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Reminder of lecture 1 and 2

We have introduce GPDs as a way to encode the non-perturbative
information contained in DVCS (at leading power)
We have studied their properties and interpreted them as probability
densities on the lightcone
We have seen that they are connected to the EMT through their
moments
We have realised that the properties of QCD provide theoretical
constraints on GPDs

▶ Polynomiality
▶ Positivity

We had no time to show that positivity and polynomiality can be
fulfilled together, but this is indeed the case.
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Evolution properties of GPDs
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UV singularities of operators

Coming back to our matrix element for arbirtary z :

⟨π,P +
∆

2
|ψ̄

(
−
z

2

)
γ+W

(
−
z

2
;
z

2

)
ψ
( z

2

)
|π,P −

∆

2
⟩

Need to treat short-distance (=UV) singularities

Need to renormalise our non-local operator

When z2 → 0 working with renormalised quark fields ψR = (Z2)
−1 ψ

is not enough to treat the UV singularity

Two approaches
Renormalisation of local operators
Renormalisation using “in partons” matrix elements
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Operator Product Expansion

The idea is to “Taylor expand” an operator:

ψ̄
(
−
z

2

)
γ+ψ

( z

2

)
=
∞∑
N

cN(z)O
N(0)

Then the renormalisation of local operators can be performed
perturbatively
It provides an order by order correction in perturbative theory, and a
clear comprehension of the renormalisation procedure
Renormalisation constant are momentum independent, you handle
simple products not convolutions
But it requires to “resum” the renormalised local operators afterward:
we saw already when talking about polynomiality that these operators
are given by Mellin moment of GPDs → solve the inverse moment
problem
Caveat: operator mixing !
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Partons in partons GPDs

Instead of moments, one can consider partons-in-partons GPDs

(1 + ξ)P (1 − ξ)P

−z−
2

z−
2

partons-in-partons GPD

Possible to look because the singularity is a property of the operator,
not of the external states.

For that purpose, MS is well suited
GPDs (3D structure, pressure) become scheme dependent !
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First order computation

On top of scheme, one should also choose a gauge, we picked the
lightcone one, where A+ = 0.

Consequence: it complicates the gluon propagator, but reduce the
Wilson line to unity !
We are left in the quark sector with:

(1 + ξ)P (1 − ξ)P

−z−
2

z−
2

(1 + ξ)P (1 − ξ)P

−z−
2

z−
2

Why are these graphs diverging, while there is no closed loop ?
Because only k+ is constraint by momentum conservation, k− and k⊥
are integrating out
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Sketching the computation
Write down the amplitude in terms of Fourier transform
g2

16π2 Fq←q(x , ξ) =

√
1 − ξ2

2Nc

ˆ
dz−

2π
e i(1−x)z−p+

ˆ
d4−2ϵk

(2π)4−2ϵ e
−ik+z− iδabD

µν(k)

× g2µ2ϵTr
[
taγµS((1 + ξ)p+ − k)γ+S(k − (1 − ξ)p+γνtb/p

]

Compute traces
Integrate over k+ ensuring momentum conservation
Integrate over k− using Residue Theorem
You end up with terms behaving like

f (x , ξ)×
ˆ

d2−2ϵk⊥
(2π)2−2ϵ

1
k2
⊥

Final result

H i (x , ξ, t, µ) =

ˆ 1

−1

dy
|y |Zi ,j

(
x

y
,
ξ

x
, αs(µ), ϵ

)
H j
reg (y , ξ, t, ϵ)
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Renormalisation group

The previous equation is nice, but interesting on a limited range in µ2

On a wide range of µ we would expect deviations from αS behaviour
Take advantage of the Callan-Symanzik equations.

Renormalisation Group
Knowing the GPD at a scale µ we want to know how it behaves at
µ+ dµ
we describe perturbatively the impact of this dµ leap

H(x , ξ, t, µ+ dµ)− H(x , ξ, t, µ)

we obtain like this a first-order integro-differential equation
αS becomes “exponentiated”
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Evolution equations for GPDs

Pij

(
x

z
;
ξ

x
;αs

)
= lim

ϵ→0

∑

j=q,g

ˆ 1

−1

dy
|y |

dZij

(
x
y ;

ξ
x ;αs ; ϵ

)

d lnµ2 Z−1
ij

(
y

z
;
ξ

y
;αs ; ϵ

)

Non-Singlet Case

dHq
NS(x , ξ, t, µ)

d ln(µ)
=
αs(µ)

4π

ˆ 1

0

dy
y
P0
q←q

(
x

y
,
ξ

x

)
Hq

NS(y , ξ, t, µ)

Singlet Case

( dHq
S (x,ξ,t,µ)

d ln(µ)
dHg (x,ξ,t,µ)

d ln(µ)

)
=
αs(µ)

4π

ˆ 1

0

dy
y


P0

q←q

(
x
y ,

ξ
x

)
P0
q←g

(
x
y ,

ξ
x

)

P0
g←q

(
x
y ,

ξ
x

)
P0
g←g

(
x
y ,

ξ
x

)


(
Hq

S (y , ξ, t, µ)
Hg (y , ξ, t, µ)

)

The P distributions can in principle be computed in pQCD
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dHg (x,ξ,t,µ)

d ln(µ)

)
=
αs(µ)

4π

ˆ 1

0

dy
y


P0

q←q

(
x
y ,

ξ
x

)
P0
q←g

(
x
y ,

ξ
x

)

P0
g←q

(
x
y ,

ξ
x

)
P0
g←g

(
x
y ,

ξ
x

)


(
Hq

S (y , ξ, t, µ)
Hg (y , ξ, t, µ)

)

The P distributions can in principle be computed in pQCD
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DGLAP connection

Splitting function have been computed at:
▶ LO (αs)

D. Mueller et al., Fortsch.Phys. 42 101–141, 1994
X. Ji PRD55, 7114–7125, 1997

A. Radyushkin, PRD56, 5524–5557, 1997

▶ NLO (α2
S)

A. Belitsky et al., Nucl.Phys. B574, 347–406, 2000
V.M. Braun et al., JHEP, vol. 02, p. 191, 2019

▶ N2LO (α3
s ) (non singlet only)

V.M. Braun et al.,JHEP 06, 037, 2017.

In the limit ∆ → 0, the Hq(x , 0, 0, µ) = q(x , µ)
→ immediate consequence: one should recover the DGLAP evolution
equations

lim
ξ→0

P

(
x

y
,
ξ

x

)
= PDGLAP

(
x

y

)

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15th , 2025 11 / 30



DGLAP connection

Splitting function have been computed at:
▶ LO (αs)

D. Mueller et al., Fortsch.Phys. 42 101–141, 1994
X. Ji PRD55, 7114–7125, 1997

A. Radyushkin, PRD56, 5524–5557, 1997

▶ NLO (α2
S)

A. Belitsky et al., Nucl.Phys. B574, 347–406, 2000
V.M. Braun et al., JHEP, vol. 02, p. 191, 2019

▶ N2LO (α3
s ) (non singlet only)

V.M. Braun et al.,JHEP 06, 037, 2017.

In the limit ∆ → 0, the Hq(x , 0, 0, µ) = q(x , µ)
→ immediate consequence: one should recover the DGLAP evolution
equations

lim
ξ→0

P

(
x

y
,
ξ

x

)
= PDGLAP

(
x

y

)

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15th , 2025 11 / 30



DGLAP connection

Splitting function have been computed at:
▶ LO (αs)

D. Mueller et al., Fortsch.Phys. 42 101–141, 1994
X. Ji PRD55, 7114–7125, 1997

A. Radyushkin, PRD56, 5524–5557, 1997

▶ NLO (α2
S)

A. Belitsky et al., Nucl.Phys. B574, 347–406, 2000
V.M. Braun et al., JHEP, vol. 02, p. 191, 2019

▶ N2LO (α3
s ) (non singlet only)

V.M. Braun et al.,JHEP 06, 037, 2017.

In the limit ∆ → 0, the Hq(x , 0, 0, µ) = q(x , µ)
→ immediate consequence: one should recover the DGLAP evolution
equations

lim
ξ→0

P

(
x

y
,
ξ

x

)
= PDGLAP

(
x

y

)

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15th , 2025 11 / 30



ERBL connection

2ξP
1+x

ξ

2 2ξP
1−x

ξ

2

= uP̃ = (1 − u)P̃

For |x | ≤ |ξ|, a pair of quark-antiquark
propagates along the lighcone in the
t-channel sharing a fraction u of qq̄
system momentum along the lightcone
Situation very similar to distribution
amplitudes for mesons

For |ξ| = 1, this interpretation holds
for the entire x-range
We recover there, the so-called ERBL
evolution equations

lim
ξ→1

P

(
x

y
,
ξ

x

)
= PERBL (x , y)
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Moments analysis I

Why GPDs bridge the gap between two different distributions: PDF
and Distribution Amplitudes for mesons?

Because they are defined with the same operator !

PDF → ⟨π,P|ψ̄
(
−
z−

2

)
γ+ψ

(
z−

2

)
|π,P⟩

DA → ⟨0|ψ̄
(
−
z−

2

)
γ+ψ

(
z−

2

)
|π,P⟩

Same operator → same OPE → same renormalisation of local
operators → same anomalous dimensions:

γn = 2CF

[
−

1
2
+

1
(n + 1)(n + 2)

− 2
n+1∑
k=2

1
k

]

But why do we have DGLAP and ERBL evolution equations then ?

Yet, evolution equations are written for matrix elements, not only
operators.
→ therefore evolution equations are different !
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Moments analysis II
Conformal Moments

The ERBL LO kernel is diagonalised by the 3/2-Gegenbauer
polynomials (non-singlet):

ˆ
duVNS (v , u)C

3
2
n (2u − 1) ∝ γnCn(2v − 1)

Remember, for GPD u =
1+ x

ξ

2 → 2u − 1 = x
ξ

→ we expect the C
3/2
n (x/ξ) to play an important role w.r.t. the

evolution kernel
However we need them to be finite in the forward limit→ rescaling
C

3/2
n (x/ξ) → ξnC

3/2
n (x/ξ) so that limξ→0 ξ

nC
3/2
n (x/ξ) = xn

In addition, in the forward limit, the Mellin moment do not mix:
d

d ln(µ)

[ˆ
dx xnq(x , µ)

]
=
αs(µ)

2π
γn

ˆ
dx xnq(x , µ)

GPD Conformal moments
´
ξnC

3/2
n ( xξ )H(x , ξ)

do not mix under LO evolution !
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Other properties

Charge conservation: γ0 = 0
Energy-Momentum Conservation:

´
dxx(q(x) + g(x)) is independent

of µ
Continuity at the crossover lines |x | = |ξ|
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Solving evolution equations

Evolution in conformal space
Conformal moments do not mix at LO → easy evolution

ξn
ˆ 1

−1
dxC3/2

n

(
x

ξ

)
H(x , ξ, µ) =

(
αs(µ)

αs(µ0)

) γn
β0
ξn

ˆ 1

−1
dxC3/2

n

(
x

ξ

)
H(x , ξ, µ0)

Inverse moment problem must be solved
→ requires analytic continuation in the complex plane
→ solution is not unique

D. Mueller and A. Schafer, Nucl.Phys.B739 1-59, 2006

Evolution in x-space
Numerical solution of integro-differential equations
Dedicated routines do it
Splitting functions not easily available above one loop
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Examples

0.0

0.2

0.4

0.6

0.8

1.0
x
F
− u

(x
,
ξ
,
µ

)

MMHT2014lo68cl

LO evolution from µ0 = 1 GeV to µ = 10 GeV

ξ = 0

ξ = 0.05

ξ = 0.5

ξ = 1

10−3 10−2 10−1 100

x

0

2

R
a
ti

o
to

D
G

L
A

P

Evolution equations make the derivative of GPD discontinuous at x = ξ.
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From evolution equations to evolution operator
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Leading Ln resummation
Example on the αS

I believe everybody knows the RGE:
dαs

d lnµ2 = β(αs) = −b0α
2
s − b1α

3
s + O(α4

s )

The solution can be cast as a series:

αs(Q
2) =

∞∑
j=0

1
j!

lnj
(
Q2

µ2

)
︸ ︷︷ ︸

=Lj

djαs

d lnj µ2

and using the RGE reorganised as a power series of αs :

αs(Q
2) = αs(µ

2) +
∞∑
j=1

αj
s(µ

2)
[
Lj−1(−b0)

j−1+
]

Keeping only leading ln, one can resum the series:

αs(Q
2) =

αs(µ2)

1 + αs(µ2)Lb0

Resumming leading ln is equivalent to solving LO RGE
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GPD evolution operator

We have derived the evolution equation for GPDs:
dHa(µ2)

d lnµ2 =
∑
b

[
αs(µ

2)Pab,(0) + α2
s (µ

2)Pab,(1) + . . .
]
⊗ Hb

The solution can be cast as a series:

Ha(Q2) =
∞∑
j=0

Lj

j!

djHa(µ2)

d lnj µ2

and we can use evolution equations to introduce the evolution operator:

H(Q2) =
∑
b

Γab(Q2, µ2)⊗ Hb(µ2)

Γ(Q2, µ2) = δab +
∑
j

αj
s(µ

2)

j−1∑
ℓ

Lj−ℓγabj,l

We can now (partially) resum the leading αn+1
s Ln terms consistently for experimental

processes (DVCS)
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αj
s(µ

2)

j−1∑
ℓ

Lj−ℓγabj,l

We can now (partially) resum the leading αn+1
s Ln terms consistently for experimental

processes (DVCS)

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15th , 2025 20 / 30



GPD evolution operator

We have derived the evolution equation for GPDs:
dHa(µ2)

d lnµ2 =
∑
b

[
αs(µ

2)Pab,(0) + α2
s (µ

2)Pab,(1) + . . .
]
⊗ Hb

The solution can be cast as a series:

Ha(Q2) =
∞∑
j=0

Lj

j!

djHa(µ2)

d lnj µ2

and we can use evolution equations to introduce the evolution operator:

H(Q2) =
∑
b

Γab(Q2, µ2)⊗ Hb(µ2)

Γ(Q2, µ2) = δab +
∑
j

αj
s(µ

2)

j−1∑
ℓ

Lj−ℓγabj,l

We can now (partially) resum the leading αn+1
s Ln terms consistently for experimental

processes (DVCS)

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15th , 2025 20 / 30



GPD evolution operator

We have derived the evolution equation for GPDs:
dHa(µ2)

d lnµ2 =
∑
b

[
αs(µ

2)Pab,(0) + α2
s (µ

2)Pab,(1) + . . .
]
⊗ Hb

The solution can be cast as a series:

Ha(Q2) =
∞∑
j=0

Lj

j!

djHa(µ2)

d lnj µ2

and we can use evolution equations to introduce the evolution operator:

H(Q2) =
∑
b

Γab(Q2, µ2)⊗ Hb(µ2)

Γ(Q2, µ2) = δab +
∑
j

αj
s(µ

2)

j−1∑
ℓ

Lj−ℓγabj,l

We can now (partially) resum the leading αn+1
s Ln terms consistently for experimental

processes (DVCS)

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 15th , 2025 20 / 30



Intermezzo : Ill-posed inverse problem
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A tale of two eigenvalues

(
a
b

)
=

(
λ1 0
0 λ2

)(
x
y

)

(a, b) is our experimental vector (measured), (x , y) is our unknown

Now let’s assume that λ1 ∼ 1 and λ2 = ϵ << 1
Finally, our experimental data are known with a finite precision δ and
b is compatible with zero.
Let us put numbers everywhere : a = 1.4, δ = 0.1, λ1 = 2, ϵ = 10−3

x = 0.7 ± 0.05, y = 0 ± 100

You should use theory constraints if you know some to get relevant
values for y :

√
x2 + y2 ≤ ρmax ⇒ y = 0 ±

√
ρ2
max − x2

even if ρmax ≃ 10, you gain an order of magnitude and theory is
driving your knowledge of y .
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Probing GPDs through exclusive processes
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Experimental connection to GPDs

Observables
(cross sections,

asymmetries . . . )

Compton
Form Factors
H,E, H̃, . . .

GPDs
H,E , H̃, . . .

1/Q2

expansion,
. . .

αS

expansion and
convolution

CFFs play today a central role in our understanding of GPDs
Extraction generally focused on CFFs
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Deep Virtual Compton Scattering

−q2 = Q2

q′e−(k)

p1 = P − ∆
2

p2 = P + ∆
2GPDs

e−(k − q)

(x + ξ)P+ (x − ξ)P+

q2 = −Q2

e− e−

p1 p2

k k′

FF

q2 = −Q2

e− e−

p1 p2

k k′

FF

Best studied experimental process connected to GPDs
→ Data taken at Hermes, Compass, JLab 6, JLab 12

Interferes with the Bethe-Heitler (BH) process
▶ Blessing: Interference term boosted w.r.t. pure DVCS one
▶ Curse: access to the angular modulation of the pure DVCS part difficult

M. Defurne et al., Nature Commun. 8 (2017) 1, 1408
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QCD corrections to DVCS

At LO, the DVCS coefficient function is a QED one

At NLO, gluon GPDs play a significant role in DVCS

GPDs

H. Moutarde et al., PRD 87 (2013) 5, 054029

Recent N2LO studies, impact needs to be assessed
V. Braun et al., JHEP 09 (2020) 117
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Recent CFF extractions
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M. Cuic̀ et al., PRL 125, (2020), 232005

PARTONS Fits NN 2019

10-6 10-5 10-4 10-3 10-2 10-1 100

ξ

-40

-30

-20

-10

0

10

20

R
eℋ

PARTONS	Fits	NN	2019

10-6 10-5 10-4 10-3 10-2 10-1 100
ξ

-1

-0.5

0

0.5

1

1.5

2

ξ	I
m
ℋ

PARTONS Fits NN 2019

10-6 10-5 10-4 10-3 10-2 10-1 100

ξ

-20

-15

-10

-5

0

5

10

R
eℰ

PARTONS	Fits	NN	2019

10-6 10-5 10-4 10-3 10-2 10-1 100
ξ

-1.5

-1

-0.5

0

0.5

1

ξ	I
m
ℰ

H. Moutarde et al., EPJC 79, (2019), 614

Recent effort on bias reduction in CFF extraction (ANN)
additional ongoing studies, J. Grigsby et al., PRD 104 (2021) 016001

Studies of ANN architecture to fulfil GPDs properties (dispersion
relation,polynomiality,. . . )
Recent efforts on propagation of uncertainties (allowing impact studies
for JLAB12, EIC and EicC)

see e.g. H. Dutrieux et al., EPJA 57 8 250 (2021)
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Finite t corrections

Kinematical corrections in t/Q2 and M2/Q2
V. Braun et al., PRL 109 (2012), 242001

M. Defurne et al. PRC 92 (2015) 55202

Sizeable even for t/Q2 ∼ 0.1
Not currently included in global fits.
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Dispersion relation and the D-term

At all orders in αS , dispersion relations relate the real and imaginary
parts of the CFF. I. Anikin and O. Teryaev, PRD 76 056007

M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
H. Dutrieux et al., EPJC 85 (2025) 1, 105

V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

S(t,Q2) =

ˆ 1

−1
dωT (ω)D(ω) = ℜH(ξ)− 2

π

 1

0

x2ℑH(x)

(ξ − x)(ξ + x)

dx
ξ

D(α, t) is related to the EMT.
M.V. Polyakov PLB 555, 57-62 (2003)
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µF [GeV2]2

∑
d 1
q

q

figure from H. Dutrieux et al.,
Eur.Phys.J.C 81 (2021) 4

First attempt from JLab 6 GeV data
Burkert et al., Nature 557 (2018) 7705, 396-399

Tensions with other studies
→ uncontrolled model-dependence

K. Kumericki, Nature 570 (2019) 7759, E1-E2
H. Moutarde et al., Eur.Phys.J.C 79 (2019) 7, 614

H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

Scheme/scale dependence
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The DVCS deconvolution problem I
From CFF to GPDs

Observables
(cross sections,

asymmetries . . . )

Compton
Form Factors
H,E, H̃, . . .

GPDs
H,E , H̃, . . .

Assuming
this step is

under control

Can we
unambiguously

get GPDs?

It has been known for a long time that this is not the case at LO
Due to dispersion relations, any GPD vanishing on x = ±ξ would not
contribute to DVCS at LO (neglecting D-term contributions).

Are QCD corrections improving the situation?
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