

The few-body problem in QCD

(with functional methods)

Gernot Eichmann

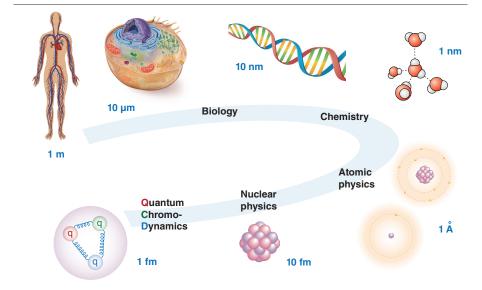
University of Graz

2025 International Workshop and School on Hadron Structure and Strong Interactions

Nanjing, China, October 13-17, 2025

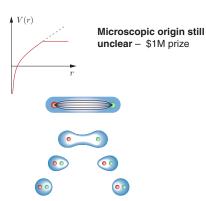
- 1. Introduction
- 2. Spectrum & symmetries
- 3. Quark models
- 4. QFT toolbox
- 5. Functional methods
- 6. n-point functions & tensor bases
- 7. Multiquark states
- 8. Light-front wave functions

Lecture notes "QCD and hadron physics", https://particle.uni-graz.at/en/quarks-hadrons-and-nuclei


GE, "Hadron physics with functional methods", arXiv: 2503.10397 (for Encyclopedia of Particle Physics)

Burkert, GE, Klempt, "The impact of γN and γ*N interactions on our understanding of nucleon excitations", arXiv:2506.16482

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, "Baryons as relativistic three-quark bound states", Prog. Part. Nucl. Phys. 91 (2016), arXiv: 1606.09602


Barabanov, Bedolla, Brooks, Cates, Chen et al., "Diquark correlations in hadron physics: Origin, impact and evidence", Prog. Part. Nucl. Phys. 116 (2021), arXiv: 2008.07630

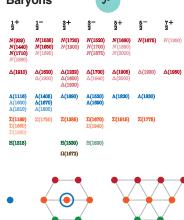
QCD binds us together

Confinement

 Quarks & gluons are confined in hadrons, cannot be observed in isolation

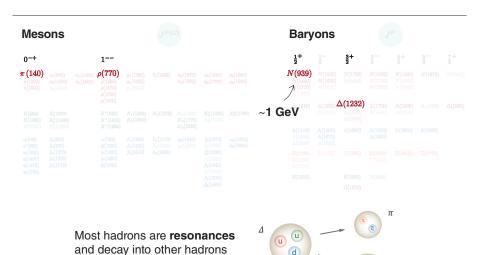
 Only colorless bound states observable:

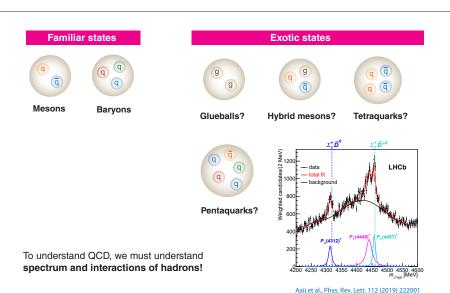
 $3 \times \overline{3} = 1 + 8$


Mesons

 $3 \times 3 \times 3 = 1 + 8 + 8 + 10$

Baryons


Mesons **Baryons** N(1535) $a_1(1260)$ $\pi(1300)$ $\pi_1(1600)$ $\rho(1450)$ a₁(1420) $\pi_2(1880)$ $\rho_{8}(1990)$ N(1440) N(1650) N(1710) N(1895) $\pi(1800)$ p(1570) a₁(1640) N(1880) ρ(1700) p(1900) $\Delta(1910)$ $\Delta(1620)$ Δ(1900) K*(892) K2(1430) K2(1780) K(494) $K_0^*(800)$ $K_1(1400)$ K1(1270) Ka(1580) K(1460) K2(1430) K°(1410) $K_1(1650)$ $K_2(1770)$ K2(1980) K(1830) $K_0^a(1950)$ K*(1680) K2(1820) A(1116) A(1406) A(1600) A(1670) n(548) fo(500) h1(1170) $\omega(782)$ f₁(1285) no (1645) $f_2(1270)$ $\omega_{n}(1670)$ A(1810) A(1800) $\eta'(958)$ $f_0(980)$ \$\((1020)\) $f_1(1420)$ h₁(1380) 72(1870) $f_2(1430)$ $\phi_3(1850)$ $f_0(1370)$ ω(1420) f. (1510) h₁ (1595) $f_2'(1525)$ $\eta(1295)$ Σ(1189) Σ(1750) η(1405 $f_0(1500)$ $\omega(1650)$ f2(1565) Σ(1660) $f_0(1710)$ **d(1680)** f2(1640) n(1475)n(1760) fa(1810) E(1315) f2(1910) f₂(1950)

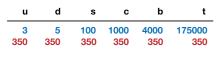

 $3 \times 3 \times 3 = 1 + 8 + 8 + 10$

 $3 \times \bar{3} = 1 + 8$

Ν

And it doesn't stop there ...

Mass generation


Three current quarks do **not** make a proton:

$$2m_u + m_d$$
 ~ 10 MeV << 1 GeV ?

Higgs: Current-quark masses

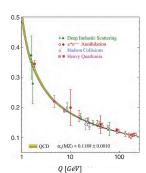
QCD: Mass generation from quark-gluon interactions, "constituent-quark masses"

[MeV]

QCD Lagrangian

$$\mathcal{L} = \bar{\psi} \left(\partial \!\!\!/ + i \, \mathbf{g} \!\!\!/ \!\!\! A + \mathbf{m} \right) \psi + \frac{1}{4} \, F_{\mu\nu}^a \, F_a^{\mu\nu}$$

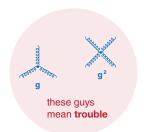
QCD Lagrangian


$$\mathcal{L} = \bar{\psi} \left(\partial \!\!\!/ + i \, \!\!\!\! g \!\!\!/ A + m \right) \psi + \frac{1}{4} \, F_{\mu\nu}^{\,a} \, F_a^{\mu\nu}$$

QCD Lagrangian

 $\alpha = \frac{g^2}{4\pi}$

$$\mathcal{L} = \bar{\psi} \left(\partial \!\!\!/ + i \, \mathbf{g} \! A \!\!\!/ + \mathbf{m} \right) \psi + \frac{1}{4} \, F_{\mu\nu}^{a} \, F_{a}^{\mu\nu}$$

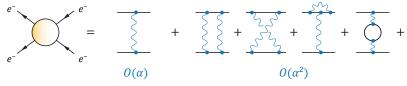


At small momenta, coupling becomes large → we need

nonperturbative

methods!

At large momenta, quarks & gluons behave as quasi-free particles: asymptotic freedom



Gross, Politzer, Wilczek 1973

Perturbative vs. nonperturbative

Interaction between two electrons:

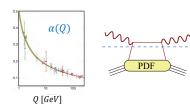
"Quantum mechanics"

Perturbative QFT: Feynman diagrams & loops

J. S. Schwinger

S. Tomonaga

R. P. Feynman


F. J. Dyson

Perturbative vs. nonperturbative

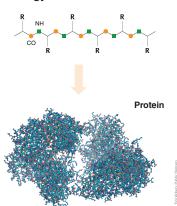
Interaction between quark and antiquark?

$$q = \frac{1}{q} = \frac{1}{q} + \frac{1}{q} +$$

Answer still correct at large momenta: high-energy scattering experiments

What about low momenta, confinement, mass generation, hadron physics?

→ need nonperturbative methods!


Emergent phenomena

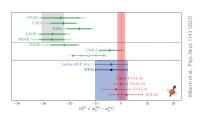
Hadron physics:

Perturbation theory

Biology:

Many open questions!

 Understanding exotic hadrons: Hadron spectroscopy at LHC, Belle II, BES III, PANDA, JLab, ELSA, ...


Hvbrid

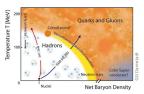
mesons

Tetraquarks

Pentaguarks

QCD contributions to BSM searches, e.g. muon g-2 at Fermilab

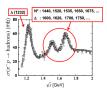
Mass generation and confinement?


Higgs

OCD

Quark-gluon structure of hadrons and nuclei: EIC, JLab, COMPASS/AMBER, ...

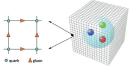
The phases of QCD: LHC, RHIC, CBM, ...


Theory tools

Functional methods

(Dyson-Schwinger & Bethe-Salpeter eqs, FRG, ...)

Amplitude analyses



Phenomenological models

Lattice QCD

Effective theories

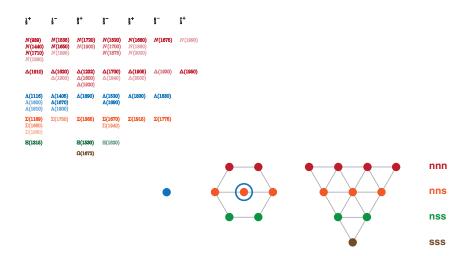
(Chiral perturbation theory, ...)

1. Introduction

2. Spectrum & symmetries

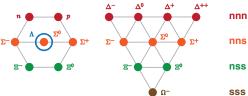
- 3. Quark models
- 4. QFT toolbox
- 5. Functional methods
- 6. n-point functions & tensor bases
- 7. Multiquark states
- 8. Light-front wave functions

Lecture notes "QCD and hadron physics", https://particle.uni-graz.at/en/quarks-hadrons-and-nuclei

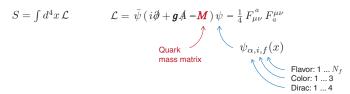

GE, "Hadron physics with functional methods", arXiv: 2503.10397 (for Encyclopedia of Particle Physics)

Burkert, GE, Klempt, "The impact of γN and $\gamma^* N$ interactions on our understanding of nucleon excitations", arXiv:2506.16482

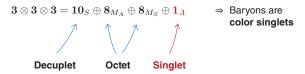
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, "Baryons as relativistic three-quark bound states", Prog. Part. Nucl. Phys. 91 (2016), arXiv: 1606.09602

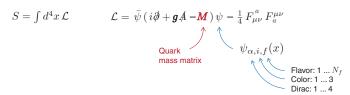

Barabanov, Bedolla, Brooks, Cates, Chen et al., "Diquark correlations in hadron physics: Origin, impact and evidence", Prog. Part. Nucl. Phys. 116 (2021), arXiv: 2008.07630

Symmetries in the spectrum



Symmetries in the spectrum





$$\mathcal{L} = \bar{\psi} \left(i \not \! \partial + \boldsymbol{g} \not \! A - \! \boldsymbol{M} \right) \psi - \frac{1}{4} F_{\mu\nu}^a F_a^{\mu\nu}$$
 Quark
$$\psi_{\alpha,i,f}(x)$$
 Flavor: 1 ... N_f Color: 1 ... N_f Direc: 1 ... N_f Direc: 1 ... N_f Direc: 1 ... N_f

• invariant under local SU(3) gauge transformations

- invariant under local SU(3) gauge transformations
- invariant under Poincaré group

Translations, rotations, boosts;

Two Casimir operators which label states: M (mass), J (total angular momentum, "spin")

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ + \mathbf{\textit{g}} \!\!\!/ \mathbf{\textit{A}} - \!\!\!\!\! \mathbf{\textit{M}} \right) \psi - \frac{1}{4} F_{\mu\nu}^a F_a^{\mu\nu}$$
 Quark
$$\psi_{\alpha,i,f}(x)$$
 Flavor: 1 ... N Color: 1 ... N Dirac: 1 ... 4

- invariant under local SU(3) gauge transformations
- · invariant under Poincaré group
- invariant under C, P, T

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ + \mathbf{g} A \!\!\!/ - \!\!\!\!\! \mathbf{M} \right) \psi - \frac{1}{4} F_{\mu\nu}^a F_a^{\mu\nu}$$
 Quark
$$\psi_{\alpha,i,f}(x)$$
 Flavor: 1 ... N Color: 1 ... N Dirac: 1 ... 4

- invariant under local SU(3) gauge transformations
- invariant under Poincaré group
- invariant under C, P, T
- · various global flavor (non-)symmetries:

$$extbf{\emph{U(1)}_{\emph{V}}}$$
 conserved: baryon number $B=\frac{1}{3}\left(n_{u}+n_{d}+n_{s}\right)$ n_{q} ... (# quarks) – (# antiquarks) $\psi'=e^{iarepsilon}\psi$ \Rightarrow Baryons carry $B=1$ (pentaquarks too)

- invariant under local SU(3) gauge transformations
- invariant under Poincaré group
- invariant under C. P. T
- · various global flavor (non-)symmetries:

$$U(1)_V$$
 conserved (baryon number)
 $SU(N_f)_V$ if M = m (all quark masses equal)

$$\psi'=e^{i\sum\limits_{a=1}^{s}arepsilon_{a}\mathbf{t}_{a}}\psi\;\; ext{for 3 flavors}$$

Define vector currents and charges:

$$\begin{split} V_a^\mu &= \overline{\psi} \, \gamma^\mu \, \mathsf{t}_a \, \psi \,, \quad \partial_\mu \, V_a^\mu &= i \overline{\psi} \, [\mathsf{M}, \mathsf{t}_a] \, \psi \,, \\ Q_a^V(t) &= \int d^3 x \, \psi^\dagger \, \mathsf{t}_a \, \psi \end{split}$$

Noether theorem: if symmetry preserved, divergence of current vanishes and charge is conserved. Can only work if M=m.

But the diagonal SU(3) generators t_3 , t_8 commute with M \rightarrow always conserved! Isospin I_3 , hypercharge Y:

$$I_3 = \frac{1}{2} (n_u - n_d), \quad Y = \frac{1}{3} (n_u + n_d - 2n_s)$$

These are still good quantum numbers, even if flavor symmetry is broken!

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ + \!\!\!\!/ \, \mathbf{g} \!\!\!/ \mathbf{A} - \!\!\!\!\!/ \mathbf{M} \right) \psi - \frac{1}{4} \, F_{\mu\nu}^{\ a} \, F_a^{\mu\nu}$$
 Quark
$$\psi_{\alpha,i,f}(x)$$

- invariant under local SU(3) gauge transformations
- · invariant under Poincaré group
- invariant under C. P. T
- · various global flavor (non-)symmetries:

Define axialvector currents and charges:

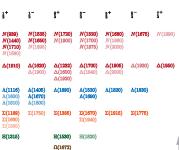
$$\begin{split} A_a^\mu &= \overline{\psi} \, \gamma^\mu \gamma_5 \, \mathrm{t}_a \, \psi \,, \quad \partial_\mu A_a^\mu &= i \overline{\psi} \, \{ \mathsf{M}, \mathrm{t}_a \} \, \gamma_5 \, \psi \,, \\ Q_a^A(t) &= \int d^3 x \, \psi^\dagger \gamma_5 \, \mathrm{t}_a \, \psi \end{split}$$

Symmetry only if M = 0 (chiral limit)

But symmetry spontaneously broken in QFT: dynamical chiral symmetry breaking

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ + \mathbf{g} A \!\!\!/ - \!\!\!\!\! \mathbf{M} \right) \psi - \frac{1}{4} \, F_{\mu\nu}^a \, F_a^{\mu\nu}$$
 Quark
$$\psi_{\alpha,i,f}(x)$$

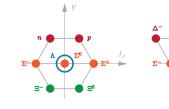
- invariant under local SU(3) gauge transformations
- invariant under Poincaré group
- invariant under C. P. T
- · various global flavor (non-)symmetries:

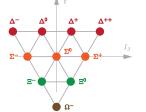

Only M = 0, but **anomalous breaking** in QFT (symmetry does not survive quantization)

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ + \mathbf{g} A \!\!\!/ - \!\!\!\!\! \mathbf{M} \right) \psi - \frac{1}{4} \, F_{\mu\nu}^a \, F_a^{\mu\nu}$$
 Quark
$$\psi_{\alpha,i,f}(x)$$
 mass matrix

- invariant under local SU(3) gauge transformations
- invariant under Poincaré group
- invariant under C. P. T
- · various global flavor (non-)symmetries:

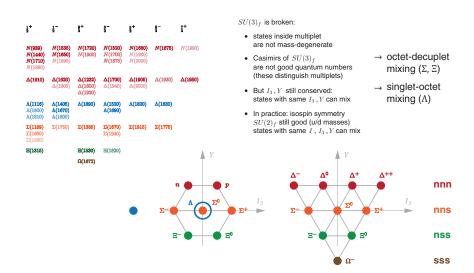
⇒ Quantum numbers for labelling baryons:

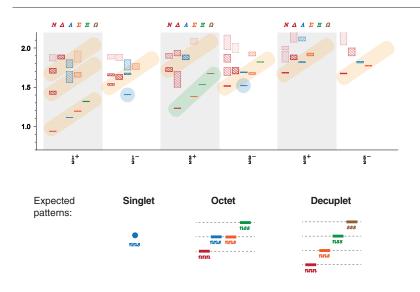

 M, J^P, I_3, Y



Quantum numbers for labelling baryons:

$$M, J^P, I_3, Y$$


Symmetries of the spectrum are the symmetries of \mathcal{L} !



nnn

nns nss sss

Dynamics?

- 1. Introduction
- 2. Spectrum & symmetries
- 3. Quark models
- 4. QFT toolbox
- 5. Functional methods
- 6. n-point functions & tensor bases
- 7. Multiquark states
- 8. Light-front wave functions

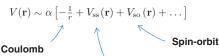
Lecture notes "QCD and hadron physics", https://particle.uni-graz.at/en/quarks-hadrons-and-nuclei

GE, "Hadron physics with functional methods", arXiv: 2503.10397 (for Encyclopedia of Particle Physics)

Burkert, GE, Klempt, "The impact of γN and γ*N interactions on our understanding of nucleon excitations", arXiv:2506.16482

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, "Baryons as relativistic three-quark bound states", Prog. Part. Nucl. Phys. 91 (2016), arXiv: 1606.09602

Barabanov, Bedolla, Brooks, Cates, Chen et al., "Diquark correlations in hadron physics: Origin, impact and evidence", Prog. Part. Nucl. Phys. 116 (2021), arXiv: 2008.07630


Quark models

$$H \Psi = E \Psi$$
 $H = H_{kin} + \sum_{i < j} V(\mathbf{r}_{ij})$

000000000

E.g. Breit-Fermi interaction:

non-relativistic limit of one-gluon exchange de Rujula, Georgi, Glashow, PRD 12 (1975)

 $\begin{array}{ll} \mbox{Hyperfine} \mbox{ (spin-spin) interaction:} \\ \mbox{generates splittings between } S = \frac{1}{2}, \frac{3}{2} \\ \Rightarrow \mbox{ e.g. } N - \Delta \mbox{ splitting} \\ \end{array}$

Reviews:

Hendry, Lichtenberg, Rep. Prog. Phys. 41 (1978) Capstick, Roberts, Prog. Part. Nucl. Phys. 45 (2000) Klempt, Richard, Rev. Mod. Phys. 82 (2010) Richard, 1205.4326 [hep-ph] Crede, Roberts. Rept. Prog. Phys. 76 (2013)

One-gluon exchange

de Rujula, Georgi, Glashow, PRD 12 (1975) Isgur, Karl, PRD 20 (1979) Godfrey, Isgur, PRD 32 (1985) Capstick, Isgur, PRD 34 (1986)

Goldstone-boson exchange

Glozman, Riska, Phys. Rept. 268 (1996) Glozman, Plessas, Varga, Wagenbrunn, PRD 58 (1998) Melde, Plessas, Sengl. PRD 77 (2008)

Diquark models

Anselmino, Predazzi, Ekelin, Fredriksson, Lichtenberg, Rev. Mod. Phys. 65 (1993) Ebert, Faustov, Galkin, PRD 72 (2005), PLB 659 (2008)

Santopinto, Ferretti, PRC 92 (2015), FBS 57 (2016) String models

Bijker, Iachello, Leviatan, Annals Phys. 236 (1994), Annals Phys. 284 (2000)

Large-Nc expansion

Goity, Schat, Scoccola, PRD 66 (2002), PLB 564 (2003) Matagne, Stancu, PRD 71 (2005), PRD 85 (2012)

Hypercentral quark model Giannini, Santopinto, Vassallo, EPJ A 12 (2001)

Giannini, Santopinto, Vassallo, EPJ A 12 (2001 Giannini, Santopinto, Chin. J. Phys. 53 (2015)

Light-front & holographic models Brodsky, de Teramond, Dosch, Erlich, Phys. Rept. 584 (2015)

BSE models

Loring, Kretzschmar, Metsch, Petry, EPJ A 10 (2001) Loring, Metsch, Petry, EPJ A 10 (2001) Metsch, EPJ A 35 (2008)

.

Quark potential models

Total wave function:

$$\Psi = \Psi_{dynamics} \otimes \Psi_{flavor} \otimes \Psi_{color}$$

Color part is totally antisymmetric:

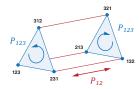
$$\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{10}_S \oplus \mathbf{8}_{M_A} \oplus \mathbf{8}_{M_S} \oplus \mathbf{1}_A$$

Flavor part:

Must find combined irreducible reps. of permutation group S_3 (3 valence guarks) and $SU(N_f)$ (N_f flavors)

⇒ Nucleon:

Proton:
$$\frac{1}{\sqrt{2}} \begin{bmatrix} udu - duu \\ -\frac{1}{\sqrt{3}} \left(udu + duu - 2uud \right) \end{bmatrix}$$
 Neutron:
$$\frac{1}{\sqrt{2}} \begin{bmatrix} udd - dud \\ \frac{1}{-2} \left(dud + udd - 2ddu \right) \end{bmatrix}$$


Singlet

Flavor

Permutation group S₃ consists of 6 group elements, can be reconstructed from transposition P_{12} (1 \leftrightarrow 2) and cyclic permutation P_{123} (1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1):

$$\begin{array}{l}
1 \ \psi_{123} = \psi_{123} \\
P_{123} \ \psi_{123} = \psi_{231} \\
P_{123}^2 \ \psi_{123} = \psi_{312}
\end{array}$$

$$\begin{array}{cccc} 1 \; \psi_{123} = \psi_{123} & & P_{12} \; \psi_{123} = \psi_{213} \\ P_{123} \; \psi_{123} = \psi_{231} & & P_{12} \; P_{123} \; \psi_{123} = \psi_{132} \\ P_{123}^2 \; \psi_{123} = \psi_{312} & & P_{12} \; P_{123}^2 \; \psi_{123} = \psi_{321} \end{array}$$

Cayley graph