Theory and phenomenology of Generalised Partons Distributions

Cédric Mezrag

CEA Saclay, Irfu DPhN

October 13th, 2025

2025 International Workshop and School on Hadron Structure and Strong Interactions

Bibliography

No modern, complete review or lecture note on GPDs. However one can highlight:

- M. Diehl, Phys.Rept., 2003, 388, 41-277
- A. Belitsky and A. Radyushkin, Phys.Rept., 2005, 418, 1-387
 which remains today the best review papers regarding GPDs.

A more pedestrian (but also far less complete) introduction can be found in

C. Mezrag, Few Body Syst., 2022, 63, 62

I try to stick to one big topic per lecture:

• Lecture 1: 2+1D Imaging of hadrons

- Lecture 1: 2+1D Imaging of hadrons
- Lecture 2:Impact of QCD basic properties on Generalised Parton Distributions

- Lecture 1: 2+1D Imaging of hadrons
- Lecture 2:Impact of QCD basic properties on Generalised Parton Distributions
- Lecture 3: Experimental access: what can we really measure ?

- Lecture 1: 2+1D Imaging of hadrons
- Lecture 2:Impact of QCD basic properties on Generalised Parton Distributions
- Lecture 3: Experimental access: what can we really measure?
- Lecture 4: Modelling of GPDs.

I try to stick to one big topic per lecture:

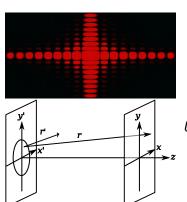
- Lecture 1: 2+1D Imaging of hadrons
- Lecture 2:Impact of QCD basic properties on Generalised Parton Distributions
- Lecture 3: Experimental access: what can we really measure?
- Lecture 4: Modelling of GPDs.

Of course, this may evolve by Friday!

Motivation: Probing the internal structure of matter

Scattering experiment I

Fraunhofer diffraction



- Far field diffraction z >> x', y'
- Monochromatic wavelenght $\lambda pprox 1 \mu m$

$$U(x,y,z) \approx \frac{e^{ikz} e^{ik\frac{x^2 + y^2}{z}}}{i\lambda z}$$

$$\underbrace{\iint_{\text{Fourier Transform of the aperture}}^{\text{fix}} dx' dy' U(x',y',0) e^{-ik\left(\frac{x}{z}x' + \frac{y}{z}y'\right)}}_{\text{Fourier Transform of the aperture}}$$

source: Wikimedia Commons

Scattering experiment II

X ray's scattering

Silicium crystal diffractive pattern source : UK's national synchrotron

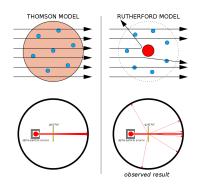
- X-ray wavelength $\rightarrow \lambda \simeq$ typical size $\sim 1 \mathrm{nm}$
- Bragg's Law
- Diffraction pattern
 → Fourier transform of
 electronic density
- Reminder, for a grating one gets

$$I(\theta) \propto \frac{\sin^2(k/2NS\sin\theta)}{\sin^2(k/2S\sin\theta)}$$

 Provide information on the cristal structure

Scattering experiments III

Rutherford experiment



source: Wikimedia Commons

- α particles scattering on a gold foil
- Some of which are scattered at large angles
- Invalidate the Thomson Model (Plum Pudding)
- Allows to develop the Rutherford planetary model

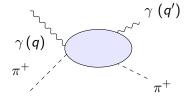
A pattern a study matter

- Scattering without breaking
- Fourier transform relation between matter structure and diffraction figure
- Repeat itself for different orders of magnitude
- Can we extend that to hadron structure?

A pattern a study matter

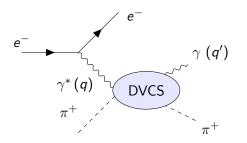
- Scattering without breaking
- Fourier transform relation between matter structure and diffraction figure
- Repeat itself for different orders of magnitude
- Can we extend that to hadron structure?
- Some order of magnitudes:
 - typical nucleon radius 1 fm
 - we thus want a photon wavelength smaller to resolve details within the nucleon
 - ▶ Photon minimal energy : $E = hc/\lambda \approx 1.24 {\rm GeV}$ Highly energetic gamma ray
 - ▶ NB : shorter laser wavelength is 0.15 nm.

Definition and kinematics



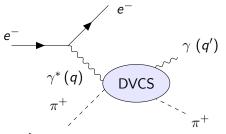
• No beam of $1-10{
m GeV}$ photon

Definition and kinematics



- No beam of $1-10{
 m GeV}$ photon
- We switch to electroproduction with $Q^2 = -q^2$ much larger than the other scales

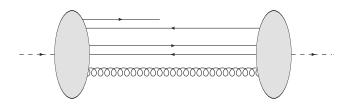
Definition and kinematics



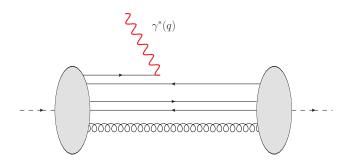
- No beam of $1-10{
 m GeV}$ photon
- We switch to electroproduction with $Q^2=-q^2$ much larger than the other scales

Kinematics:

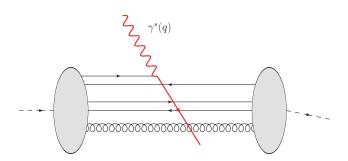
$$\pi_{in}^{+}\left(p = P - \frac{\Delta}{2}\right), \quad \pi_{out}^{+}\left(p' = P + \frac{\Delta}{2}\right)$$
 $\Delta^{2} = t, \quad P \cdot \Delta = 0, \quad P^{2} = M^{2} - t/4$
 $-q^{2} = Q^{2} >> M^{2}, t \quad q'^{2} = 0$



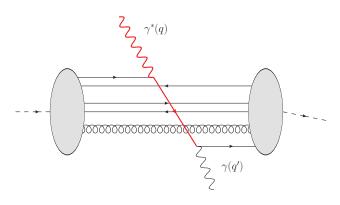
- we look at a pion (or a proton) flying close to the lightcone
- all constituents (quarks and gluons) are moving colinearly



- we look at a pion (or a proton) flying close to the lightcone
- all constituents (quarks and gluons) are moving colinearly
- ullet a deeply virtual photon deviate a quark, transfering its high virtuality Q^2

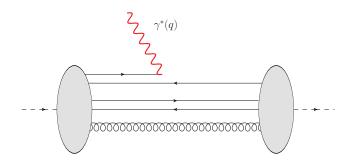


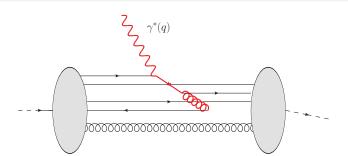
- we look at a pion (or a proton) flying close to the lightcone
- all constituents (quarks and gluons) are moving colinearly
- ullet a deeply virtual photon deviate a quark, transfering its high virtuality Q^2



- we look at a pion (or a proton) flying close to the lightcone
- all constituents (quarks and gluons) are moving colinearly
- ullet a deeply virtual photon deviate a quark, transfering its high virtuality Q^2
- the quark releases the energy before breaking the hadron

Deeply virtual Compton Scattering II Subleading contributions



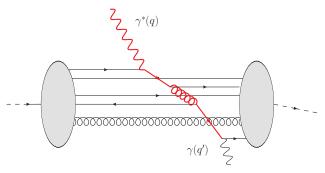


- this time, the quark releases energy through a gluon
- the gluon is absorbed by another quark transfering the energy

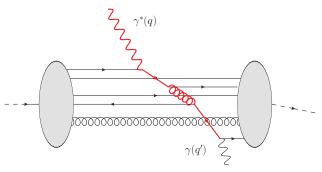
Subleading contributions

cea

Subleading contributions



- this time, the quark releases energy through a gluon
- the gluon is absorbed by another quark transfering the energy
- the quark releases the energy before breaking the hadron



- this time, the quark releases energy through a gluon
- the gluon is absorbed by another quark transfering the energy
- the quark releases the energy before breaking the hadron

Virtuality transfers between partons is power suppressed due to additional denominators (caveat: gauge link)

Subleading contributions

Virtuality transfer

The amplitude can be seen as

$$\mathcal{A} \propto \epsilon^{\sigma} \gamma_{\sigma} S(k_2' + q') \gamma_{\mu} D^{\mu\nu} (k_1 + q - k_1') \gamma_{\nu} S(k_1 + q) \gamma_{\lambda} \epsilon^{\lambda} 0$$

where, in the lightcone gauge,

$$\begin{split} D^{\mu\nu}(k_1+q-k_1') = & \frac{i\left(\eta^{\mu\nu} - \frac{n^{\mu}(k_1+q-k_1')^{\nu} + n^{\nu}(k_1+q-k_1')^{\mu}}{(k_1+q-k_1') \cdot n}\right)}{(k_1+q-k_1')^2 + i\varepsilon} \\ = & \frac{1}{Q^2} \frac{i\left(\eta^{\mu\nu} - \frac{n^{\mu}(k_1+q-k_1')^{\nu} + n^{\nu}(k_1+q-k_1')^{\mu}}{(k_1+q-k_1') \cdot n}\right)}{-1 + \frac{2q\cdot(k_1-k_1')}{Q^2} + \frac{(k_1-k_1')^2}{Q^2} - i\varepsilon} \end{split}$$

Virtuality transfer

The amplitude can be seen as

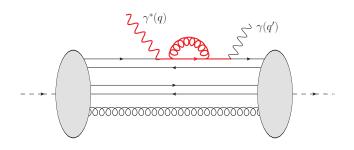
$$\mathcal{A} \propto \epsilon^{\sigma} \gamma_{\sigma} S(\mathbf{k}_2' + \mathbf{q}') \gamma_{\mu} \mathbf{D}^{\mu\nu} (\mathbf{k}_1 + \mathbf{q} - \mathbf{k}_1') \gamma_{\nu} S(\mathbf{k}_1 + \mathbf{q}) \gamma_{\lambda} \epsilon^{\lambda} \mathbf{0}$$

where, in the lightcone gauge,

$$\begin{split} D^{\mu\nu}(k_1+q-k_1') = & \frac{i\left(\eta^{\mu\nu} - \frac{n^{\mu}(k_1+q-k_1')^{\nu} + n^{\nu}(k_1+q-k_1')^{\mu}}{(k_1+q-k_1') \cdot n}\right)}{(k_1+q-k_1')^2 + i\varepsilon} \\ = & \frac{1}{Q^2} \frac{i\left(\eta^{\mu\nu} - \frac{n^{\mu}(k_1+q-k_1')^{\nu} + n^{\nu}(k_1+q-k_1')^{\mu}}{(k_1+q-k_1') \cdot n}\right)}{-1 + \frac{2q\cdot(k_1-k_1')}{Q^2} + \frac{(k_1-k_1')^2}{Q^2} - i\varepsilon} \end{split}$$

- The gluon propagator introduce a power suppression
- A complete proof requires the computation of the Dirac trace to ensure that no compensations appear at the numerator

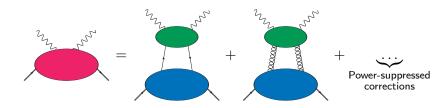
Logarithmic corrections



- Loops are not power-suppressed, but provides logarithmic corrections.
- Reason : additional propagators are *integrated* over internal momenta.
- These loops are critical: "scaling violation" in DIS.

Large virtuality and factorisation

• When the photon is strongly virtual : $Q^2 = -q^2 >> M^2$, t



- Decomposition of DVCS between perturbative (green) and non-perturbative (blue) subparts.
- ullet Perturbative part o description of the interaction between the probe and a parton inside hadron
- Non-perturbative part : description of a parton hadron amplitude called Generalised Partons Distributions (GPDs)
- GPDs is where the information on the hadrons structure lies.

All order proof of DVCS factorisation

The proof that DVCS does factorise can be found in the literature : Ji, X.-D. and Osborne, J., Phys.Rev., 1998, D58, 094018 Collins, J. C. and Freund, A., Phys.Rev., 1999, D59, 074009

The discussion presented before should be seen as a handwaving argument to build some intuition of what is happening.

Generalised Parton Distributions

Definitions and some properties

Lightcone coordinates

We introduce two lightcone vectors n and \tilde{n} such that :

$$n^2 = \tilde{n}^2 = 0$$
 $n \cdot \tilde{n} = 1$
 $n \cdot k = k^+$ $\tilde{n} \cdot k = k^-$
 $k = (k^+, k^-, k_\perp)$ $k^2 = 2k^+k^- - k_\perp^2$

Formal Definition for the pion

$$\begin{split} H_{\pi}^{q}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ H_{\pi}^{g}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^{+}_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \end{split}$$

D. Müller et al., Fortsch. Phy. 42 101 (1994)
 X. Ji, Phys. Rev. Lett. 78, 610 (1997)
 A. Radyushkin, Phys. Lett. B380, 417 (1996)

Formal Definition for the pion

$$\begin{split} H_{\pi}^{q}(\mathbf{x},\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ H_{\pi}^{g}(\mathbf{x},\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^{+}_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \end{split}$$

D. Müller et al., Fortsch. Phy. 42 101 (1994)
 X. Ji, Phys. Rev. Lett. 78, 610 (1997)
 A. Radyushkin, Phys. Lett. B380, 417 (1996)

 x: average momentum fraction carried by the active parton along the lightcone

Formal Definition for the pion

$$\begin{split} H_{\pi}^{q}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-}|_{z^{+}=0,z=0} \\ H_{\pi}^{g}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^{+}_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-}|_{z^{+}=0,z=0} \end{split}$$

- D. Müller et al., Fortsch. Phy. 42 101 (1994)
 X. Ji, Phys. Rev. Lett. 78, 610 (1997)
 A. Radyushkin, Phys. Lett. B380, 417 (1996)
- x: average momentum fraction carried by the active parton along the lightcone
- $\xi = -\Delta \cdot n/(2P \cdot n)$ is the skewness parameter $\xi \simeq \frac{x_B}{2-x_B}$
- $t = \Delta^2$: the Mandelstam variable

Formal Definition for the pion

$$\begin{split} H_{\pi}^{q}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ H_{\pi}^{g}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^{+}_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \end{split}$$

- D. Müller et al., Fortsch. Phy. 42 101 (1994)
 X. Ji, Phys. Rev. Lett. 78, 610 (1997)
 A. Radyushkin, Phys. Lett. B380, 417 (1996)
- x: average momentum fraction carried by the active parton along the lightcone
- $\xi = -\Delta \cdot n/(2P \cdot n)$ is the skewness parameter $\xi \simeq \frac{x_B}{2-x_B}$
- $t = \Delta^2$: the Mandelstam variable
- Caveat! In gauges other than the lightcone one, a Wilson line is necessary to make the GPDs gauge invariant

- In variable x, H(x) is defined for $x \in [-1; 1]$
 - Negative x is associated to antiquarks
 - ► The momentum fraction carried by a parton is smaller than 1 (momentum conservation on the lightcone)

- In variable x, H(x) is defined for $x \in [-1; 1]$
 - Negative x is associated to antiquarks
 - ► The momentum fraction carried by a parton is smaller than 1 (momentum conservation on the lightcone)
- $\xi \in [-1, 1]$, although DVCS only probes $\xi > 0$.

- In variable x, H(x) is defined for $x \in [-1; 1]$
 - Negative x is associated to antiquarks
 - ► The momentum fraction carried by a parton is smaller than 1 (momentum conservation on the lightcone)
- $\xi \in [-1, 1]$, although DVCS only probes $\xi > 0$.
- Time reversal invariance forces:

$$H(x,-\xi,t)=H(x,\xi,t)$$

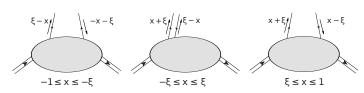
- In variable x, H(x) is defined for $x \in [-1; 1]$
 - Negative x is associated to antiquarks
 - ► The momentum fraction carried by a parton is smaller than 1 (momentum conservation on the lightcone)
- $\xi \in [-1, 1]$, although DVCS only probes $\xi > 0$.
- Time reversal invariance forces:

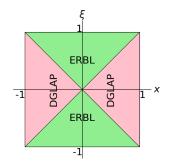
$$H(x, -\xi, t) = H(x, \xi, t)$$

• GPDs can be continued for $|\xi| > 1$ into another type of distributions called Generalised Distribution Amplitudes (GDA).

Kinematical Range

Different values of (x, ξ) yields different lightfront interpretations:





- Modifies our understanding of what is probed
- Different type of contributions
- It determines two big regions
- Relevant for evolution equations
- $|\xi| > 1$ region of Generalised Distribution Amplitudes (GDA)

Connection with the PDF

Coming back to the definition:

$$\begin{split} H_{\pi}^{q}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ H_{\pi}^{g}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^{+}_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \end{split}$$

Connection with the PDF

Coming back to the definition:

$$\begin{split} H_{\pi}^{q}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ H_{\pi}^{g}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^{+}_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \end{split}$$

When $\Delta \to 0$, then $(\xi = -\Delta \cdot n/(2P \cdot n); t = \Delta^2) \to (0,0)$

Connection with the PDF

Coming back to the definition:

$$\begin{split} H_{\pi}^{q}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-}|_{z^{+}=0,z=0} \\ H_{\pi}^{g}(x,\xi,t) &= \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^{+}_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-}|_{z^{+}=0,z=0} \end{split}$$

When
$$\Delta \to 0$$
, then $(\xi = -\Delta \cdot n/(2P \cdot n); t = \Delta^2) \to (0,0)$

$$H_{\pi}^{q}(x,0,0) = q(x)\Theta(x) - \bar{q}(-x)\Theta(-x)$$

 $H_{\pi}^{g}(x,0,0) = xg(x)\Theta(x) - xg(-x)\Theta(-x)$

In the limit $(\xi, t) \rightarrow (0, 0)$, one recovers the PDFs.

Connection with the form factor

Looking at the quark definition:

$$H_{\pi}^q(x,\xi,t) = \frac{1}{2} \int \frac{e^{ixP^+z^-}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^q(-\frac{z}{2}) \gamma^+ \psi^q(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle dz^- |_{z^+=0,z=0}$$

we would recover the Form Factor if we could make the operator "local".

Connection with the form factor

Looking at the quark definition:

$$H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle dz^{-} |_{z^{+}=0,z=0}$$

we would recover the Form Factor if we could make the operator "local". Simple way to do that \rightarrow integrate on Fourier conjugate variable:

$$\int dx H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \delta(P^{+}z^{-}) \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle dz^{-} |_{z^{+}=0,z=0}$$
$$= \frac{1}{2P^{+}} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(0) \gamma^{+} \psi^{q}(0) | P - \frac{\Delta}{2} \rangle$$

Connection with the form factor

Looking at the quark definition:

$$H_{\pi}^q(x,\xi,t) = \frac{1}{2} \int \frac{e^{ixP^+z^-}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^q(-\frac{z}{2}) \gamma^+ \psi^q(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle dz^- |_{z^+=0,z=0}$$

we would recover the Form Factor if we could make the operator "local". Simple way to do that \rightarrow integrate on Fourier conjugate variable:

$$\begin{split} \int \mathrm{d}x \, H_{\pi}^q(x,\xi,t) &= \frac{1}{2} \int \delta(P^+z^-) \langle P + \frac{\Delta}{2} | \bar{\psi}^q(-\frac{z}{2}) \gamma^+ \psi^q(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^- |_{z^+=0,z=0} \\ &= \frac{1}{2P^+} \langle P + \frac{\Delta}{2} | \bar{\psi}^q(0) \gamma^+ \psi^q(0) | P - \frac{\Delta}{2} \rangle \end{split}$$

We recover the pion electromagnetique Form Factor

Chiral-Even Nucleon GPDs

Unpolarised nucleon GPDs

$$\begin{split} &\frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ &= \frac{1}{2P^{+}} \bigg[H^{q}(x,\xi,t) \bar{u} \gamma^{+} u + E^{q}(x,\xi,t) \bar{u} \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u \bigg]. \end{split}$$

Polarised Nucleon GPDs

$$\begin{split} &\frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \gamma_{5} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t) \bar{u} \gamma^{+} \gamma_{5} u + \tilde{E}^{q}(x,\xi,t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2M} u \right]. \end{split}$$

Chiral-Even Nucleon GPDs

Unpolarised nucleon GPDs

$$\begin{split} &\frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \bar{u} \gamma^{+} u + E^{q}(x,\xi,t) \bar{u} \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u \right]. \end{split}$$

Polarised Nucleon GPDs

$$\begin{split} &\frac{1}{2} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \gamma_{5} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle dz^{-} |_{z^{+}=0,z=0} \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t) \bar{u} \gamma^{+} \gamma_{5} u + \tilde{E}^{q}(x,\xi,t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2M} u \right]. \end{split}$$

- The number of GPDs depends on the hadron spin
- ullet GPDs E and $ilde{E}$ do not reduce to PDFs when $\Delta o 0$

Gluon Nucleon GPDs

Unpolarised nucleon GPDs

$$\begin{split} &\frac{1}{P^{+}} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^{+}_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-}|_{z^{+}=0,z=0} \\ &= \frac{1}{2P^{+}} \bigg[H^{g}(x,\xi,t) \bar{u} \gamma^{+} u + E^{g}(x,\xi,t) \bar{u} \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u \bigg]. \end{split}$$

Polarised Nucleon GPDs

$$\begin{split} &\frac{-i}{P^{+}} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) \widetilde{G}_{\mu}^{+}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-}|_{z^{+}=0,z=0} \\ &= \frac{1}{2P^{+}} \left[\widetilde{H}^{g}(x,\xi,t) \bar{u} \gamma^{+} \gamma_{5} u + \widetilde{E}^{g}(x,\xi,t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2M} u \right]. \end{split}$$

Gluon Nucleon GPDs

Unpolarised nucleon GPDs

$$\begin{split} &\frac{1}{P^+} \int \frac{e^{ixP^+z^-}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) G^+_{\mu}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^- |_{z^+=0,z=0} \\ &= \frac{1}{2P^+} \bigg[H^g(x,\xi,t) \bar{u} \gamma^+ u + E^g(x,\xi,t) \bar{u} \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u \bigg]. \end{split}$$

Polarised Nucleon GPDs

$$\begin{split} &\frac{-i}{P^{+}} \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | G^{+\mu}(-\frac{z}{2}) \widetilde{G}_{\mu}^{+}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle dz^{-}|_{z^{+}=0,z=0} \\ &= \frac{1}{2P^{+}} \left[\widetilde{H}^{g}(x,\xi,t) \overline{u} \gamma^{+} \gamma_{5} u + \widetilde{E}^{g}(x,\xi,t) \overline{u} \frac{\gamma_{5} \Delta^{+}}{2M} u \right]. \end{split}$$

ullet Here again, no forward limit known for E^g and \widetilde{E}^g

Probabilistic Interpretation of GPDs

This section mostly comes from M. Diehl, Eur. Phys. J. C 25 (2002) 223-232

• Locating partons in coordinate space requires a "center" acting as a reference. How to define such a center?

- Locating partons in coordinate space requires a "center" acting as a reference. How to define such a center ?
- Use Lorentz symmetry on the lightcone, more precisely transverse boosts:

$$k^+ \to k^+, \quad k_\perp \to k_\perp - k^+ v_\perp, \quad k^- \to \text{ something conserving } k^2$$

- Locating partons in coordinate space requires a "center" acting as a reference. How to define such a center ?
- Use Lorentz symmetry on the lightcone, more precisely transverse boosts:

$$k^+ \to k^+, \quad k_\perp \to k_\perp - k^+ v_\perp, \quad k^- \to \text{ something conserving } k^2$$

 under such boosts, the transverse plane obey galilean-like transformations

- Locating partons in coordinate space requires a "center" acting as a reference. How to define such a center ?
- Use Lorentz symmetry on the lightcone, more precisely transverse boosts:

$$k^+ \to k^+, \quad k_\perp \to k_\perp - k^+ v_\perp, \quad k^- \to \text{ something conserving } k^2$$

- under such boosts, the transverse plane obey galilean-like transformations
- We define a center of longitudinal momentum B_{\perp} :

$$B_{\perp} = \frac{\sum_{i} k_{i}^{+} b_{\perp}^{i}}{\sum_{i} k_{i}^{+}},$$

where k_i^+ is the longitudinal momentum of parton i and b_\perp^i its position in the transverse plane.

GPD and the hadron 2+1D Structure

We can define a hadron state with localised center of longitudinal momentum

$$|p^+,B_\perp\rangle = \int \frac{\mathrm{d}^{(2)}p_\perp}{16\pi^3} e^{-ip_\perp B_\perp} |p^+,p_\perp\rangle$$

Now defining the transverse position dependent operator:

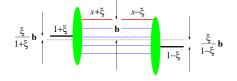
$$O_{qq}(z_{\perp}) = \int rac{\mathrm{d}z^{-}}{4\pi} \mathrm{e}^{\mathrm{i}xP^{+}z^{-}} ar{q}(0, -rac{z^{-}}{2}, z_{\perp}) \gamma^{+} q(0, rac{z^{-}}{2}, z_{\perp}),$$

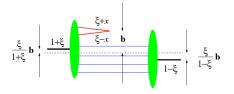
One can show that in coordinate space:

$$\mathcal{M} \propto \langle (p')^+, B'_{\perp} | O_{qq}(0_{\perp}) | p^+, B_{\perp} \rangle$$
$$\propto \langle (p')^+, -\frac{\xi b_{\perp}}{1-\xi} | O_{qq}(b_{\perp}) | p^+, \frac{\xi b_{\perp}}{1+\xi} \rangle$$

$$\langle (p')^+, -rac{\xi b_\perp}{1-\xi}|O_{qq}(b_\perp)|p^+, rac{\xi b_\perp}{1+\xi}
angle$$

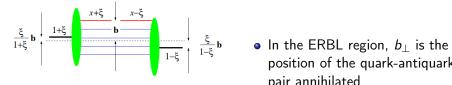
$$\langle (p')^+, -rac{\xi b_\perp}{1-\xi}|O_{qq}(b_\perp)|p^+, rac{\xi b_\perp}{1+\xi}
angle$$



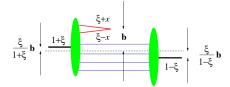


- The quark is now picked and put back in the hadron at position
 b_⊥ in the DGLAP region
- The center of longitudinal momentum is shifted by the skewness
- Thus for non-vanishing skewness, the transverse position of the quark respectively to the center is modified

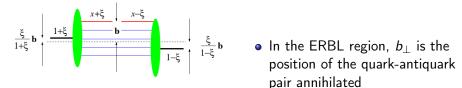
$$\langle (
ho')^+, -rac{\xi b_\perp}{1-\xi}|O_{qq}(b_\perp)|
ho^+, rac{\xi b_\perp}{1+\xi}
angle$$



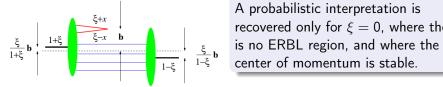
position of the quark-antiquark pair annihilated



$$\langle (p')^+, -rac{\xi b_\perp}{1-\xi}|O_{qq}(b_\perp)|p^+, rac{\xi b_\perp}{1+\xi}
angle$$



pair annihilated



A probabilistic interpretation is recovered only for $\xi = 0$, where there

Examples of 2+1D pictures

$$\rho(x,b_{\perp}) = \int \frac{\mathrm{d}^2 \Delta_{\perp}}{(2\pi)^2} e^{i\Delta_{\perp} b_{\perp}} H(x,0,-\Delta_{\perp}^2)$$

 $\mathsf{M.\;Burkardt,\;PRD\;62\;(2000)\;071503,\;PRD\;66\;(2002)\;119903\;(erratum)}$

Computations

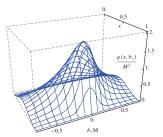


fig. from C. Mezrag et al., PLB 741 (2015)

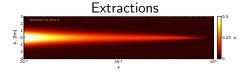


fig. from H. Moutarde et al., EPJ C 78 (2018) 11, 890

Extractions require extrapolations and are model dependent.

Comparison with EFF

$$\rho(x,b_{\perp}) = \int \frac{\mathrm{d}^2 \Delta_{\perp}}{(2\pi)^2} e^{i\Delta_{\perp} b_{\perp}} H(x,0,-\Delta_{\perp}^2)$$

Several important differences can be noticed compared to EFF:

- The Fourier transform of EFF provides the charge density in the transverse plane, here we found a parton number density
- In principle, one can perform flavour decomposition (where are s quark vs. u and d quarks), and obtain gluon number density as well
- ullet One obtains correlations between x and b_{\perp}
- The interpretation picture is valid *on the lightcone*, not in a non-relativistic limit.
- One can define matter radius, interaction radius, valence radius, as second moments of the associated distributions.

 We observe that from a wide range of order of magnitude, light scattering allows one to probe the structure of matter usually through a Fourier Transform.

- We observe that from a wide range of order of magnitude, light scattering allows one to probe the structure of matter usually through a Fourier Transform.
- We ask ourselves how to generalise photon scattering to the femtometer scale

- We observe that from a wide range of order of magnitude, light scattering allows one to probe the structure of matter usually through a Fourier Transform.
- We ask ourselves how to generalise photon scattering to the femtometer scale
- The solution is provided by DVCS (photon electroproduction).

- We observe that from a wide range of order of magnitude, light scattering allows one to probe the structure of matter usually through a Fourier Transform.
- We ask ourselves how to generalise photon scattering to the femtometer scale
- The solution is provided by DVCS (photon electroproduction).
- We saw that when a parton is hit by a hard photon, it needs to quickly (perturbatively) release this energy in order not to break the photon
 ⇒ DVCS factorises between a hard part, computed in pQCD and GPDs (non-perturbative)

- We observe that from a wide range of order of magnitude, light scattering allows one to probe the structure of matter usually through a Fourier Transform.
- We ask ourselves how to generalise photon scattering to the femtometer scale
- The solution is provided by DVCS (photon electroproduction).
- We saw that when a parton is hit by a hard photon, it needs to quickly (perturbatively) release this energy in order not to break the photon
 ⇒ DVCS factorises between a hard part, computed in pQCD and GPDs (non-perturbative)
- GPDs are generalisation of the EM Form Factor measured in elastic scattering and of PDFs measured in inclusive processes (DIS).

- We observe that from a wide range of order of magnitude, light scattering allows one to probe the structure of matter usually through a Fourier Transform.
- We ask ourselves how to generalise photon scattering to the femtometer scale
- The solution is provided by DVCS (photon electroproduction).
- We saw that when a parton is hit by a hard photon, it needs to quickly (perturbatively) release this energy in order not to break the photon
 ⇒ DVCS factorises between a hard part, computed in pQCD and GPDs (non-perturbative)
- GPDs are generalisation of the EM Form Factor measured in elastic scattering and of PDFs measured in inclusive processes (DIS).
- Finally, we demonstrated that the Fourier Transform of GPDs yield the 2+1D probability density to find a quark or a gluon with fixed momentum fraction at a given b_{\perp} position in a hadron.

Connection with the Energy-Momentum Tensor

Pressure in Relativistic hydrodynamics

• In relativistic hydrodynamics \rightarrow pressure for a anisotropic fluid enters the description of the EMT θ :

$$\theta^{\mu\nu}(\mathbf{r}) = (\varepsilon + p_t) \frac{P^{\mu}P^{\nu}}{M^2} - p_t \eta^{\mu\nu} + (p_r - p_t) \frac{z^{\mu}z^{\nu}}{r^2}$$

Selcuk S. Bayin, Astrophys. J. 303, 101–110 (1986) figure from C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

Pressure in Relativistic hydrodynamics

• In relativistic hydrodynamics \rightarrow pressure for a anisotropic fluid enters the description of the EMT θ :

$$heta^{\mu
u}(\mathbf{r}) = (arepsilon + p_t) rac{P^\mu P^
u}{M^2} - p_t \eta^{\mu
u} + (p_r - p_t) rac{z^\mu z^
u}{r^2}$$

Selcuk S. Bayin, Astrophys. J. 303, 101–110 (1986) figure from C. Lorcé *et al.*, Eur.Phys.J.C 79 (2019) 1, 89

On can define isotropic pressure p and pressure anisotropy s:

$$p(r) = \frac{p_r(r) + 2p_t(r)}{3}$$
$$s(r) = p_r(r) - p_t(r)$$

Pressure in Relativistic hydrodynamics

• In relativistic hydrodynamics \rightarrow pressure for a anisotropic fluid enters the description of the EMT θ :

$$heta^{\mu
u}(\mathbf{r}) = (arepsilon + p_t) rac{P^\mu P^
u}{M^2} - p_t \eta^{\mu
u} + (p_r - p_t) rac{z^\mu z^
u}{r^2}$$

Selcuk S. Bayin, Astrophys. J. 303, 101–110 (1986) figure from C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

• On can define isotropic pressure p and pressure anisotropy s:

$$p(r) = \frac{p_r(r) + 2p_t(r)}{3}$$
$$s(r) = p_r(r) - p_t(r)$$

Question

Can we obtain an analoguous definition within hadron physics?

Hadron EMT in QCD

In QCD, the energy momentum tensor of the nucleon is a correlator of the EMT operator, evaluated between two nucleon states:

$$\begin{split} \langle p',s'|T_{q,g}^{\{\mu\nu\}}|p,s\rangle &= \bar{u}\left[P^{\{\mu}\gamma^{\nu\}}A_{q,g}(t;\mu) + \frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{M}C_{q,g}(t;\mu) \right. \\ &\left. + Mg^{\mu\nu}\bar{C}_{q,g}(t;\mu) + \frac{P^{\{\mu}i\sigma^{\nu\}\Delta}}{2M}B_{q,g}(t;\mu)\right]u \end{split}$$

Hadron EMT in QCD

In QCD, the energy momentum tensor of the nucleon is a correlator of the EMT operator, evaluated between two nucleon states:

$$\begin{split} \langle p',s'|T_{q,g}^{\{\mu\nu\}}|p,s\rangle &= \bar{u}\left[P^{\{\mu}\gamma^{\nu\}}A_{q,g}(t;\mu) + \frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{M}C_{q,g}(t;\mu) \right. \\ &\left. + Mg^{\mu\nu}\bar{C}_{q,g}(t;\mu) + \frac{P^{\{\mu}i\sigma^{\nu\}\Delta}}{2M}B_{q,g}(t;\mu)\right]u \end{split}$$

- The total EMT is scale independent as it defines a conserved current
- Different definitions exist for the EMT, we stick to the one above
- 4 form factors are needed to parameterise the (symmetric) EMT correlator in the spin-1/2 case
- Constraints exist on some of these form factors:

$$A(0) = 1$$
, $B(0) = 0$, $\bar{C}(t) = 0$

• Note that there is **no** constraint on *C*.

The quark sector of the EMT is given as:

$$T_q^{\mu\nu} = \bar{q}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$$
 such that $\overleftrightarrow{D}^{\mu} = \frac{1}{2}\left(\overrightarrow{D} - \overleftarrow{D}\right)$

Working in the lightcone gauge where $D = \partial$ one can readily see that:

$$\frac{1}{2} \int_{-1}^{1} \mathrm{d}xx \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0}$$

The quark sector of the EMT is given as:

$$T_q^{\mu\nu} = \bar{q}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$$
 such that $\overleftrightarrow{D}^{\mu} = \frac{1}{2}\left(\overrightarrow{D} - \overleftarrow{D}\right)$

Working in the lightcone gauge where $D = \partial$ one can readily see that:

$$\begin{split} &\frac{1}{2} \int_{-1}^{1} \mathrm{d}xx \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ &= &\frac{1}{2} \int \mathrm{d}x \int \frac{\mathrm{d}z^{-}}{2\pi} \frac{1}{iP^{+}} \frac{\partial e^{ixP^{+}z^{-}}}{\partial z^{-}} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle |_{z^{+}=0,z=0} \end{split}$$

The quark sector of the EMT is given as:

$$T_q^{\mu\nu} = \bar{q}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$$
 such that $\overleftrightarrow{D}^{\mu} = \frac{1}{2}\left(\overrightarrow{D} - \overleftarrow{D}\right)$

Working in the lightcone gauge where $D = \partial$ one can readily see that:

$$\begin{split} &\frac{1}{2} \int_{-1}^{1} \mathrm{d}xx \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q} (-\frac{z}{2}) \gamma^{+} \psi^{q} (\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ &= \frac{1}{2} \int \mathrm{d}x \int \frac{\mathrm{d}z^{-}}{2\pi} \frac{1}{iP^{+}} \frac{\partial e^{ixP^{+}z^{-}}}{\partial z^{-}} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q} (-\frac{z}{2}) \gamma^{+} \psi^{q} (\frac{z}{2}) | P - \frac{\Delta}{2} \rangle |_{z^{+}=0,z=0} \\ &= \frac{1}{2} \int \mathrm{d}x \int \frac{\mathrm{d}z^{-}}{2\pi} \frac{-1}{iP^{+}} e^{ixP^{+}z^{-}} \frac{\partial}{\partial z^{-}} \left[\langle P + \frac{\Delta}{2} | \bar{\psi}^{q} (-\frac{z}{2}) \gamma^{+} \psi^{q} (\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \right] |_{z^{+}=0,z=0} \end{split}$$

(1)

The quark sector of the EMT is given as:

$$T_q^{\mu\nu} = \bar{q}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$$
 such that $\overleftrightarrow{D}^{\mu} = \frac{1}{2}\left(\overrightarrow{D} - \overleftarrow{D}\right)$

Working in the lightcone gauge where $D = \partial$ one can readily see that:

$$\begin{split} &\frac{1}{2} \int_{-1}^{1} \mathrm{d}xx \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q} (-\frac{z}{2}) \gamma^{+} \psi^{q} (\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0} \\ &= \frac{1}{2} \int \mathrm{d}x \int \frac{\mathrm{d}z^{-}}{2\pi} \frac{1}{iP^{+}} \frac{\partial e^{ixP^{+}z^{-}}}{\partial z^{-}} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q} (-\frac{z}{2}) \gamma^{+} \psi^{q} (\frac{z}{2}) | P - \frac{\Delta}{2} \rangle |_{z^{+}=0,z=0} \\ &= \frac{1}{2} \int \mathrm{d}x \int \frac{\mathrm{d}z^{-}}{2\pi} \frac{-1}{iP^{+}} e^{ixP^{+}z^{-}} \frac{\partial}{\partial z^{-}} \left[\langle P + \frac{\Delta}{2} | \bar{\psi}^{q} (-\frac{z}{2}) \gamma^{+} \psi^{q} (\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \right] |_{z^{+}=0,z=0} \\ &= \frac{1}{2} \int \mathrm{d}z^{-} \frac{-1}{iP^{+}} \delta (P^{+}z^{-}) \left[\langle P + \frac{\Delta}{2} | \bar{\psi}^{q} (-\frac{z}{2}) \gamma^{+} \overleftrightarrow{\partial} \psi^{q} (\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \right] |_{z^{+}=0,z=0} \end{split}$$

(1)

The quark sector of the EMT is given as:

$$T_q^{\mu\nu} = \bar{q}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$$
 such that $\overleftrightarrow{D}^{\mu} = \frac{1}{2}\left(\overrightarrow{D} - \overleftarrow{D}\right)$

Working in the lightcone gauge where $D = \partial$ one can readily see that:

$$\frac{1}{2} \int_{-1}^{1} \mathrm{d}xx \int \frac{e^{ixP^{+}z^{-}}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^{-} |_{z^{+}=0,z=0}$$

$$= \frac{1}{2} \int \mathrm{d}x \int \frac{\mathrm{d}z^{-}}{2\pi} \frac{1}{iP^{+}} \frac{\partial e^{ixP^{+}z^{-}}}{\partial z^{-}} \langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle |_{z^{+}=0,z=0}$$

$$= \frac{1}{2} \int \mathrm{d}x \int \frac{\mathrm{d}z^{-}}{2\pi} \frac{-1}{iP^{+}} e^{ixP^{+}z^{-}} \frac{\partial}{\partial z^{-}} \left[\langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \right] |_{z^{+}=0,z=0}$$

$$= \frac{1}{2} \int \mathrm{d}z^{-} \frac{-1}{iP^{+}} \delta(P^{+}z^{-}) \left[\langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \overleftrightarrow{\partial} \psi^{q}(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \right] |_{z^{+}=0,z=0}$$

$$= \frac{1}{2P^{+}} \frac{1}{P^{+}} \left[\langle P + \frac{\Delta}{2} | \bar{\psi}^{q}(0) \gamma^{+} i \overleftrightarrow{\partial}^{+} \psi^{q}(0) | P - \frac{\Delta}{2} \rangle \right] \tag{1}$$

Consequently, EMT Form Factors A, B and C are connected to GPDs H and E through:

$$\int_{-1}^{1} dx x H^{q}(x, \xi, t) = A^{q}(t) + 4\xi^{2} C^{q}(t)$$

$$\int_{-1}^{1} dx x E^{q}(x, \xi, t) = B^{q}(t) - 4\xi^{2} C^{q}(t)$$

$$\int_{-1}^{1} dx H^{g}(x, \xi, t) = A^{g}(t) + 4\xi^{2} C^{g}(t)$$

$$\int_{-1}^{1} dx E^{g}(x, \xi, t) = B^{g}(t) - 4\xi^{2} C^{g}(t)$$

Consequently, EMT Form Factors A, B and C are connected to GPDs H and E through:

$$\int_{-1}^{1} dx x H^{q}(x, \xi, t) = A^{q}(t) + 4\xi^{2} C^{q}(t)$$

$$\int_{-1}^{1} dx x E^{q}(x, \xi, t) = B^{q}(t) - 4\xi^{2} C^{q}(t)$$

$$\int_{-1}^{1} dx H^{g}(x, \xi, t) = A^{g}(t) + 4\xi^{2} C^{g}(t)$$

$$\int_{-1}^{1} dx E^{g}(x, \xi, t) = B^{g}(t) - 4\xi^{2} C^{g}(t)$$

In principle, from GPDs extracted from experimental data, we would be able to get experimental information on these Form Factors.

Ji sum rule

The quark and gluon contributions to the angular momentum J are

$$2J^{q} = A^{q}(0) + B^{q}(0)$$

$$= \int dxx (H^{q}(x, \xi, 0) + E^{q}(x, \xi, 0))$$

$$2J^{g} = A^{g}(0) + B^{g}(0)$$

$$= \int dx (H^{g}(x, \xi, 0) + E^{g}(x, \xi, 0))$$

X.D. Ji, Phys.Rev.Lett. 78 (1997) 610-613

Energy and pressure distributions in the Breit frame

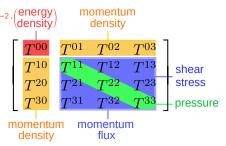
And from them, extract pressure and shear forces following:

$$\begin{split} \varepsilon_{a}(r) &= M \int \frac{\mathrm{d}^{3} \Delta}{(2\pi)^{3}} \, e^{-i\Delta \cdot r} \, \Big\{ A_{a}(t) + \frac{\bar{C}_{a}(t)}{4M^{2}} \, [B_{a}(t) - 4C_{a}(t)] \Big\} \,, \\ p_{r,a}(r) &= M \int \frac{\mathrm{d}^{3} \Delta}{(2\pi)^{3}} \, e^{-i\Delta \cdot r} \, \left\{ -\bar{C}_{a}(t) - \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{\mathrm{d}}{\mathrm{d}t} \Big(t^{3/2} \, C_{a}(t) \Big) \right\} \,, \\ p_{t,a}(r) &= M \int \frac{\mathrm{d}^{3} \Delta}{(2\pi)^{3}} \, e^{-i\Delta \cdot r} \, \left\{ -\bar{C}_{a}(t) + \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{\mathrm{d}}{\mathrm{d}t} \Big[t \frac{\mathrm{d}}{\mathrm{d}t} \Big(t^{3/2} \, C_{a}(t) \Big) \Big] \right\} \,, \\ p_{a}(r) &= M \int \frac{\mathrm{d}^{3} \Delta}{(2\pi)^{3}} \, e^{-i\Delta \cdot r} \, \left\{ -\bar{C}_{a}(t) + \frac{2}{3} \frac{t}{M^{2}} \, C_{a}(t) \right\} \,, \\ s_{a}(r) &= M \int \frac{\mathrm{d}^{3} \Delta}{(2\pi)^{3}} \, e^{-i\Delta \cdot r} \, \left\{ -\frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \Big(t^{5/2} \, C_{a}(t) \Big) \right\} \,, \end{split}$$

C. Lorcé et al., Eur. Phys. J. C 79 (2019) 1, 89

Interpretation of GPDs II

Connection to the Energy-Momentum Tensor



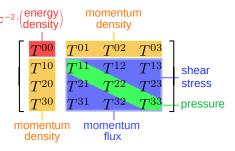
How energy, momentum, pressure are shared between quarks and gluons

Caveat: renormalization scheme and scale dependence

C. Lorcé et al., PLB 776 (2018) 38-47, M. Polyakov and P. Schweitzer, IJMPA 33 (2018) 26, 1830025 C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

Interpretation of GPDs II

Connection to the Energy-Momentum Tensor



How energy, momentum, pressure are shared between quarks and gluons

Caveat: renormalization scheme and scale dependence

C. Lorcé et al., PLB 776 (2018) 38-47, M. Polyakov and P. Schweitzer, IJMPA 33 (2018) 26, 1830025 C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

 $\int_{-1}^{1} dx \times H_q(x, \xi, t; \mu) = A_q(t; \mu) + 4\xi^2 C_q(t; \mu)$ $\int_{-1}^{1} dx \times E_q(x, \xi, t; \mu) = B_q(t; \mu) - 4\xi^2 C_q(t; \mu)$

- Ji sum rule (nucleon)
- Fluid mechanics analogy

X. Ji, PRL 78, 610-613 (1997) M.V. Polyakov PLB 555, 57-62 (2003)

Place of GPDs in the Hadron physics context

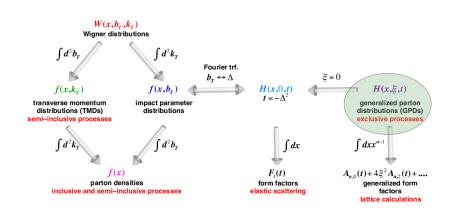


figure from A. Accardi et al., Eur. Phys. J.A 52 (2016) 9, 268

Questions?