not mix under LO evolution !

= = = = ot
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Other properties @

@ Charge conservation: 79 =0

e Energy-Momentum Conservation: [ dxx(q(x) + g(x)) is independent
of i

e Continuity at the crossover lines |x| = [¢]

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15, 2025 15/30



Solving evolution equations E

Evolution in conformal space

e Conformal moments do not mix at LO — easy evolution

¢ [t (= (28 e [ () e
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Solving evolution equations @

Evolution in conformal space

e Conformal moments do not mix at LO — easy evolution

¢ [t (= (28 e [ () e

@ Inverse moment problem must be solved
— requires analytic continuation in the complex plane
— solution is not unique

D. Mueller and A. Schafer, Nucl.Phys.B739 1-59, 2006J
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Solving evolution equations @

Evolution in conformal space

e Conformal moments do not mix at LO — easy evolution

¢ [t (= (28 e [ () e

@ Inverse moment problem must be solved
— requires analytic continuation in the complex plane
— solution is not unique

D. Mueller and A. Schafer, Nucl.Phys.B739 1-59, 2006)

Evolution in x-space
@ Numerical solution of integro-differential equations

o Dedicated routines do it

@ Splitting functions not easily available above one loop
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Examples E

LO evolution from Ho = 1 GeV to u = 10 GeV

1.0 — — T
_—5=0 ]
0.8 L— £€=0.05 ]
C £=05 ]
20.6F £€=1 ]
W [ MMHT2014l068cl ]
K [ ]
0.4 ]
|
& [ ]
8 L 4

=

Ratio to DGLAP ©
[ V)
T
C PR

=o
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Examples E

LO evolution from Ho = 1 GeV to u = 10 GeV

1.0 — — T
_—5=0 ]
0.8 L— £€=0.05 ]
C £=05 ]
20.6F £€=1 ]
W [ MMHT2014l068cl ]
K [ ]
0.4 ]
|
& [ ]
8 L 4

=

Ratio to DGLAP ©
[ V)
T
C PR

=o

Evolution equations make the derivative of GPD discontinuous at x = &. )
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From evolution equations to evolution operator
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Leading Ln resummation
Example on the as a
@ | believe everybody knows the RGE:

da
Iin ;2 = B(as) = —boaZ — biag + O(ad)
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Leading Ln resummation
Example on the as a
@ | believe everybody knows the RGE:

da
Tin ;2 = B(as) = —boaZ — biag + O(ad)

@ The solution can be cast as a series:

<1 /@2 das
as(oz):Zﬁlnj( ) dind 2
J=0 7

U2
=L
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Leading Ln resummation
Example on the as a
@ | believe everybody knows the RGE:
€ = Blas) = —boa? — bro? + O(af)

dlnpu?

@ The solution can be cast as a series:

> 21 . /Q? das
@ =35 () i
Jj=0 ———— ®

@ and using the RGE reorganised as a power series of as:

j—k
Lfl(—boyszfw}

k=2

as(@) = as(p®) + Y ol(1?)

j=1
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Leading Ln resummation
Example on the as a
@ | believe everybody knows the RGE:

da
Tin ;2 = B(as) = —boaZ — bia3 + O(a?)

@ The solution can be cast as a series:

(@) =3 i (QZ) das

= /!

@ and using the RGE reorganised as a power series of as:

[e'e] Jj—k
as(@) = as(1?) + > ad(1?) | (—boy 1+ > U
k

j=t

@ Keeping only leading In, one can resum the series:

2y _ as(#Z)
as(Q%) = 1+ as(u2)Lbo
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Leading Ln resummation
Example on the as a
@ | believe everybody knows the RGE:

da
Tin ;2 = B(as) = —boaZ — bia3 + O(a?)

@ The solution can be cast as a series:

(@) =3 i (QZ) das

= /!

@ and using the RGE reorganised as a power series of as:

[e'e] Jj—k
as(@) = as(1?) + > ad(1?) | (—boy 1+ > U
k

j=t

@ Keeping only leading In, one can resum the series:

2y _ as(#Z)
as(Q%) = 1+ as(u2)Lbo

Resumming leading In is equivalent to solving LO RGE

il = = — Tyt
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GPD evolution operator E

@ We have derived the evolution equation for GPDs:

dH?(2)
T _ zb: [as(#Z)?ab,(O) +a§(u2)?ab,(1) +. ] ® HP
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GPD evolution operator E

@ We have derived the evolution equation for GPDs:

dH?(2)
T _ zb: [as(#Z)?ab,(O) +a§(u2)?ab,(1) +. ] ® HP

@ The solution can be cast as a series:
= U dH(2)
H(Q*) =) — .
(@) Zj! din/ p?

Jj=0
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GPD evolution operator @

@ We have derived the evolution equation for GPDs:

dH?(2)
T _ zb: [as(#Z)?ab,(O) +a§(u2)?ab,(1) +. ] ® HP

@ The solution can be cast as a series:
= U dH(2)
H(Q*) =) — .
(@) Zj! din/ p?

Jj=0
@ and we can use evolution equations to introduce the evolution operator:

H(Q%) = 37 F(Q% %) @ HE(1?)
b

-1
M@, 12) =bap+ > ol (1®) D> U4
7 7
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GPD evolution operator @

@ We have derived the evolution equation for GPDs:

dH? (42 . .
g = X [ e+ J o e
b

@ The solution can be cast as a series:
> U A HA (i
Ha(QZ):Zf .(.U‘ )
JUodin/ p2?

Jj=0
@ and we can use evolution equations to introduce the evolution operator:

H(Q%) = 37 F(Q% %) @ HE(1?)
b

-1
M@, 12) =bap+ > ol (1®) D> U4
7 7

@ We can now (partially) resum the leading a7t1L" terms consistently for experimental
processes (DVCS)
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Intermezzo : lll-posed inverse problem
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A tale of two eigenvalues E
a\y )\1 0 X
b) 0 )\2 y

@ (a, b) is our experimental vector (measured), (x,y) is our unknown
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A tale of two eigenvalues @
a\y )\1 0 X
b) \0 €)\y

@ (a, b) is our experimental vector (measured), (x,y) is our unknown
@ Now let's assume that A\; ~1and M = e << 1
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A tale of two eigenvalues @
atd . Al 0 X
0+£6) \0 €/ \y

@ (a, b) is our experimental vector (measured), (x,y) is our unknown
@ Now let's assume that A\; ~1and M = e << 1

e Finally, our experimental data are known with a finite precision § and
b is compatible with zero.
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A tale of two eigenvalues @
atd . Al 0 X
0+£6) \0 €/ \y

(a, b) is our experimental vector (measured), (x, y) is our unknown
Now let's assume that A\; ~ 1 and M = e << 1
Finally, our experimental data are known with a finite precision § and

b is compatible with zero.
Let us put numbers everywhere : a=1.4, § =0.1, \; =2, e = 1073

x=0.74+0.05 y=0=£100
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A tale of two eigenvalues @
atd . Al 0 X
0+£6) \0 €/ \y

@ (a, b) is our experimental vector (measured), (x,y) is our unknown
@ Now let's assume that A\; ~1and M = e << 1
e Finally, our experimental data are known with a finite precision § and

b is compatible with zero.
o Let us put numbers everywhere : a=1.4, § =0.1, \; =2, e = 1073

x=0.74+0.05 y=0=100

@ You should use theory constraints if you know some to get relevant
values for y:

\/X2+y2§pmaxz>y:0i\/plznax_xz
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A tale of two eigenvalues @
atd . Al 0 X
0+£6) \0 €/ \y

@ (a, b) is our experimental vector (measured), (x,y) is our unknown
@ Now let's assume that A\; ~1and M = e << 1
e Finally, our experimental data are known with a finite precision § and

b is compatible with zero.
o Let us put numbers everywhere : a=1.4, § =0.1, \; =2, e = 1073

x=0.74+0.05 y=0=100

@ You should use theory constraints if you know some to get relevant
values for y:

\/X2+y2§pmaxz>y:0i\/prznax_xz

@ even if pmax =~ 10, you gain an order of magnitude and theory is

driving your knowledge of y.
IWSHSSI October 15%7, 2025  22/30



Probing GPDs through exclusive processes
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Experimental connection to GPDs E

Observables
(cross sections,
asymmetries . .. )
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Experimental connection to GPDs E

Observables Compton
(cross sections, Form Factors
asymmetries ... ) H, & H, ...

1/Q?

expansion,
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Experimental connection to GPDs E

Observab.les Compton GPDs
(cross sections, Form Factors HE [
asymmetries ... ) H, & H, ... B

1/Q?

expansion, expansion and
convolution
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Experimental connection to GPDs E

Observab.les Compton GPDs
(cross sections, Form Factors HE [
asymmetries ... ) H, & H, ... B

1/Q?

expansion, expansion and
convolution

o CFFs play today a central role in our understanding of GPDs

e Extraction generally focused on CFFs

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15, 2025 24 /30



Deep Virtual Compton Scattering E

@ Best studied experimental process connected to GPDs
— Data taken at Hermes, Compass, JLab 6, JLab 12
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Deep Virtual Compton Scattering @

@ Best studied experimental process connected to GPDs
— Data taken at Hermes, Compass, JLab 6, JLab 12
o Interferes with the Bethe-Heitler (BH) process

» Blessing: Interference term boosted w.r.t. pure DVCS one
» Curse: access to the angular modulation of the pure DVCS part difficult

M. Defurne et al., Nature Commun. 8 (2017) 1, 1408
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QCD corrections to DVCS E

o At LO, the DVCS coefficient function is a QED one
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QCD corrections to DVCS E

@ At LO, the DVCS coefficient function is a QED one
@ At NLO, gluon GPDs play a significant role in DVCS

20

10

€ ReH

H. Moutarde et al., PRD 87 (2013) 5, 054029
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QCD corrections to

DVCS

@ At LO, the DVCS coefficient function is a QED one
@ At NLO, gluon GPDs play a significant role in DVCS

€ ReH

10

20

£ mH
/

@ Recent N2LO studies, impact needs to be assessed

Cédric Mezrag (Irfu-DPhN)

IWSHSSI

H. Moutarde et al., PRD 87 (2013) 5, 054029

V. Braun et al., JHEP 09 (2020) 117
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Recent CFF extractions

005 010 015 020 035 030 005 010 015 020 025 030
&= ap/(2—x5) 13

&= on/(2- 2n)

M. Cuit et al., PRL 125, (2020), 232005 H. Moutarde et al., EPJC 79, (2019), 614
@ Recent effort on bias reduction in CFF extraction (ANN)
additional ongoing studies, J. Grigsby et al., PRD 104 (2021) 016001

o Studies of ANN architecture to fulfil GPDs properties (dispersion
relation,polynomiality,. . .)

@ Recent efforts on propagation of uncertainties (allowing impact studies
for JLAB12, EIC and EicC)

see e.g. H. Dutrieux et al., EPJA 57 8 250 (2021)
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Kinematical corrections in t/Q? and M?/Q?

Finite t corrections

V. Braun et al., PRL 109 (2012), 242001

d'o [nb/GeV']

—t =019 GeV?

—t =023 GeV?

—t=0.28 GeV?

L , L
T 20 30 50

— =037 GeV*

4 ;

o Sizeable even for t/Q? ~ 0.1
e Not currently included in global fits.

Cédric Mezrag (Irfu-DPhN)
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KinX2

2 = 0.38 - 0.40

Q* =2.0-2.1 GeV?
-- Bethe-Heitler

KM10a
—— KM10a + TMC*

M. Defurne et al. PRC 92 (2015) 55202

October 15, 2025 28 /30



Dispersion relation and the D-term @

e At all orders in s, dispersion relations relate the real and imaginary

parts of the CFF. I. Anikin and O. Teryaev, PRD 76 056007
M. Diehl and D. lvanov, EPJC 52 (2007) 919-932

H. Dutrieux et al., EPJC 85 (2025) 1, 105

V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

2 X23H(x)  dx

(0,0 = [ awT()0(w) = woite) - 2 Z N &
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Dispersion relation and the D-term @

e At all orders in s, dispersion relations relate the real and imaginary

parts of the CFF. I. Anikin and O. Teryaev, PRD 76 056007
M. Diehl and D. lvanov, EPJC 52 (2007) 919-932

H. Dutrieux et al., EPJC 85 (2025) 1, 105

V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

8(t,Q%) = [ldwT(w)D(w) = RH(E) — 27[0 ( x"IH(x)  dx

mJo (€=x(E+x) €
e D(a,t) is related to the EMT.

M.V. Polyakov PLB 555, 57-62 (2003)
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Dispersion relation and the D-term @

e At all orders in s, dispersion relations relate the real and imaginary

parts of the CFF.

8(t, @) = /71 dw T (w)D(w) = RH(E) — = 7[0 (

I. Anikin and O. Teryaev, PRD 76 056007

M. Diehl and D. lvanov, EPJC 52 (2007) 919-932

H. Dutrieux et al., EPJC 85 (2025) 1, 105

V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

2 X*SH(x)  dx
E—x)(E+x) &

Tr P

e D(a,t) is related to the EMT.

&<

B 1 10

W? [Gev?]

figure from H. Dutrieux et al.,
Eur.Phys.J.C 81 (2021) 4

Cédric Mezrag (Irfu-DPhN)

M.V. Polyakov PLB 555, 57-62 (2003)
@ First attempt from JLab 6 GeV data

Burkert et al., Nature 557 (2018) 7705, 396-399

@ Tensions with other studies

— uncontrolled model-dependence
K. Kumericki, Nature 570 (2019) 7759, E1-E2
H. Moutarde et al., Eur.Phys.J.C 79 (2019) 7, 614
H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

@ Scheme/scale dependence
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The DVCS deconvolution problem |
From CFF to GPDs

Observables Compton
(cross sections, Form FNactors H gPIIéI)s
asymmetries ... ) H, & H,... B

Assuming Can we

unambiguously
get GPDs?

this step is
under control
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From CFF to GPDs

The DVCS deconvolution problem | a

Observables Compton
(cross sections, Form FNactors H EPBS
asymmetries ... ) H, & H,... B

Assuming Can we

this step is unambiguously
under control get GPDs?

@ It has been known for a long time that this is not the case at LO
Due to dispersion relations, any GPD vanishing on x = ££ would not
contribute to DVCS at LO (neglecting D-term contributions).

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15, 2025 30/30



The DVCS deconvolution problem |
From CFF to GPDs

Observables Compton
(cross sections, Form FNactors H EPBS
asymmetries ... ) H, & H,... T

Assuming Can we

this step is unambiguously
under control get GPDs?

@ It has been known for a long time that this is not the case at LO
Due to dispersion relations, any GPD vanishing on x = ££ would not

contribute to DVCS at LO (neglecting D-term contributions).

@ Are QCD corrections improving the situation?
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