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Confinement

Quarks & gluons are 
confined in hadrons, 
cannot be observed 
in isolation

Microscopic origin still 
unclear –  $1M prize

Only colorless bound states 
observable:
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The hadron zoo
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And it doesn’t stop there ...

Aaij et al., Phys. Rev. Lett. 112 (2019) 222001

To understand QCD, we must understand 
spectrum and interactions of hadrons!
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Mass generation

Three current quarks
do not make a proton:

u
u

d

QCD!

Higgs

Higgs: Current-quark masses

 

QCD: Mass generation from
quark-gluon interactions,
“constituent-quark masses”
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QCD Lagrangian

=L µνFµνF4
1+ψ)m+A/i

a

a+∂/ (ψ̄ g

g g
g 2

Gross, Politzer, Wilczek 1973

At large momenta, quarks & gluons
behave as quasi-free particles:
asymptotic freedom

At small momenta, 
coupling becomes 
large → we need 
nonperturbative 
methods!
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Perturbative vs. nonperturbative

𝑓(𝑥)  =   𝑥  +  𝑥�  +  𝑥�  +  . . .         |𝑥| � 1
- 4 - 2 2 4

- 4
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1 − 𝑥

“Quantum
mechanics”

Perturbative QFT: 
Feynman diagrams & loops
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Interaction between two electrons: 

Analogy: geometric series 

J.  S. Schwinger S. Tomonaga R. P. Feynman F. J. Dyson
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Perturbative vs. nonperturbative

Answer still correct at large momenta:
high-energy scattering experiments

What about low momenta, confinement,
mass generation, hadron physics?
→ need nonperturbative methods!
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Interaction between quark and antiquark?
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Emergent phenomena

Biology:Hadron physics:
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Many open questions!

Quark-gluon structure of hadrons and nuclei:
EIC, JLab, COMPASS/AMBER, ...
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QCD contributions to BSM searches, 
e.g. muon g-2 at Fermilab

Understanding exotic hadrons:
Hadron spectroscopy at LHC, Belle II, 
BES III, PANDA, JLab, ELSA, ...
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Theory tools

Functional methods
(Dyson-Schwinger & Bethe-Salpeter eqs, FRG, ...) 

Amplitude analyses

Phenomenological models
(Quark models, ...) 

Effective theories
(Chiral perturbation theory, ...) 

Lattice QCD
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Symmetries in the spectrum
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Figure 2.6: Left: Scattering equations for Nπ scattering and pion electroproduction amplitudes. The filled circles denote the T-matrices
and the squares are the potentials. Right: Decomposition of the potentials (here for the Nπ case) into non-resonant and resonant parts,
which leads to the same separation for the T-matrix. The N → N∗ transition vertices and dressed propagators are determined from
the equations at the bottom. Note that the loop diagram in the vertex equation can be equally written in terms of the background Nπ
scattering matrix and a bare vertex (instead of the background Nπ potential and a dressed vertex).

Being Lorentz invariant, they are again identical in Euclidean and Minkowski conventions. As illustrated in
Fig. 2.5 for the N(1535) transition, if the form factors are free of kinematic constraints the helicity amplitudes
must have kinematic zeros: a naive parametrization of the experimental form factors F1 and F2 by a vector-
meson bump produces kinematic zeros for A1/2 and S1/2 at λ± = 0 ⇔ τ = −δ2± and beyond those points
they become imaginary. The analogous relations for the JP = 3/2± transition currents defined later in (4.60),
expressed in terms of the Jones-Scadron form factors GM (Q2), GE(Q2) and GC(Q2), read [53, 54]

[
GM

GE

]
= −

A1/2 +
√

3 A3/2

2δ±R∓
,

[
GE

GM

]
=

A1/2 − 1√
3
A3/2

2δ±R∓
, GC =

mR

γm

S1/2

2δ±R∓
. (2.19)

Analysis of experimental results. While the bump landscape in the experimentally measured structure func-
tions in (2.12) provides a basic indication of the underlying baryon spectrum, the detailed extraction of baryon
properties requires a more sophisticated toolbox. Several analysis tools have been developed and are still under
development to achieve this task. They can be roughly categorised as reaction models, which assume a certain
reaction mechanism and determine resonance observables by fitting a large set of parameters to the experimen-
tal multipole amplitudes, and dynamical coupled-channel models which aim at a self-consistent description of
the reaction dynamics. In the following we will sketch the basic ideas behind these approaches and refer to
Refs. [4, 11, 13, 55, 56] for details and a comprehensive list of references.

The common goal is to calculate the T-matrix or, equivalently, its multipole expansion in terms of interaction
potentials Vij , which are split into a non-resonant background and resonant contributions. The background
potentials are typically derived from the tree-level diagrams of chiral effective Lagrangians and contain the nu-
cleon Born terms together with the u-channel resonances and t-channel meson exchanges in Fig. 2.2; the res-
onant s-channel diagrams encode the N∗ exchanges together with their couplings to the photons and mesons.
Upon selecting the channel space (Nγ, Nπ, Nη, ∆π, Nρ, Nσ etc.), one can establish a system of coupled-
channel equations for the T-matrix. For example, keeping only the Nγ and Nπ channels in the low-energy
region leads to the scattering equation

T = V + VGT , T =

(
Tππ Tπγ

Tγπ Tγγ

)
, V =

(
Vππ Vπγ

Vγπ Vγγ

)
, G =

(
Gπ 0
0 Gγ

)
, (2.20)

where Gπ and Gγ are the two-body nucleon-pion and nucleon-photon propagators and the scattering matrices
correspond to Nπ scattering (ππ), pion electroabsorption/electroproduction (πγ, γπ) and nucleon Compton
scattering (γγ). Neglecting also electromagnetic effects leaves two equations for Tππ and Tγπ which are shown
in the left of Fig. 2.6: here only the integral equation for the Nπ scattering amplitude has to be solved and
everything else is in principle determined by a one-loop calculation.

There are two standard ways to rewrite (2.20). One is to split the propagator into two parts, which leads
to the distinction between ‘T-matrix’ and ‘K-matrix’:

T = V + V (G1 + G2)T , K = V + VG1K ⇒ T = K + KG2T . (2.21)
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everything else is in principle determined by a one-loop calculation.

There are two standard ways to rewrite (2.20). One is to split the propagator into two parts, which leads
to the distinction between ‘T-matrix’ and ‘K-matrix’:

T = V + V (G1 + G2)T , K = V + VG1K ⇒ T = K + KG2T . (2.21)
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Symmetries of QCD

Flavor: 1 ... 
Color: 1 ... 3
Dirac: 1 ... 4

Quark
mass matrix

invariant under local SU(3) gauge transformations

invariant under Poincaré group 

invariant under C, P,  T

various global flavor (non-)symmetries:

conserved (baryon number)

if M = m (all quark masses equal)
chiral symmetry

if M = 0 (but: spontaneously broken)

if M = 0 (but: anomalously broken)

=L µνFµνF4
1–ψ)M–A/i

a

a+∂/ (ψ̄ gLx4d
∫

=S

V(1)U

V)fN(SU

A)fN(SU

A(1)U

)x(α,i,fψ

fN
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Two Casimir operators which label states: 
M (mass), J (total angular momentum, “spin”)

Gernot Eichmann (Uni Graz) 14 / 149



Symmetries of QCD

Flavor: 1 ... 
Color: 1 ... 3
Dirac: 1 ... 4

Quark
mass matrix

invariant under local SU(3) gauge transformations

invariant under Poincaré group 

invariant under C, P,  T

various global flavor (non-)symmetries:

conserved (baryon number)

if M = m (all quark masses equal)
chiral symmetry

if M = 0 (but: spontaneously broken)

if M = 0 (but: anomalously broken)

=L µνFµνF4
1–ψ)M–A/i

a

a+∂/ (ψ̄ gLx4d
∫

=S

V(1)U

V)fN(SU

A)fN(SU

A(1)U

)x(α,i,fψ

fN

Parity labels states  →   M,  J P

Gernot Eichmann (Uni Graz) 14 / 149



Symmetries of QCD

Flavor: 1 ... 
Color: 1 ... 3
Dirac: 1 ... 4

Quark
mass matrix

invariant under local SU(3) gauge transformations

invariant under Poincaré group 

invariant under C, P,  T

various global flavor (non-)symmetries:

conserved: baryon number

if M = m (all quark masses equal)
chiral symmetry

if M = 0 (but: spontaneously broken)

if M = 0 (but: anomalously broken)

=L µνFµνF4
1–ψ)M–A/i

a

a+∂/ (ψ̄ gLx4d
∫

=S

V(1)U

V)fN(SU

A)fN(SU

A(1)U

)x(α,i,fψ

fN

)sn+dn+un(3
1=B

... (# quarks) – (# antiquarks)

Baryons carry            (pentaquarks too)⇒  = 1B

qn

ψ
εi
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Symmetries of QCD

Quark
mass matrix

invariant under local SU(3) gauge transformations
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invariant under C, P,  T

various global flavor (non-)symmetries:

conserved (baryon number)
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1–ψ)M–A/i
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a+∂/ (ψ̄ gLx4d
∫

=S

V(1)U

V)fN(SU

A)fN(SU

A(1)U

)x(α,i,fψ

Define vector currents and charges:

These are still good quantum numbers,
even if flavor symmetry is broken!

Noether theorem: if symmetry preserved,
divergence of current vanishes and charge is
conserved. Can only work if M = m.

But the diagonal SU(3) generators      ,
commute with M → always conserved!
Isospin     , hypercharge    :

V µ
a = ψ γµ ta ψ ,

QV
a (t) =

∫
d3x ψ† ta ψ

µ V µ
a = iψ [M, ta] ψ ,∂

ψ
ataε

=1a

8

i
e=′ψ

∑

t t

,)dn−un(2
1=3I )sn2−dn+un(3

1=Y

3I Y

for 3 flavors 
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Define axialvector currents and charges:

Symmetry only if M = 0 (chiral limit)

But symmetry spontaneously broken in QFT:
dynamical chiral symmetry breaking

ψ
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i
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Symmetries of QCD

Quark
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invariant under local SU(3) gauge transformations

invariant under Poincaré group 

invariant under C, P,  T

various global flavor (non-)symmetries:

conserved (baryon number)

if M = m (all quark masses equal)

if M = 0 (but: spontaneously broken)

if M = 0 (but: anomalously broken)
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     for labelling baryons:

=L µνFµνF4
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∫
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Symmetries of QCD
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Figure 2.6: Left: Scattering equations for Nπ scattering and pion electroproduction amplitudes. The filled circles denote the T-matrices
and the squares are the potentials. Right: Decomposition of the potentials (here for the Nπ case) into non-resonant and resonant parts,
which leads to the same separation for the T-matrix. The N → N∗ transition vertices and dressed propagators are determined from
the equations at the bottom. Note that the loop diagram in the vertex equation can be equally written in terms of the background Nπ
scattering matrix and a bare vertex (instead of the background Nπ potential and a dressed vertex).

Being Lorentz invariant, they are again identical in Euclidean and Minkowski conventions. As illustrated in
Fig. 2.5 for the N(1535) transition, if the form factors are free of kinematic constraints the helicity amplitudes
must have kinematic zeros: a naive parametrization of the experimental form factors F1 and F2 by a vector-
meson bump produces kinematic zeros for A1/2 and S1/2 at λ± = 0 ⇔ τ = −δ2± and beyond those points
they become imaginary. The analogous relations for the JP = 3/2± transition currents defined later in (4.60),
expressed in terms of the Jones-Scadron form factors GM (Q2), GE(Q2) and GC(Q2), read [53, 54]

[
GM

GE

]
= −

A1/2 +
√

3 A3/2

2δ±R∓
,

[
GE

GM

]
=

A1/2 − 1√
3
A3/2

2δ±R∓
, GC =

mR

γm

S1/2

2δ±R∓
. (2.19)

Analysis of experimental results. While the bump landscape in the experimentally measured structure func-
tions in (2.12) provides a basic indication of the underlying baryon spectrum, the detailed extraction of baryon
properties requires a more sophisticated toolbox. Several analysis tools have been developed and are still under
development to achieve this task. They can be roughly categorised as reaction models, which assume a certain
reaction mechanism and determine resonance observables by fitting a large set of parameters to the experimen-
tal multipole amplitudes, and dynamical coupled-channel models which aim at a self-consistent description of
the reaction dynamics. In the following we will sketch the basic ideas behind these approaches and refer to
Refs. [4, 11, 13, 55, 56] for details and a comprehensive list of references.

The common goal is to calculate the T-matrix or, equivalently, its multipole expansion in terms of interaction
potentials Vij , which are split into a non-resonant background and resonant contributions. The background
potentials are typically derived from the tree-level diagrams of chiral effective Lagrangians and contain the nu-
cleon Born terms together with the u-channel resonances and t-channel meson exchanges in Fig. 2.2; the res-
onant s-channel diagrams encode the N∗ exchanges together with their couplings to the photons and mesons.
Upon selecting the channel space (Nγ, Nπ, Nη, ∆π, Nρ, Nσ etc.), one can establish a system of coupled-
channel equations for the T-matrix. For example, keeping only the Nγ and Nπ channels in the low-energy
region leads to the scattering equation

T = V + VGT , T =

(
Tππ Tπγ

Tγπ Tγγ

)
, V =

(
Vππ Vπγ

Vγπ Vγγ

)
, G =

(
Gπ 0
0 Gγ

)
, (2.20)

where Gπ and Gγ are the two-body nucleon-pion and nucleon-photon propagators and the scattering matrices
correspond to Nπ scattering (ππ), pion electroabsorption/electroproduction (πγ, γπ) and nucleon Compton
scattering (γγ). Neglecting also electromagnetic effects leaves two equations for Tππ and Tγπ which are shown
in the left of Fig. 2.6: here only the integral equation for the Nπ scattering amplitude has to be solved and
everything else is in principle determined by a one-loop calculation.

There are two standard ways to rewrite (2.20). One is to split the propagator into two parts, which leads
to the distinction between ‘T-matrix’ and ‘K-matrix’:

T = V + V (G1 + G2)T , K = V + VG1K ⇒ T = K + KG2T . (2.21)
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Figure 2.6: Left: Scattering equations for Nπ scattering and pion electroproduction amplitudes. The filled circles denote the T-matrices
and the squares are the potentials. Right: Decomposition of the potentials (here for the Nπ case) into non-resonant and resonant parts,
which leads to the same separation for the T-matrix. The N → N∗ transition vertices and dressed propagators are determined from
the equations at the bottom. Note that the loop diagram in the vertex equation can be equally written in terms of the background Nπ
scattering matrix and a bare vertex (instead of the background Nπ potential and a dressed vertex).

Being Lorentz invariant, they are again identical in Euclidean and Minkowski conventions. As illustrated in
Fig. 2.5 for the N(1535) transition, if the form factors are free of kinematic constraints the helicity amplitudes
must have kinematic zeros: a naive parametrization of the experimental form factors F1 and F2 by a vector-
meson bump produces kinematic zeros for A1/2 and S1/2 at λ± = 0 ⇔ τ = −δ2± and beyond those points
they become imaginary. The analogous relations for the JP = 3/2± transition currents defined later in (4.60),
expressed in terms of the Jones-Scadron form factors GM (Q2), GE(Q2) and GC(Q2), read [53, 54]
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Analysis of experimental results. While the bump landscape in the experimentally measured structure func-
tions in (2.12) provides a basic indication of the underlying baryon spectrum, the detailed extraction of baryon
properties requires a more sophisticated toolbox. Several analysis tools have been developed and are still under
development to achieve this task. They can be roughly categorised as reaction models, which assume a certain
reaction mechanism and determine resonance observables by fitting a large set of parameters to the experimen-
tal multipole amplitudes, and dynamical coupled-channel models which aim at a self-consistent description of
the reaction dynamics. In the following we will sketch the basic ideas behind these approaches and refer to
Refs. [4, 11, 13, 55, 56] for details and a comprehensive list of references.

The common goal is to calculate the T-matrix or, equivalently, its multipole expansion in terms of interaction
potentials Vij , which are split into a non-resonant background and resonant contributions. The background
potentials are typically derived from the tree-level diagrams of chiral effective Lagrangians and contain the nu-
cleon Born terms together with the u-channel resonances and t-channel meson exchanges in Fig. 2.2; the res-
onant s-channel diagrams encode the N∗ exchanges together with their couplings to the photons and mesons.
Upon selecting the channel space (Nγ, Nπ, Nη, ∆π, Nρ, Nσ etc.), one can establish a system of coupled-
channel equations for the T-matrix. For example, keeping only the Nγ and Nπ channels in the low-energy
region leads to the scattering equation

T = V + VGT , T =

(
Tππ Tπγ

Tγπ Tγγ

)
, V =

(
Vππ Vπγ

Vγπ Vγγ

)
, G =

(
Gπ 0
0 Gγ

)
, (2.20)

where Gπ and Gγ are the two-body nucleon-pion and nucleon-photon propagators and the scattering matrices
correspond to Nπ scattering (ππ), pion electroabsorption/electroproduction (πγ, γπ) and nucleon Compton
scattering (γγ). Neglecting also electromagnetic effects leaves two equations for Tππ and Tγπ which are shown
in the left of Fig. 2.6: here only the integral equation for the Nπ scattering amplitude has to be solved and
everything else is in principle determined by a one-loop calculation.

There are two standard ways to rewrite (2.20). One is to split the propagator into two parts, which leads
to the distinction between ‘T-matrix’ and ‘K-matrix’:

T = V + V (G1 + G2)T , K = V + VG1K ⇒ T = K + KG2T . (2.21)

13

→

→

nnn

nns

nss

sss

n p

−Σ −Σ

0Σ 0Σ
+Σ +Σ

Λ

−Ξ −Ξ0Ξ 0Ξ

−∆ 0∆ +∆ ++∆

−Ω

𝐼�

𝑌

𝐼�

𝑌

is broken: 

states inside multiplet 
are not mass-degenerate

Casimirs of
are not good quantum numbers
(these distinguish multiplets)  

But     ,     still conserved:
states with same     ,    can mix  

3I Y

3I Y

In practice: isospin symmetry
             still good (u/d masses)
states with same    ,     ,    can mix  3I YI

f(3)SU

f(3)SU

f(2)SU

Gernot Eichmann (Uni Graz) 16 / 149



Dynamics?

Expected
patterns:

Singlet Octet Decuplet

1.0

1.5

2.0

+

2
1 −

2
1 +

2
3 −

2
3 +

2
5 −

2
5

N ∆ Λ Σ Ξ Ω N ∆ Λ Σ Ξ ΩN ∆ Λ Σ Ξ Ω

nnn

nnsnns nns

nss

nnn

nns

nss

sss

Gernot Eichmann (Uni Graz) 17 / 149



Lecture notes “QCD and hadron physics”,
https://particle.uni-graz.at/en/quarks-hadrons-and-nuclei

GE, “Hadron physics with functional methods”, 
arXiv: 2503.10397 (for Encyclopedia of Particle Physics)

Burkert, GE, Klempt, “The impact of γN and γ*N 
interactions on our understanding of nucleon 
excitations”,  arXiv:2506.16482

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,
“Baryons as relativistic three-quark bound states”,
Prog. Part. Nucl. Phys. 91 (2016),  arXiv: 1606.09602

Barabanov, Bedolla, Brooks, Cates, Chen et al.,
“Diquark correlations in hadron physics: Origin,
impact and evidence”, Prog. Part. Nucl. Phys. 116 (2021),  
arXiv: 2008.07630

2.  Spectrum & symmetries

1.  Introduction

3.  Quark models

7.  Multiquark states

8.  Light-front wave functions

4. QFT toolbox

5. Functional methods

6. n-point functions & tensor bases

Gernot Eichmann (Uni Graz) 17 / 149



Quark models
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Quark potential models

Total wave function:

Must find combined irreducible reps. of
permutation group 𝑆� (3 valence quarks) 
and 𝑆𝑈(𝑁�) (𝑁� flavors)

Nucleon:

Singlet

⇒

Color part is totally antisymmetric:

Flavor part:
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Flavor

Cayley 
graph
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Permutation group S₃ consists of 6 group elements,
can be reconstructed from transposition 𝑃�� (1 ⟷ 2)
and cyclic permutation 𝑃��� (1 � 2, 2 � 3, 3 � 1):   

𝜓��� = 𝜓���
𝜓��� = 𝜓���
𝜓��� = 𝜓���

𝜓��� = 𝜓���
𝜓��� = 𝜓���
𝜓��� = 𝜓���

1
𝑃���
𝑃����

𝑃��
𝑃�� 𝑃���
𝑃�� 𝑃����

Find combinations transforming under irreps of S₃ : 

Singlet 𝓢 is invariant under 
any permutation:

𝑃�� 𝓢 = 𝓢
𝑃��� 𝓢 = 𝓢

𝓢 = 𝜓��� + 𝜓��� + 𝜓��� 
    + 𝜓��� + 𝜓��� + 𝜓��� 

(𝜓��� ― 𝜓���) ― (𝜓��� ― 𝜓���)

�(𝜓��� + 𝜓���) + (𝜓��� + 𝜓���) ― 2(𝜓��� + 𝜓���)�

Antisinglet 𝓐 is antisymmetric under 
any transposition i ⟷ j:

Doublets 𝓓�, 𝓓�  form 2-dim subspace:

𝑃�� 𝓐 = ―𝓐
𝑃��� 𝓐 = 𝓐

𝑃�� 𝓓� = 𝐌�� 𝓓�
𝑃��� 𝓓� = 𝐌��� 𝓓�

𝓐 = 𝜓��� + 𝜓��� + 𝜓��� 
     ― 𝜓��� ― 𝜓��� ― 𝜓��� 

𝐓

𝐓

𝐌�� = 
)

0 1
1 0−

(

)

1−3
√ 3

√
−1−

(

2
1𝐌��� =

𝓓� =
3

√1 ��

(𝜓��� + 𝜓���) ― (𝜓��� + 𝜓���)

�(𝜓��� ― 𝜓���) + (𝜓��� ― 𝜓���) ― 2(𝜓��� ― 𝜓���)�𝓓� = 3
√1

��
―
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