Theory and phenomenology of Generalised Partons Distributions

Cédric Mezrag

CEA Saclay, Irfu DPhN

October 15th, 2025

2025 International Workshop and School on Hadron Structure and Strong Interactions

Reminder of lecture 1 and 2

- We have introduce GPDs as a way to encode the non-perturbative information contained in DVCS (at leading power)
- We have studied their properties and interpreted them as probability densities on the lightcone
- We have seen that they are connected to the EMT through their moments
- We have realised that the properties of QCD provide theoretical constraints on GPDs
 - Polynomiality
 - Positivity
- We had no time to show that positivity and polynomiality can be fulfilled together, but this is indeed the case.

Evolution properties of GPDs

• Coming back to our matrix element for arbitrary z:

$$\langle \pi, P + \frac{\Delta}{2} | \bar{\psi} \left(-\frac{z}{2} \right) \gamma^+ \mathcal{W} \left(-\frac{z}{2}; \frac{z}{2} \right) \psi \left(\frac{z}{2} \right) | \pi, P - \frac{\Delta}{2} \rangle$$

• Coming back to our matrix element for arbirtary z:

$$\langle \pi, P + \frac{\Delta}{2} | \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathcal{W}\left(-\frac{z}{2}; \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)}_{\text{singular when } z^{2} \rightarrow 0} | \pi, P - \frac{\Delta}{2} \rangle$$

• Coming back to our matrix element for arbirtary z:

$$\langle \pi, P + \frac{\Delta}{2} | \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathcal{W}\left(-\frac{z}{2}; \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)}_{\text{singular when } z^{2} \rightarrow 0} | \pi, P - \frac{\Delta}{2} \rangle$$

• Need to treat short-distance (=UV) singularities

Need to renormalise our non-local operator

• Coming back to our matrix element for arbirtary z:

$$\langle \pi, P + \frac{\Delta}{2} | \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathcal{W}\left(-\frac{z}{2}; \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)}_{\text{singular when } z^{2} \rightarrow 0} | \pi, P - \frac{\Delta}{2} \rangle$$

Need to treat short-distance (=UV) singularities

Need to renormalise our non-local operator

• When $z^2 \to 0$ working with renormalised quark fields $\psi_R = (Z_2)^{-1} \psi$ is not enough to treat the UV singularity

• Coming back to our matrix element for arbitrary z:

$$\langle \pi, P + \frac{\Delta}{2} | \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathcal{W}\left(-\frac{z}{2}; \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)}_{\text{singular when } z^{2} \rightarrow 0} | \pi, P - \frac{\Delta}{2} \rangle$$

Need to treat short-distance (=UV) singularities

Need to renormalise our non-local operator

• When $z^2 \to 0$ working with renormalised quark fields $\psi_R = (Z_2)^{-1} \psi$ is not enough to treat the UV singularity

Two approaches

- Renormalisation of local operators
- Renormalisation using "in partons" matrix elements

$$\bar{\psi}\left(-\frac{z}{2}\right)\gamma^{+}\psi\left(\frac{z}{2}\right) = \sum_{N}^{\infty} c_{N}(z)\mathfrak{O}^{N}(0)$$

• The idea is to "Taylor expand" an operator:

$$\bar{\psi}\left(-\frac{z}{2}\right)\gamma^{+}\psi\left(\frac{z}{2}\right) = \sum_{N}^{\infty} c_{N}(z)\mathfrak{O}^{N}(0)$$

 Then the renormalisation of local operators can be performed perturbatively

$$\bar{\psi}\left(-\frac{z}{2}\right)\gamma^{+}\psi\left(\frac{z}{2}\right) = \sum_{N}^{\infty} c_{N}(z)O^{N}(0)$$

- Then the renormalisation of local operators can be performed perturbatively
- It provides an order by order correction in perturbative theory, and a clear comprehension of the renormalisation procedure
 Renormalisation constant are momentum independent, you handle simple products not convolutions

$$\bar{\psi}\left(-\frac{z}{2}\right)\gamma^{+}\psi\left(\frac{z}{2}\right) = \sum_{N}^{\infty} c_{N}(z)O^{N}(0)$$

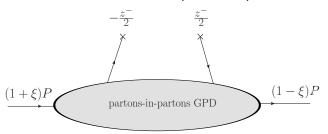
- Then the renormalisation of local operators can be performed perturbatively
- It provides an order by order correction in perturbative theory, and a clear comprehension of the renormalisation procedure
 Renormalisation constant are momentum independent, you handle simple products not convolutions
- ullet But it requires to "resum" the renormalised local operators afterward: we saw already when talking about polynomiality that these operators are given by Mellin moment of GPDs ullet solve the inverse moment problem

$$\bar{\psi}\left(-\frac{z}{2}\right)\gamma^{+}\psi\left(\frac{z}{2}\right) = \sum_{N}^{\infty} c_{N}(z)O^{N}(0)$$

- Then the renormalisation of local operators can be performed perturbatively
- It provides an order by order correction in perturbative theory, and a clear comprehension of the renormalisation procedure
 Renormalisation constant are momentum independent, you handle simple products not convolutions
- ullet But it requires to "resum" the renormalised local operators afterward: we saw already when talking about polynomiality that these operators are given by Mellin moment of GPDs ullet solve the inverse moment problem
- Caveat: operator mixing!

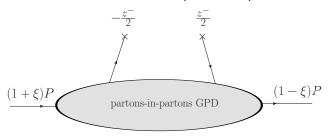
Partons in partons GPDs

• Instead of moments, one can consider partons-in-partons GPDs



Partons in partons GPDs

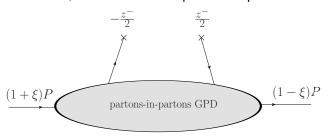
• Instead of moments, one can consider partons-in-partons GPDs



 Possible to look because the singularity is a property of the operator, not of the external states.

Partons in partons GPDs

• Instead of moments, one can consider partons-in-partons GPDs



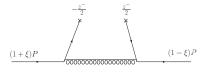
 Possible to look because the singularity is a property of the operator, not of the external states.

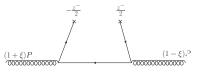
For that purpose, $\overline{\rm MS}$ is well suited GPDs (3D structure, pressure) become *scheme dependent*!

• On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^+=0$.

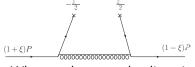
- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^+ = 0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^+=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!
- We are left in the quark sector with:



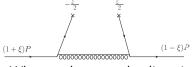


- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^+=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!
- We are left in the quark sector with:



• Why are these graphs diverging, while there is no closed loop ?

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^+=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!
- We are left in the quark sector with:



- Why are these graphs diverging, while there is no closed loop?
- Because only k^+ is constraint by momentum conservation, k^- and k_\perp are integrating out

• Write down the amplitude in terms of Fourier transform

$$\begin{split} \frac{g^2}{16\pi^2} F_{q \leftarrow q}(x,\xi) &= \frac{\sqrt{1-\xi^2}}{2N_c} \int \frac{\mathrm{d}z^-}{2\pi} \mathrm{e}^{i(1-x)z^-\rho^+} \int \frac{\mathrm{d}^{4-2\epsilon}k}{(2\pi)^{4-2\epsilon}} \mathrm{e}^{-ik^+z^-} i\delta_{ab} D^{\mu\nu}(k) \\ &\times g^2 \mu^{2\epsilon} \mathrm{Tr} \left[t_a \gamma_\mu S((1+\xi)\rho^+ - k) \gamma^+ S(k - (1-\xi)\rho^+ \gamma_\nu t_b p) \right] \end{split}$$

• Write down the amplitude in terms of Fourier transform

$$\begin{split} \frac{g^2}{16\pi^2} F_{q \leftarrow q}(x, \xi) &= \frac{\sqrt{1 - \xi^2}}{2N_c} \int \frac{\mathrm{d}z^-}{2\pi} e^{i(1 - x)z^- p^+} \int \frac{\mathrm{d}^{4 - 2\epsilon} k}{(2\pi)^{4 - 2\epsilon}} e^{-ik^+ z^-} i\delta_{ab} D^{\mu\nu}(k) \\ &\times g^2 \mu^{2\epsilon} \mathrm{Tr} \left[t_a \gamma_\mu S((1 + \xi) p^+ - k) \gamma^+ S(k - (1 - \xi) p^+ \gamma_\nu t_b p) \right] \end{split}$$

Compute traces

• Write down the amplitude in terms of Fourier transform

$$\begin{split} \frac{g^2}{16\pi^2} F_{q \leftarrow q}(x, \xi) &= \frac{\sqrt{1 - \xi^2}}{2N_c} \int \frac{\mathrm{d}z^-}{2\pi} e^{i(1 - x)z^- p^+} \int \frac{\mathrm{d}^{4 - 2\epsilon} k}{(2\pi)^{4 - 2\epsilon}} e^{-ik^+ z^-} i\delta_{ab} D^{\mu\nu}(k) \\ &\times g^2 \mu^{2\epsilon} \mathrm{Tr} \left[t_a \gamma_\mu S((1 + \xi) p^+ - k) \gamma^+ S(k - (1 - \xi) p^+ \gamma_\nu t_b p) \right] \end{split}$$

- Compute traces
- Integrate over k^+ ensuring momentum conservation

• Write down the amplitude in terms of Fourier transform

$$\begin{split} \frac{g^2}{16\pi^2} F_{q \leftarrow q}(x, \xi) &= \frac{\sqrt{1 - \xi^2}}{2N_c} \int \frac{\mathrm{d}z^-}{2\pi} e^{i(1 - x)z^- p^+} \int \frac{\mathrm{d}^{4 - 2\epsilon} k}{(2\pi)^{4 - 2\epsilon}} e^{-ik^+ z^-} i\delta_{ab} D^{\mu\nu}(k) \\ &\times g^2 \mu^{2\epsilon} \mathrm{Tr} \left[t_a \gamma_\mu S((1 + \xi) p^+ - k) \gamma^+ S(k - (1 - \xi) p^+ \gamma_\nu t_b p) \right] \end{split}$$

- Compute traces
- Integrate over k^+ ensuring momentum conservation
- Integrate over k^- using Residue Theorem

Write down the amplitude in terms of Fourier transform

$$\begin{split} \frac{g^2}{16\pi^2} F_{q \leftarrow q}(x, \xi) &= \frac{\sqrt{1 - \xi^2}}{2N_c} \int \frac{\mathrm{d}z^-}{2\pi} e^{i(1 - x)z^- p^+} \int \frac{\mathrm{d}^{4 - 2\epsilon} k}{(2\pi)^{4 - 2\epsilon}} e^{-ik^+ z^-} i\delta_{ab} D^{\mu\nu}(k) \\ &\times g^2 \mu^{2\epsilon} \mathrm{Tr} \left[t_a \gamma_\mu S((1 + \xi)p^+ - k) \gamma^+ S(k - (1 - \xi)p^+ \gamma_\nu t_b p) \right] \end{split}$$

- Compute traces
- Integrate over k^+ ensuring momentum conservation
- Integrate over k^- using Residue Theorem
- You end up with terms behaving like

$$f(x,\xi) \times \int \frac{\mathrm{d}^{2-2\epsilon} k_{\perp}}{(2\pi)^{2-2\epsilon}} \frac{1}{k_{\perp}^2}$$

• Write down the amplitude in terms of Fourier transform

$$\begin{split} \frac{g^2}{16\pi^2} F_{q \leftarrow q}(x, \xi) &= \frac{\sqrt{1 - \xi^2}}{2N_c} \int \frac{\mathrm{d}z^-}{2\pi} e^{i(1 - x)z^- p^+} \int \frac{\mathrm{d}^{4 - 2\epsilon} k}{(2\pi)^{4 - 2\epsilon}} e^{-ik^+ z^-} i\delta_{ab} D^{\mu\nu}(k) \\ &\times g^2 \mu^{2\epsilon} \mathrm{Tr} \left[t_a \gamma_\mu S((1 + \xi) p^+ - k) \gamma^+ S(k - (1 - \xi) p^+ \gamma_\nu t_b p) \right] \end{split}$$

- Compute traces
- Integrate over k^+ ensuring momentum conservation
- Integrate over k^- using Residue Theorem
- You end up with terms behaving like

$$f(x,\xi) \times \int \frac{\mathrm{d}^{2-2\epsilon} k_{\perp}}{(2\pi)^{2-2\epsilon}} \frac{1}{k_{\perp}^2}$$

Final result

$$H^{i}(x,\xi,t,\mu) = \int_{-1}^{1} \frac{\mathrm{d}y}{|y|} Z_{i,j}\left(\frac{x}{y},\frac{\xi}{x},\alpha_{s}(\mu),\epsilon\right) H^{j}_{reg}(y,\xi,t,\epsilon)$$

ullet The previous equation is nice, but interesting on a limited range in μ^2

- ullet The previous equation is nice, but interesting on a limited range in μ^2
- ullet On a wide range of μ we would expect deviations from $lpha_{\mathcal{S}}$ behaviour

- ullet The previous equation is nice, but interesting on a limited range in μ^2
- ullet On a wide range of μ we would expect deviations from $lpha_{\mathcal{S}}$ behaviour
- Take advantage of the Callan-Symanzik equations.

- ullet The previous equation is nice, but interesting on a limited range in μ^2
- ullet On a wide range of μ we would expect deviations from $lpha_{\mathcal{S}}$ behaviour
- Take advantage of the *Callan-Symanzik* equations.

Renormalisation Group

- Knowing the GPD at a scale μ we want to know how it behaves at $\mu + \mathrm{d}\mu$
- ullet we describe perturbatively the impact of this $\mathrm{d}\mu$ leap

$$H(x,\xi,t,\mu+\mathrm{d}\mu)-H(x,\xi,t,\mu)$$

- we obtain like this a first-order integro-differential equation
- α_S becomes "exponentiated"

Evolution equations for GPDs

$$\mathcal{P}^{ij}\left(\frac{x}{z};\frac{\xi}{x};\alpha_{s}\right) = \lim_{\epsilon \to 0} \sum_{j=q,g} \int_{-1}^{1} \frac{\mathrm{d}y}{|y|} \frac{\mathrm{d}Z_{ij}\left(\frac{x}{y};\frac{\xi}{x};\alpha_{s};\epsilon\right)}{\mathrm{d}\ln\mu^{2}} Z_{ij}^{-1}\left(\frac{y}{z};\frac{\xi}{y};\alpha_{s};\epsilon\right)$$

Evolution equations for GPDs

$$\mathcal{P}^{ij}\left(\frac{x}{z};\frac{\xi}{x};\alpha_{s}\right) = \lim_{\epsilon \to 0} \sum_{j=q,g} \int_{-1}^{1} \frac{\mathrm{d}y}{|y|} \frac{\mathrm{d}Z_{ij}\left(\frac{x}{y};\frac{\xi}{x};\alpha_{s};\epsilon\right)}{\mathrm{d}\ln\mu^{2}} Z_{ij}^{-1}\left(\frac{y}{z};\frac{\xi}{y};\alpha_{s};\epsilon\right)$$

Non-Singlet Case

$$\frac{\mathrm{d}H_{NS}^{q}(x,\xi,t,\mu)}{\mathrm{d}\ln(\mu)} = \frac{\alpha_{s}(\mu)}{4\pi} \int_{0}^{1} \frac{\mathrm{d}y}{y} \mathcal{P}_{q\leftarrow q}^{0}\left(\frac{x}{y},\frac{\xi}{x}\right) H_{NS}^{q}(y,\xi,t,\mu)$$

Singlet Case

$$\begin{pmatrix} \frac{\mathrm{d} H_{\mathcal{S}}^{q}(x,\xi,t,\mu)}{\mathrm{d} \ln(\mu)} \\ \frac{\mathrm{d} H^{g}(x,\xi,t,\mu)}{\mathrm{d} \ln(\mu)} \end{pmatrix} = \frac{\alpha_{s}(\mu)}{4\pi} \int_{0}^{1} \frac{\mathrm{d} y}{y} \begin{pmatrix} \mathcal{P}_{q \leftarrow q}^{0} \left(\frac{x}{y},\frac{\xi}{x}\right) & \mathcal{P}_{q \leftarrow g}^{0} \left(\frac{x}{y},\frac{\xi}{x}\right) \\ \mathcal{P}_{g \leftarrow q}^{0} \left(\frac{x}{y},\frac{\xi}{x}\right) & \mathcal{P}_{g \leftarrow g}^{0} \left(\frac{x}{y},\frac{\xi}{x}\right) \end{pmatrix} \begin{pmatrix} H_{\mathcal{S}}^{q}(y,\xi,t,\mu) \\ H^{g}(y,\xi,t,\mu) \end{pmatrix}$$

Evolution equations for GPDs

$$\mathcal{P}^{ij}\left(\frac{x}{z};\frac{\xi}{x};\alpha_{s}\right) = \lim_{\epsilon \to 0} \sum_{j=q,g} \int_{-1}^{1} \frac{\mathrm{d}y}{|y|} \frac{\mathrm{d}Z_{ij}\left(\frac{x}{y};\frac{\xi}{x};\alpha_{s};\epsilon\right)}{\mathrm{d}\ln\mu^{2}} Z_{ij}^{-1}\left(\frac{y}{z};\frac{\xi}{y};\alpha_{s};\epsilon\right)$$

Non-Singlet Case

$$\frac{\mathrm{d} H_{NS}^q(x,\xi,t,\mu)}{\mathrm{d} \ln(\mu)} = \frac{\alpha_s(\mu)}{4\pi} \int_0^1 \frac{\mathrm{d} y}{y} \mathcal{P}_{q \leftarrow q}^0\left(\frac{x}{y},\frac{\xi}{x}\right) H_{NS}^q(y,\xi,t,\mu)$$

Singlet Case

$$\begin{pmatrix} \frac{\mathrm{d} H_{S}^{q}(x,\xi,t,\mu)}{\mathrm{d} \ln(\mu)} \\ \frac{\mathrm{d} H^{g}(x,\xi,t,\mu)}{\mathrm{d} \ln(\mu)} \end{pmatrix} = \frac{\alpha_{s}(\mu)}{4\pi} \int_{0}^{1} \frac{\mathrm{d} y}{y} \begin{pmatrix} \mathcal{P}_{q \leftarrow q}^{0} \left(\frac{x}{y},\frac{\xi}{x}\right) & \mathcal{P}_{q \leftarrow g}^{0} \left(\frac{x}{y},\frac{\xi}{x}\right) \\ \mathcal{P}_{g \leftarrow q}^{0} \left(\frac{x}{y},\frac{\xi}{x}\right) & \mathcal{P}_{g \leftarrow g}^{0} \left(\frac{x}{y},\frac{\xi}{x}\right) \end{pmatrix} \begin{pmatrix} H_{S}^{q}(y,\xi,t,\mu) \\ H^{g}(y,\xi,t,\mu) \end{pmatrix}$$

The $\mathcal P$ distributions can in principle be computed in pQCD

DGLAP connection

- Splitting function have been computed at:
 - LO (α_s)
 - ▶ NLO (α_S^2)
 - ▶ N2LO (α_s^3) (non singlet only)

- D. Mueller et al., Fortsch.Phys. 42 101–141, 1994
 X. Ji PRD55, 7114–7125, 1997
 A. Radyushkin, PRD56, 5524–5557, 1997
- A. Belitsky et al., Nucl.Phys. B574, 347–406, 2000 V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
 - V.M. Braun et al., JHEP 06, 037, 2017.

DGLAP connection

- Splitting function have been computed at:
 - LO (α_s)

D. Mueller et al., Fortsch.Phys. 42 101–141, 1994
 X. Ji PRD55, 7114–7125, 1997
 A. Radyushkin, PRD56, 5524–5557, 1997

▶ NLO (α_s^2)

- A. Belitsky et al., Nucl.Phys. B574, 347–406, 2000 V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
- ▶ N2LO (α_s^3) (non singlet only)

V.M. Braun et al., JHEP 06, 037, 2017.

• In the limit $\Delta \to 0$, the $H^q(x,0,0,\mu) = q(x,\mu)$ \to immediate consequence: one should recover the DGLAP evolution equations

DGLAP connection

- Splitting function have been computed at:
 - LO (α_s)

D. Mueller *et al.*, Fortsch.Phys. 42 101–141, 1994 X. Ji PRD55, 7114–7125, 1997 A. Radyushkin, PRD56, 5524–5557, 1997

▶ NLO (α_s^2)

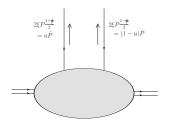
- A. Belitsky et al., Nucl.Phys. B574, 347–406, 2000 V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
- ▶ N2LO (α_s^3) (non singlet only)

V.M. Braun et al., JHEP 06, 037, 2017.

• In the limit $\Delta \to 0$, the $H^q(x,0,0,\mu) = q(x,\mu)$ \to immediate consequence: one should recover the DGLAP evolution equations

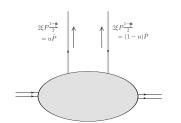
$$\lim_{\xi \to 0} \mathcal{P}\left(\frac{x}{y}, \frac{\xi}{x}\right) = P_{DGLAP}\left(\frac{x}{y}\right)$$

ERBL connection



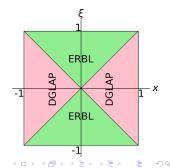
- For $|x| \leq |\xi|$, a pair of quark-antiquark propagates along the lighcone in the t-channel sharing a fraction u of $q\bar{q}$ system momentum along the lightcone
- Situation very similar to distribution amplitudes for mesons

ERBL connection



- For $|x| \leq |\xi|$, a pair of quark-antiquark propagates along the lighcone in the t-channel sharing a fraction u of $q\bar{q}$ system momentum along the lightcone
- Situation very similar to distribution amplitudes for mesons
- For $|\xi| = 1$, this interpretation holds for the entire x-range
- We recover there, the so-called ERBL evolution equations

$$\lim_{\xi \to 1} \mathcal{P}\left(\frac{x}{y}, \frac{\xi}{x}\right) = P_{\text{ERBL}}(x, y)$$



 Why GPDs bridge the gap between two different distributions: PDF and Distribution Amplitudes for mesons?

- Why GPDs bridge the gap between two different distributions: PDF and Distribution Amplitudes for mesons?
- Because they are defined with the same operator !

$$\begin{split} \mathrm{PDF} \ &\to \langle \pi, P | \bar{\psi} \left(-\frac{z^-}{2} \right) \gamma^+ \psi \left(\frac{z^-}{2} \right) | \pi, P \rangle \\ \mathrm{DA} &\to \langle 0 | \bar{\psi} \left(-\frac{z^-}{2} \right) \gamma^+ \psi \left(\frac{z^-}{2} \right) | \pi, P \rangle \end{split}$$

- Why GPDs bridge the gap between two different distributions: PDF and Distribution Amplitudes for mesons?
- Because they are defined with the same operator !

$$\begin{split} \mathrm{PDF} \ &\to \langle \pi, P | \bar{\psi} \left(-\frac{z^-}{2} \right) \gamma^+ \psi \left(\frac{z^-}{2} \right) | \pi, P \rangle \\ \mathrm{DA} &\to \langle 0 | \bar{\psi} \left(-\frac{z^-}{2} \right) \gamma^+ \psi \left(\frac{z^-}{2} \right) | \pi, P \rangle \end{split}$$

 Same operator → same OPE → same renormalisation of local operators → same anomalous dimensions:

$$\gamma_n = 2C_F \left[-\frac{1}{2} + \frac{1}{(n+1)(n+2)} - 2\sum_{k=2}^{n+1} \frac{1}{k} \right]$$

But why do we have DGLAP and ERBL evolution equations then ?

- Why GPDs bridge the gap between two different distributions: PDF and Distribution Amplitudes for mesons?
- Because they are defined with the same operator!

$$\begin{split} \mathrm{PDF} \ &\to \langle \pi, P | \bar{\psi} \left(-\frac{z^-}{2} \right) \gamma^+ \psi \left(\frac{z^-}{2} \right) | \pi, P \rangle \\ \mathrm{DA} &\to \langle 0 | \bar{\psi} \left(-\frac{z^-}{2} \right) \gamma^+ \psi \left(\frac{z^-}{2} \right) | \pi, P \rangle \end{split}$$

• Same operator \rightarrow same OPE \rightarrow same renormalisation of local operators \rightarrow same anomalous dimensions:

$$\gamma_n = 2C_F \left[-\frac{1}{2} + \frac{1}{(n+1)(n+2)} - 2\sum_{k=2}^{n+1} \frac{1}{k} \right]$$

But why do we have DGLAP and ERBL evolution equations then ?

- Yet, evolution equations are written for matrix elements, not only operators.
 - therefore evolution equations are different ! \circ

Conformal Moments

• The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer polynomials (non-singlet):

$$\int \mathrm{d} u V_{NS}(v,u) C_n^{\frac{3}{2}}(2u-1) \propto \gamma_n C_n(2v-1)$$

Conformal Moments

 The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer polynomials (non-singlet):

$$\int \mathrm{d} u V_{NS}(v,u) C_n^{\frac{3}{2}}(2u-1) \propto \gamma_n C_n(2v-1)$$

- ullet Remember, for GPD $u=rac{1+rac{\chi}{\xi}}{2}
 ightarrow 2u-1=rac{\chi}{\xi}$
 - \rightarrow we expect the $C_n^{3/2}(x/\xi)$ to play an important role w.r.t. the evolution kernel

Conformal Moments

• The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer polynomials (non-singlet):

$$\int \mathrm{d} u V_{NS}(v,u) C_n^{\frac{3}{2}}(2u-1) \propto \gamma_n C_n(2v-1)$$

- Remember, for GPD $u = \frac{1+\frac{x}{\xi}}{2} \rightarrow 2u 1 = \frac{x}{\xi}$
 - \rightarrow we expect the $C_n^{3/2}(x/\xi)$ to play an important role w.r.t. the evolution kernel
- However we need them to be finite in the forward limit \rightarrow rescaling $C_n^{3/2}(x/\xi) \rightarrow \xi^n C_n^{3/2}(x/\xi)$ so that $\lim_{\xi \to 0} \xi^n C_n^{3/2}(x/\xi) = x^n$

Conformal Moments

 The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer polynomials (non-singlet):

$$\int \mathrm{d} u V_{NS}(v,u) C_n^{\frac{3}{2}}(2u-1) \propto \gamma_n C_n(2v-1)$$

- Remember, for GPD $u = \frac{1+\frac{x}{\xi}}{2} \rightarrow 2u 1 = \frac{x}{\xi}$
 - \rightarrow we expect the $C_n^{3/2}(x/\xi)$ to play an important role w.r.t. the evolution kernel
- However we need them to be finite in the forward limit \rightarrow rescaling $C_n^{3/2}(x/\xi) \rightarrow \xi^n C_n^{3/2}(x/\xi)$ so that $\lim_{\xi \to 0} \xi^n C_n^{3/2}(x/\xi) = x^n$
- In addition, in the forward limit, the Mellin moment do not mix:

$$\frac{\mathrm{d}}{\mathrm{d}\ln(\mu)}\left[\int \mathrm{d}x \, x^n q(x,\mu)\right] = \frac{\alpha_s(\mu)}{2\pi} \gamma_n \int \mathrm{d}x \, x^n q(x,\mu)$$

Conformal Moments

 The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer polynomials (non-singlet):

$$\int \mathrm{d} u V_{NS}(v,u) C_n^{\frac{3}{2}}(2u-1) \propto \gamma_n C_n(2v-1)$$

- Remember, for GPD $u = \frac{1+\frac{x}{\xi}}{2} \rightarrow 2u 1 = \frac{x}{\xi}$
 - \rightarrow we expect the $C_n^{3/2}(x/\xi)$ to play an important role w.r.t. the evolution kernel
- However we need them to be finite in the forward limit \rightarrow rescaling $C_n^{3/2}(x/\xi) \rightarrow \xi^n C_n^{3/2}(x/\xi)$ so that $\lim_{\xi \to 0} \xi^n C_n^{3/2}(x/\xi) = x^n$
- In addition, in the forward limit, the Mellin moment do not mix:

$$\frac{\mathrm{d}}{\mathrm{d}\ln(\mu)}\left[\int\mathrm{d} x\,x^nq(x,\mu)\right]=\frac{\alpha_s(\mu)}{2\pi}\gamma_n\int\mathrm{d} x\,x^nq(x,\mu)$$

GPD Conformal moments $\int \xi^n C_n^{3/2}(\frac{x}{\xi})H(x,\xi)$ do not mix under LO evolution !

Other properties

- Charge conservation: $\gamma_0 = 0$
- ullet Energy-Momentum Conservation: $\int \mathrm{d}x x (q(x)+g(x))$ is independent of μ
- ullet Continuity at the crossover lines $|x|=|\xi|$

Solving evolution equations

Evolution in conformal space

ullet Conformal moments do not mix at LO o easy evolution

$$\xi^n \int_{-1}^1 \mathrm{d}x C_n^{3/2} \left(\frac{x}{\xi}\right) H(x,\xi,\mu) = \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\frac{\gamma_n}{\beta_0}} \xi^n \int_{-1}^1 \mathrm{d}x C_n^{3/2} \left(\frac{x}{\xi}\right) H(x,\xi,\mu_0)$$

Solving evolution equations

Evolution in conformal space

ullet Conformal moments do not mix at LO o easy evolution

$$\xi^{n} \int_{-1}^{1} dx C_{n}^{3/2} \left(\frac{x}{\xi}\right) H(x, \xi, \mu) = \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}\right)^{\frac{\gamma_{n}}{\beta_{0}}} \xi^{n} \int_{-1}^{1} dx C_{n}^{3/2} \left(\frac{x}{\xi}\right) H(x, \xi, \mu_{0})$$

- Inverse moment problem must be solved
 - ightarrow requires analytic continuation in the complex plane
 - \rightarrow solution is not unique

D. Mueller and A. Schafer, Nucl.Phys.B739 1-59, 2006

Solving evolution equations

Evolution in conformal space

ullet Conformal moments do not mix at LO o easy evolution

$$\xi^{n} \int_{-1}^{1} dx C_{n}^{3/2} \left(\frac{x}{\xi}\right) H(x, \xi, \mu) = \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}\right)^{\frac{\gamma_{n}}{\beta_{0}}} \xi^{n} \int_{-1}^{1} dx C_{n}^{3/2} \left(\frac{x}{\xi}\right) H(x, \xi, \mu_{0})$$

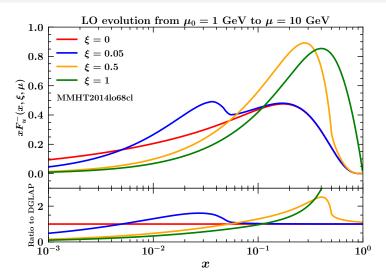
- Inverse moment problem must be solved
 - ightarrow requires analytic continuation in the complex plane
 - \rightarrow solution is not unique

D. Mueller and A. Schafer, Nucl.Phys.B739 1-59, 2006

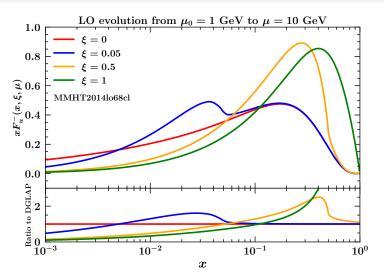
Evolution in x-space

- Numerical solution of integro-differential equations
- Dedicated routines do it
- Splitting functions not easily available above one loop

Examples



Examples



Evolution equations make the derivative of GPD discontinuous at $x = \xi$.

From evolution equations to evolution operator

Example on the $\alpha_{\mathcal{S}}$

I believe everybody knows the RGE:

$$\frac{\mathrm{d}\alpha_s}{\mathrm{d}\ln\mu^2} = \beta(\alpha_s) = -b_0\alpha_s^2 - b_1\alpha_s^3 + O(\alpha_s^4)$$

Example on the α_S

I believe everybody knows the RGE:

$$\frac{\mathrm{d}\alpha_s}{\mathrm{d}\ln\mu^2} = \beta(\alpha_s) = -b_0\alpha_s^2 - b_1\alpha_s^3 + O(\alpha_s^4)$$

The solution can be cast as a series:

$$\alpha_s(Q^2) = \sum_{j=0}^{\infty} \frac{1}{j!} \underbrace{\ln^j \left(\frac{Q^2}{\mu^2}\right)}_{=L^j} \frac{\mathrm{d}^j \alpha_s}{\mathrm{d} \ln^j \mu^2}$$

Example on the α_s

I believe everybody knows the RGE:

$$\frac{\mathrm{d}\alpha_s}{\mathrm{d}\ln\mu^2} = \beta(\alpha_s) = -b_0\alpha_s^2 - b_1\alpha_s^3 + O(\alpha_s^4)$$

The solution can be cast as a series:

$$\alpha_s(Q^2) = \sum_{j=0}^{\infty} \frac{1}{j!} \underbrace{\ln^j \left(\frac{Q^2}{\mu^2}\right)}_{=L^j} \frac{\mathrm{d}^j \alpha_s}{\mathrm{d} \ln^j \mu^2}$$

and using the RGE reorganised as a power series of α_s :

$$\alpha_{s}(Q^{2}) = \alpha_{s}(\mu^{2}) + \sum_{j=1}^{\infty} \alpha_{s}^{j}(\mu^{2}) \left[L^{j-1}(-b_{0})^{j-1} + \sum_{k=2}^{j-k} L^{j-k} \kappa_{j,k} \right]$$

Example on the α_s

I believe everybody knows the RGE:

$$\frac{\mathrm{d}\alpha_s}{\mathrm{d}\ln\mu^2} = \beta(\alpha_s) = -b_0\alpha_s^2 - b_1\alpha_s^3 + O(\alpha_s^4)$$

The solution can be cast as a series:

$$\alpha_s(Q^2) = \sum_{j=0}^{\infty} \frac{1}{j!} \underbrace{\ln^j \left(\frac{Q^2}{\mu^2}\right)}_{=L^j} \frac{\mathrm{d}^j \alpha_s}{\mathrm{d} \ln^j \mu^2}$$

and using the RGE reorganised as a power series of α_s :

$$\alpha_s(Q^2) = \alpha_s(\mu^2) + \sum_{j=1}^{\infty} \alpha_s^j(\mu^2) \left[L^{j-1}(-b_0)^{j-1} + \sum_{k=2}^{j-k} L^{j-k} \kappa_{j,k} \right]$$

Keeping only leading In, one can resum the series:

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)Lb_0}$$

Example on the $\alpha_{\mathcal{S}}$

I believe everybody knows the RGE:

$$\frac{\mathrm{d}\alpha_s}{\mathrm{d}\ln\mu^2} = \beta(\alpha_s) = -b_0\alpha_s^2 - b_1\alpha_s^3 + O(\alpha_s^4)$$

• The solution can be cast as a series:

$$\alpha_s(Q^2) = \sum_{j=0}^{\infty} \frac{1}{j!} \underbrace{\ln^j \left(\frac{Q^2}{\mu^2}\right)}_{=L^j} \frac{\mathrm{d}^j \alpha_s}{\mathrm{d} \ln^j \mu^2}$$

• and using the RGE reorganised as a power series of α_s :

$$\alpha_{s}(Q^{2}) = \alpha_{s}(\mu^{2}) + \sum_{j=1}^{\infty} \alpha_{s}^{j}(\mu^{2}) \left[L^{j-1}(-b_{0})^{j-1} + \sum_{k=2}^{j-k} L^{j-k} \kappa_{j,k} \right]$$

• Keeping only leading In, one can resum the series:

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)Lb_0}$$

Resumming leading In is equivalent to solving LO RGE

• We have derived the evolution equation for GPDs:

$$\frac{\mathrm{d} H^{a}(\mu^{2})}{\mathrm{d} \ln \mu^{2}} = \sum_{b} \left[\alpha_{s}(\mu^{2}) \mathcal{P}^{ab,(0)} + \alpha_{s}^{2}(\mu^{2}) \mathcal{P}^{ab,(1)} + \dots \right] \otimes H^{b}$$

We have derived the evolution equation for GPDs:

$$\frac{\mathrm{d}H^{a}(\mu^{2})}{\mathrm{d}\ln\mu^{2}} = \sum_{b} \left[\alpha_{s}(\mu^{2}) \mathcal{P}^{ab,(0)} + \alpha_{s}^{2}(\mu^{2}) \mathcal{P}^{ab,(1)} + \dots \right] \otimes H^{b}$$

• The solution can be cast as a series:

$$H^{a}(Q^{2}) = \sum_{j=0}^{\infty} \frac{L^{j}}{j!} \frac{\mathrm{d}^{j} H^{a}(\mu^{2})}{\mathrm{d} \ln^{j} \mu^{2}}$$

• We have derived the evolution equation for GPDs:

$$\frac{\mathrm{d}H^{a}(\mu^{2})}{\mathrm{d}\ln\mu^{2}} = \sum_{b} \left[\alpha_{s}(\mu^{2}) \mathcal{P}^{ab,(0)} + \alpha_{s}^{2}(\mu^{2}) \mathcal{P}^{ab,(1)} + \dots \right] \otimes H^{b}$$

• The solution can be cast as a series:

$$H^{a}(Q^{2}) = \sum_{j=0}^{\infty} \frac{L^{j}}{j!} \frac{\mathrm{d}^{j} H^{a}(\mu^{2})}{\mathrm{d} \ln^{j} \mu^{2}}$$

and we can use evolution equations to introduce the evolution operator:

$$H(Q^2) = \sum_b \Gamma^{ab}(Q^2, \mu^2) \otimes H^b(\mu^2)$$

$$\Gamma(Q^2, \mu^2) = \delta_{ab} + \sum_{j} \alpha_s^j(\mu^2) \sum_{\ell}^{j-1} L^{j-\ell} \gamma_{j,\ell}^{ab}$$

• We have derived the evolution equation for GPDs:

$$\frac{\mathrm{d}H^{a}(\mu^{2})}{\mathrm{d}\ln\mu^{2}} = \sum_{b} \left[\alpha_{s}(\mu^{2}) \mathcal{P}^{ab,(0)} + \alpha_{s}^{2}(\mu^{2}) \mathcal{P}^{ab,(1)} + \dots \right] \otimes H^{b}$$

• The solution can be cast as a series:

$$H^{a}(Q^{2}) = \sum_{j=0}^{\infty} \frac{L^{j}}{j!} \frac{\mathrm{d}^{j} H^{a}(\mu^{2})}{\mathrm{d} \ln^{j} \mu^{2}}$$

and we can use evolution equations to introduce the evolution operator:

$$H(Q^2) = \sum_b \Gamma^{ab}(Q^2, \mu^2) \otimes H^b(\mu^2)$$

$$\Gamma(Q^2, \mu^2) = \delta_{ab} + \sum_j \alpha_s^j(\mu^2) \sum_{\ell}^{j-1} L^{j-\ell} \gamma_{j,l}^{ab}$$

• We can now (partially) resum the leading $\alpha_s^{n+1}L^n$ terms consistently for experimental processes (DVCS)

Intermezzo: Ill-posed inverse problem

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• (a, b) is our experimental vector (measured), (x, y) is our unknown

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- (a, b) is our experimental vector (measured), (x, y) is our unknown
- ullet Now let's assume that $\lambda_1 \sim 1$ and $\lambda_2 = \epsilon << 1$

$$\begin{pmatrix} a \pm \delta \\ 0 \pm \delta \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- (a, b) is our experimental vector (measured), (x, y) is our unknown
- ullet Now let's assume that $\lambda_1 \sim 1$ and $\lambda_2 = \epsilon << 1$
- ullet Finally, our experimental data are known with a finite precision δ and b is compatible with zero.

$$\begin{pmatrix} a \pm \delta \\ 0 \pm \delta \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- (a, b) is our experimental vector (measured), (x, y) is our unknown
- ullet Now let's assume that $\lambda_1 \sim 1$ and $\lambda_2 = \epsilon << 1$
- ullet Finally, our experimental data are known with a finite precision δ and b is compatible with zero.
- Let us put numbers everywhere : a=1.4, $\delta=0.1$, $\lambda_1=2$, $\epsilon=10^{-3}$

$$x = 0.7 \pm 0.05, \quad y = 0 \pm 100$$

$$\begin{pmatrix} \mathbf{a} \pm \delta \\ \mathbf{0} \pm \delta \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \epsilon \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

- (a, b) is our experimental vector (measured), (x, y) is our unknown
- ullet Now let's assume that $\lambda_1 \sim 1$ and $\lambda_2 = \epsilon << 1$
- ullet Finally, our experimental data are known with a finite precision δ and b is compatible with zero.
- Let us put numbers everywhere : a=1.4, $\delta=0.1$, $\lambda_1=2$, $\epsilon=10^{-3}$ $x=0.7\pm0.05$, $y=0\pm100$
- You should use theory constraints if you know some to get relevant values for y:

$$\sqrt{x^2 + y^2} \le \rho_{\max} \Rightarrow y = 0 \pm \sqrt{\rho_{\max}^2 - x^2}$$

$$\begin{pmatrix} \mathbf{a} \pm \delta \\ \mathbf{0} \pm \delta \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \epsilon \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

- (a, b) is our experimental vector (measured), (x, y) is our unknown
- ullet Now let's assume that $\lambda_1 \sim 1$ and $\lambda_2 = \epsilon << 1$
- ullet Finally, our experimental data are known with a finite precision δ and b is compatible with zero.
- Let us put numbers everywhere : a=1.4, $\delta=0.1$, $\lambda_1=2$, $\epsilon=10^{-3}$

$$x = 0.7 \pm 0.05, \quad y = 0 \pm 100$$

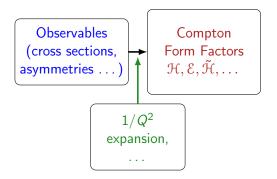
 You should use theory constraints if you know some to get relevant values for y:

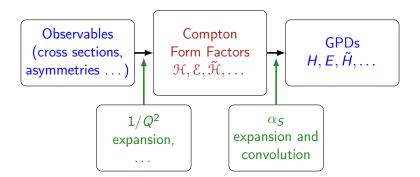
$$\sqrt{x^2 + y^2} \le \rho_{\text{max}} \Rightarrow y = 0 \pm \sqrt{\rho_{\text{max}}^2 - x^2}$$

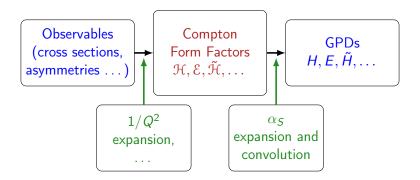
• even if $ho_{
m max} \simeq 10$, you gain an order of magnitude and theory is driving your knowledge of y.

Probing GPDs through exclusive processes

Observables (cross sections, asymmetries . . .)

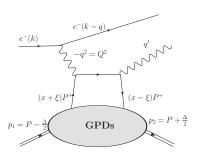






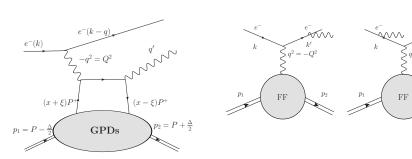
- CFFs play today a central role in our understanding of GPDs
- Extraction generally focused on CFFs

Deep Virtual Compton Scattering



- Best studied experimental process connected to GPDs
 - \rightarrow Data taken at Hermes, Compass, JLab 6, JLab 12

Deep Virtual Compton Scattering



- Best studied experimental process connected to GPDs
 - \rightarrow Data taken at Hermes, Compass, JLab 6, JLab 12
- Interferes with the Bethe-Heitler (BH) process
 - Blessing: Interference term boosted w.r.t. pure DVCS one
 - Curse: access to the angular modulation of the pure DVCS part difficult

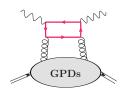
M. Defurne et al., Nature Commun. 8 (2017) 1, 1408

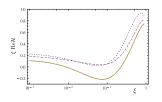
QCD corrections to DVCS

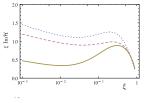
• At LO, the DVCS coefficient function is a QED one

QCD corrections to DVCS

- At LO, the DVCS coefficient function is a QED one
- At NLO, gluon GPDs play a significant role in DVCS



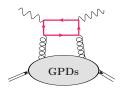


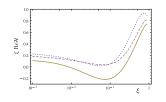


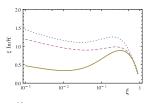
H. Moutarde et al., PRD 87 (2013) 5, 054029

QCD corrections to DVCS

- At LO, the DVCS coefficient function is a QED one
- At NLO, gluon GPDs play a significant role in DVCS





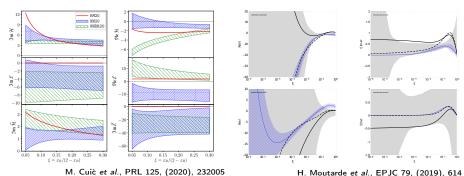


H. Moutarde et al., PRD 87 (2013) 5, 054029

Recent N2LO studies, impact needs to be assessed

V. Braun et al., JHEP 09 (2020) 117

Recent CFF extractions



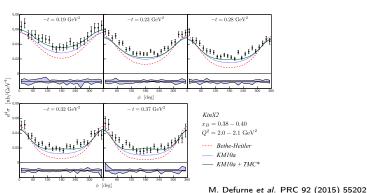
- Recent effort on bias reduction in CFF extraction (ANN)
 additional ongoing studies, J. Grigsby et al., PRD 104 (2021) 016001
- Studies of ANN architecture to fulfil GPDs properties (dispersion relation, polynomiality, . . .)
- Recent efforts on propagation of uncertainties (allowing impact studies for JLAB12, EIC and EicC)

see e.g. H. Dutrieux et al., EPJA 57 8 250 (2021)

Finite t corrections

Kinematical corrections in t/Q^2 and M^2/Q^2

V. Braun et al., PRL 109 (2012), 242001



- Sizeable even for $t/Q^2 \sim 0.1$
- Not currently included in global fits.

Dispersion relation and the D-term

• At all orders in α_S , dispersion relations relate the real and imaginary parts of the CFF.

I. Anikin and O. Teryaev, PRD 76 056007
 M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
 H. Dutrieux et al., EPJC 85 (2025) 1, 105
 V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

$$S(t, Q^2) = \int_{-1}^1 d\omega T(\omega) D(\omega) = \Re \mathcal{H}(\xi) - \frac{2}{\pi} \int_0^1 \frac{x^2 \Im \mathcal{H}(x)}{(\xi - x)(\xi + x)} \frac{dx}{\xi}$$

Dispersion relation and the D-term

• At all orders in α_S , dispersion relations relate the real and imaginary parts of the CFF.

I. Anikin and O. Teryaev, PRD 76 056007
 M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
 H. Dutrieux et al., EPJC 85 (2025) 1, 105
 V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

$$S(t, Q^2) = \int_{-1}^1 d\omega T(\omega) D(\omega) = \Re \mathcal{H}(\xi) - \frac{2}{\pi} \int_0^1 \frac{x^2 \Im \mathcal{H}(x)}{(\xi - x)(\xi + x)} \frac{dx}{\xi}$$

• $D(\alpha, t)$ is related to the EMT.

M.V. Polyakov PLB 555, 57-62 (2003)

Dispersion relation and the D-term

• At all orders in α_S , dispersion relations relate the real and imaginary parts of the CFF.

I. Anikin and O. Teryaev, PRD 76 056007 M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932 H. Dutrieux et al., EPJC 85 (2025) 1, 105 V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

$$S(t, Q^2) = \int_{-1}^{1} d\omega T(\omega) D(\omega) = \Re \mathcal{H}(\xi) - \frac{2}{\pi} \int_{0}^{1} \frac{x^2 \Im \mathcal{H}(x)}{(\xi - x)(\xi + x)} \frac{dx}{\xi}$$

• $D(\alpha, t)$ is related to the EMT.

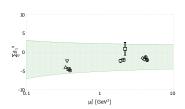


figure from H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

M.V. Polyakov PLB 555, 57-62 (2003)

• First attempt from JLab 6 GeV data

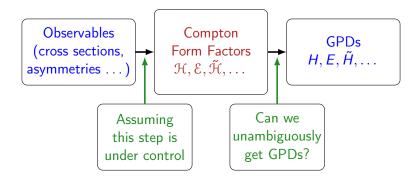
Burkert et al., Nature 557 (2018) 7705, 396-399

- Tensions with other studies
 - → uncontrolled model-dependence

K. Kumericki, Nature 570 (2019) 7759, E1-E2
 H. Moutarde et al., Eur.Phys.J.C 79 (2019) 7, 614
 H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

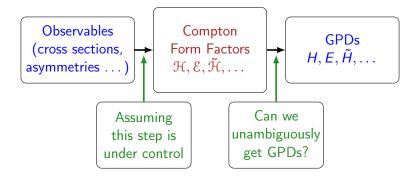
Scheme/scale dependence

The DVCS deconvolution problem I



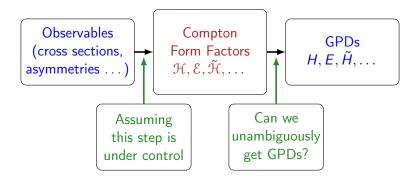
From CFF to GPDs

The DVCS deconvolution problem I



• It has been known for a long time that this is not the case at LO Due to dispersion relations, any GPD vanishing on $x=\pm \xi$ would not contribute to DVCS at LO (neglecting D-term contributions).

The DVCS deconvolution problem I



- It has been known for a long time that this is not the case at LO Due to dispersion relations, any GPD vanishing on $x=\pm \xi$ would not contribute to DVCS at LO (neglecting D-term contributions).
- Are QCD corrections improving the situation?

From CFF to GPDs