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1.2 Quantization and Green functions

There are two standard methods to transform the classical action of Eq. (1.13) into
a quantum field theory. One is the canonical formalism, where the fields are treated
as operators on a Fock space and canonical (anti-)commutation relations are imposed.
The other is the path-integral formalism where an integral over all fields is performed,
thereby taking into account not only the classical field configurations but also their
quantum corrections. Both methods are equivalent and we will use them in combina-
tion, depending on what better suits our needs. We will recall some basic concepts of
quantum field theory with regard to its simplest example: a scalar field theory with only
one species of fields, ϕ(x), that is defined by the classical action S[ϕ] =

∫
d4x L(ϕ, ∂µϕ).

Later we will generalize this to QCD.

Green functions. The central quantities of a quantum field theory are its n-point
Green functions. They encode all possible interactions between n ’particles’ described
by the field ϕ and are related to the S−matrix elements of the theory. The Green
functions of a scalar field theory are defined as

G(x1, . . . xn) := 〈0|Tϕ(x1) . . .ϕ(xn)|0〉 . (1.21)

They are time-ordered vacuum expectation values of products of field operators ϕ(xi)
which are subject to spacelike commutation relations.

An alternative way to represent Green functions is the path-integral formalism; here
they are given by

G(x1, . . . xn) =

∫
Dϕ eiS[ϕ] ϕ(x1) . . . ϕ(xn)∫

Dϕ eiS[ϕ]
, Dϕ =

n∏

i=1

dϕ(xi) (1.22)

where the path integral measure goes over all possible field values at all space-time
points. If we had different types of fields with additional group representation labels
or Lorentz-Dirac indices, the product would go over all of them as well. In contrast
to Eq. (1.21), the fields ϕ(xi) are here not operators but just ordinary functions of
space-time (or anticommuting Grassmann fields when we are dealing with fermions).
Eventually we will drop this distinction (operator or number) in the notation and
assume that it becomes clear from the context.

When dealing with path integrals one should also remember to implement the correct
imaginary-time boundary conditions on the space-time integrals: these are necessary
to project out the interacting vacuum state that appears in the Green functions (1.21)
(e.g. Peskin-Schroeder, p.284). Equivalently, one could add iε terms in the action
which make the path integral well-defined and lead to the Feynman prescription for
propagators. The most convenient solution is to formulate the theory in Euclidean
space-time: in that case boundary conditions become irrelevant and the weight factor
in the integrand is non-negative and defines a probability measure. This is usually
done in practical calculations using the path-integral formalism. We will ignore this
subtlety in what follows and assume that, in case of doubt, one can simply consult the
Euclidean equivalents of all subsequent formulas.
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10 QCD

Partition function. A convenient method for generating Green functions is the par-
tition function or generating functional

Z[J ] =

∫
Dϕ ei(S[ϕ]−

∫
x ϕ(x)J(x)) . (1.23)

The idea is to add external source terms J(x) to the action (
∫
x is a shorthand for

∫
d4x),

so that the Green functions are obtained as functional derivatives of Z[J ], where J is
set to zero in the end:

G(x1 . . . xn) =
inδn

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

Z[J ]

Z[0]
. (1.24)

Generalizing Eqs. (1.21), (1.22) and (1.24) to arbitrary polynomial functions of fields at
different space-time points, one can replace their arguments by derivatives with respect
to the sources:

〈f(ϕ)〉 := 〈0|T f(ϕ)|0〉 =

∫
Dϕ eiS[ϕ] f(ϕ)∫

Dϕ eiS[ϕ]
= f

(
iδ

δJ

)∣∣∣∣
J=0

Z[J ]

Z[0]
. (1.25)

In the following it will be convenient to leave the J−dependence intact, at least for
intermediate steps in calculations. Green functions in the presence of the source J are
then defined as

〈f(ϕ)〉J :=

∫
Dϕ ei(S[ϕ]−

∫
x ϕ(x)J(x)) f(ϕ)

∫
Dϕ ei(S[ϕ]−

∫
x ϕ(x)J(x))

=
1

Z[J ]
f

(
iδ

δJ

)
Z[J ] . (1.26)

If we further set Z[J ] = eiW [J ] and exploit the relation f(∂) eW = eW f(∂ + ∂W ), we
can express the last equation as

〈f(ϕ)〉J = f

(
−δW [J ]

δJ
+

iδ

δJ

)
, (1.27)

which means that the dependence of the function f on each field value ϕ(xi) has to
be replaced by a dependence on the bracket above, with δ/δJ(xi), and all unsaturated
derivatives vanish since it acts on a constant.

1PI Green functions and effective action. The partition function Z[J ] generates
all n−point Green functions. In practice, we are usually more interested in the con-
nected Green functions and the one-particle-irreducible (1PI) Green functions. The
former enter in S-matrix elements and are hence of physical interest, and the latter do
away with the redundancy and describe the irreducible content of an n−point interac-
tion vertex. (For example, renormalizability can be determined from the 1PI vertices
alone.) One can also define generating functionals for these modified n−point func-
tions: connected Green functions are derivatives of the functional W [J ] := −i ln Z[J ]
with respect to J , and 1PI vertices are derivatives of the effective action Γ[ϕ̃] which is
related to W [J ] via a Legendre transformation:

Z[J ] = eiW [J ] = ei(Γ[ϕ̃]−
∫
x ϕ̃(x) J(x)) . (1.28)
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thereby taking into account not only the classical field configurations but also their
quantum corrections. Both methods are equivalent and we will use them in combina-
tion, depending on what better suits our needs. We will recall some basic concepts of
quantum field theory with regard to its simplest example: a scalar field theory with only
one species of fields, ϕ(x), that is defined by the classical action S[ϕ] =

∫
d4x L(ϕ, ∂µϕ).

Later we will generalize this to QCD.

Green functions. The central quantities of a quantum field theory are its n-point
Green functions. They encode all possible interactions between n ’particles’ described
by the field ϕ and are related to the S−matrix elements of the theory. The Green
functions of a scalar field theory are defined as

G(x1, . . . xn) := 〈0|Tϕ(x1) . . .ϕ(xn)|0〉 . (1.21)

They are time-ordered vacuum expectation values of products of field operators ϕ(xi)
which are subject to spacelike commutation relations.

An alternative way to represent Green functions is the path-integral formalism; here
they are given by

G(x1, . . . xn) =

∫
Dϕ eiS[ϕ] ϕ(x1) . . . ϕ(xn)∫

Dϕ eiS[ϕ]
, Dϕ =

n∏

i=1

dϕ(xi) (1.22)

where the path integral measure goes over all possible field values at all space-time
points. If we had different types of fields with additional group representation labels
or Lorentz-Dirac indices, the product would go over all of them as well. In contrast
to Eq. (1.21), the fields ϕ(xi) are here not operators but just ordinary functions of
space-time (or anticommuting Grassmann fields when we are dealing with fermions).
Eventually we will drop this distinction (operator or number) in the notation and
assume that it becomes clear from the context.

When dealing with path integrals one should also remember to implement the correct
imaginary-time boundary conditions on the space-time integrals: these are necessary
to project out the interacting vacuum state that appears in the Green functions (1.21)
(e.g. Peskin-Schroeder, p.284). Equivalently, one could add iε terms in the action
which make the path integral well-defined and lead to the Feynman prescription for
propagators. The most convenient solution is to formulate the theory in Euclidean
space-time: in that case boundary conditions become irrelevant and the weight factor
in the integrand is non-negative and defines a probability measure. This is usually
done in practical calculations using the path-integral formalism. We will ignore this
subtlety in what follows and assume that, in case of doubt, one can simply consult the
Euclidean equivalents of all subsequent formulas.
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12 QCD

This identity is extremely helpful in deriving relations for 1PI Green functions: if we
want to evaluate a classical equation f(ϕ) = 0 for the fields at the quantum level,
we replace the (usually non-linear) dependence on ϕ by the bracket in (1.27) – which
generates further derivatives and derivatives of propagators – and set all fields to zero
in the end, together with all unsaturated derivatives. If the classical action contains
more than one field, then the functional dependence in Eq. (1.35) holds for each ϕ̃i(x),
and the integral over y also goes over all intermediate (mixed!) propagators.

Dyson-Schwinger equations. Dyson-Schwinger equations are the quantum equa-
tions of motion of a field theory. They follow from an invariance of the generating
functional under a variation ϕ(x) → ϕ(x) + ε(x) of the fields: since this is just a rela-
beling and all fields are integrated over, the path integral stays the same. Assuming
that also the integral measure is invariant under this transformation, the condition
Z ′[J ] = Z[J ] amounts to

Z ′[J ] =

∫
Dϕ′ ei(S[ϕ

′]−
∫
x ϕ′(x)J(x))

=

∫
Dϕ e

i(S[ϕ]−
∫
x ϕ(x)J(x))+i

∫
x ε(x)

(
δS[ϕ]
δϕ(x)

−J(x)
)

= Z[J ]

〈
e
i
∫
x ε(x)

(
δS[ϕ]
δϕ(x)

−J(x)
)〉

J

!
= Z[J ] ,

(1.36)

which yields the quantum average of the classical equations of motion in the presence
of the source J : 〈

δS[ϕ]

δϕ(x)

〉

J

= J(x) . (1.37)

δS/δϕ is a function of the field ϕ(x). We can rewrite the left-hand side as a derivative
of the partition function Z[J ] like in Eq. (1.26), which will result in an expression that
contains (ordinary) Green functions for non-zero source terms. If we apply further
functional derivatives with respect to J and set J = 0 at the end, we successively
obtain relations that couple the various Green functions of the theory among each
other. These are the Dyson-Schwinger equations, and Eq. (1.37) is the defining relation
for the infinite tower of DSEs.

From Eq. (1.27) we could immediately write down the generating DSE for connected
Green functions, and from Eqs. (1.31) and (1.35) we can read off the generating DSE
for 1PI Green functions:

Γ′
x[ϕ̃] =

δS

δϕ

(
ϕ̃(x) +

∫

y

∆xy[ϕ̃]
iδ

δϕ̃(y)

)
. (1.38)

As before, the dependence on the field ϕ(x) in the argument of δS/δϕ has to be replaced
with the contents of the bracket, and all terms in the final expression which contain
unsaturated derivatives vanish. The second term in the bracket generates the quantum
corrections to the classical equations of motion: in its absence, the quantum effective
action Γ[ϕ̃] would become identical to the classical action for the field ϕ̃. Since the l.h.s
is the first derivative of the effective action, further differentiation of Eq. (1.38) and

finally setting ϕ̃ = 0 yields the system of DSEs for the 1PI n-point functions Γ
(n)
x1,...xn [0].

Classical action:

Also more complicated DSEs easy to derive.

Classical EoM 
(Dirac equation) 
for quark: 

Quantum EoM 
for quark:

Quark DSE:

+ + + +
-1 -1

S

0
δψ
δS

+
-1

δψ
δΓ

+
-1

+

dressed tree-level self-energy

-1 -1
+

=0ψ̄A,ψ,
ψδψ¯δ

Γ2δ

48 Supplements

F.10 Stuff

δΓ

δϕ
=

δS

δϕ


ϕ(x) +

∫

y

∆xy[ϕ]
iδ

δϕ(y)


 (F.24)

Alkofer, Huber, Schwenzer,  CPC 180 (2008)    Easy!

functional derivatives of Z[J] generates CFs ⇒  DSEs are relations between CFs
(similar: classical symmetry relations → WTIs, STIs)
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Derivation of DSEs: QCD

functional derivatives of Z[J] generates CFs ⇒  DSEs are relations between CFs
(similar: classical symmetry relations → WTIs, STIs)

...

DSEs for QCD 

dressed tree-level self-energy

Classical action:

Gluon: classical equation of motion (Maxwell equation)

Gluon: quantum equation of motion

Gluon DSE:

+ + + +
-1 -1

S

0
δA
δS

-1 -1
+

+ + +
-1

δA
δΓ

+ +

=0ψ̄A,ψ,
Aδ

Γ2δ
2

+ +(  ”  ) 

+

++

+

(ignoring prefactors & i’s)

(ignoring gauge fixing
 ⇒ ghosts)

quark loop

sunset squint

gluon loop tadpole
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DSEs

+ + +

+++

-1
=

-1
+

-1 -1
= ++

+++

+

Quark DSE

Gluon DSE

Three-gluon
vertex DSE

Quantum equations of motion:
exact equations in QFT

Like Feynman diagrams, but ingredients 
are dressed ⇒ integral equations

Nonperturbative, return perturbation
theory if coupling is small 

Each DSE contains higher n-point CFs
⇒ infinitely coupled system

Similar: functional
renormalization group

Set of all n-point CFs determines QFT

But do we need to know every CF (e.g., 127-gluon vertex) 
to make predictions? Higher n-point CFs are suppressed 
by momentum powers, higher loops by propagators

⇒ truncations: solve closed subset of equations 
    by neglecting higher n-point CFs or using ansätze

⇒ systematically improvable: can always enlarge system
    to get closer to full tower of exact equations

functional derivatives of Z[J] generates CFs ⇒  DSEs are relations between CFs
(similar: classical symmetry relations → WTIs, STIs)

...

Berges, Tetradis, Wetterich, 
Phys. Rept. 363 (2002),
Pawlowski, Annals. Phys. 322 (2007),
Dupuis et al., Phys. Rept. 910 (2021)

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),
Alkofer, Smekal, Phys. Rept. 353 (2001), ...
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Quark DSE

+ + +

+++

-1
=

-1
+

-1 -1
= ++

+++

+

Quark DSE

Gluon DSE

Three-gluon
vertex DSE

Quark propagator = two-point function,
basic object describing a quark in QCD:

In momentum space: 2 dressing functions

Compare: propagator for free spin-1/2 particle

Apparently, something drastic 
must be happening here: 
dynamical mass generation

functional derivatives of Z[J] generates CFs ⇒  DSEs are relations between CFs
(similar: classical symmetry relations → WTIs, STIs)

...

current-
quark 
mass

“constituent-
  quark mass”

350 MeV

3 MeV

10-2 10-1 100 101 102 103
10-4

10-3

10
-2

10
-1

10
0

10
1

Bottom
Charm
Strange
Up/down
Chiral limit

Quark mass 
function [GeV]:

𝑝� [𝐺𝑒𝑉�]

quark mass function
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Quark DSE

+ + +

+++

-1
=

-1
+

-1 -1
= ++

+++

+

Quark DSE

Gluon DSE

Three-gluon
vertex DSE

Remember chiral symmetry:

If chiral symmetry in classical Lagrangian were preserved 
in QFT, all n-point CFs would be chirally symmetric

This is true in perturbation theory: each diagram has
odd # gamma matrices  ⇒  Trace = 0  ⇒  M(p2) = 0

So it must be a nonperturbative effect. Quark DSE:

functional derivatives of Z[J] generates CFs ⇒  DSEs are relations between CFs
(similar: classical symmetry relations → WTIs, STIs)

...

current-
quark 
mass

“constituent-
  quark mass”

350 MeV

3 MeV

10-2 10-1 100 101 102 103

10-4

10-3

10
-2

10
-1

10
0

10
1

Bottom
Charm
Strange
Up/down
Chiral limit

Quark mass 
function [GeV]:

𝑝� [𝐺𝑒𝑉�]

= + +     . . .+ + +

)2g(O )4g(O
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Quark DSE

+ + +

+++

-1
=

-1
+

-1 -1
= ++

+++

+

Quark DSE

Gluon DSE

Three-gluon
vertex DSE

An illustrative model: gluon propagator = δ distribution

Chirally symmetric solution:

Chiral-symmetry breaking solution:

Chiral limit (m₀ = 0): 

,

In realistic DSE solution, no sharp 
phase transition in chiral limit, 
but otherwise similar

functional derivatives of Z[J] generates CFs ⇒  DSEs are relations between CFs
(similar: classical symmetry relations → WTIs, STIs)

...

Munczek, Nemirovsky, Phys. Rev. D 28 (1983) 

⇒ ⇒

2

Analogue: 
magnetization
vs. temperature

T

M(T)

QCD Higgs
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Quark DSE

+ + +

+++

-1
=

-1
+

-1 -1
= ++

+++

+

Quark DSE

Gluon DSE

Three-gluon
vertex DSE

Renormalization: 

Self-energy integrals are logarithmically UV-divergent 
⇒  regularize by integrating up to cutoff,
⇒  renormalize by setting 2 boundary conditions:

,

DSE can be solved iteratively: Start with guess for A(p2), M(p2), e.g., set them to 1.
Calculate self-energy integrals & evaluate them at renormalization scale. Determine Z₂.
Calculate A(p2), M(p2) again. Proceed until converged.

functional derivatives of Z[J] generates CFs ⇒  DSEs are relations between CFs
(similar: classical symmetry relations → WTIs, STIs)

...

Divergences cancel in 
subtraction!
Renormalized A(p2) now
depends on renormalization
scale μ, but M(p2) does not

finite

⇒
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Hadrons?

Baryon poles appear in elementary quark 6-point function:

How to calculate this? In principle from DSEs:

𝐺
𝑥�

𝑥�

𝑥�

𝑥�

𝑥�

𝑥�

𝑦�

𝑦�

𝑦�

𝑦�

𝑦�

𝑦�
𝑃            𝑚���

complicated structure & equations
for higher n-point functions,
more efficient: solve
Bethe-Salpeter equations

=

...

...

...=

𝐺��

𝐺��

-1
=

-1
+

-1 -1
= ++ + + . . .+
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Bethe-Salpeter equations

T-matrix = connected,
amputated part of G

2-body irreducible
kernel

Write down inhomogeneous BSE:

𝑇 𝐾𝐾 𝑇= +
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Bethe-Salpeter equations

T-matrix = connected,
amputated part of G

2-body irreducible
kernel

“non-perturbative”

“perturbative”

Write down inhomogeneous BSE:

Analogy: geometric series

only for

)x(x f) = 1 +x(f

)x(f2x+x= 1 +

)x(f3x+2x+x= 1 +

3x+ + ...2x+x1 +

) =x(f

≈)x(f

𝑇 𝐾𝐾 𝑇= + 𝐾 𝐾𝐾= + + . . .

|x| < 1

1

1 − x
⇒
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Bethe-Salpeter equations

T-matrix = connected,
amputated part of G

Write down inhomogeneous BSE: Homogeneous BSE at pole:

𝑇 𝐾𝐾 𝑇= +

qq irreducible kernel

compare pole
residues

chiral symmetry constraints (V + AV WTI)

can be systematically derived from effective action,
depends on QCD’s n-point functions

Analogue of Schrödinger equation in QFT!

𝛤 = Bethe-Salpeter amplitude

...

𝑃�           −𝑚�
𝛤 𝛤𝐾=
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Bethe-Salpeter equations

T-matrix = connected,
amputated part of G

Write down inhomogeneous BSE: Homogeneous BSE at pole:

𝑇 𝐾𝐾 𝑇= +

compare pole
residues

𝑃�           −𝑚�
𝛤 𝛤𝐾=

BSE = eigenvalue equation,
pole in T  ⇔  eigenvalue = 1

0λ1λ2λ

1

00
2m−1

2m−2
2m−

𝐾𝐺� 𝛤�  =  𝜆� 𝛤�

𝑃�

Explicitly:

Basis decomposition:

⇒  Coupled Lorentz-invariant equations 
     for the dressing functions 

γδ)]−q(S)q, P) Γ()q, Pp,( +q(S[αγ,δβK
4)π(2

q4d
∫

) =p, PΓ(

)p, P(iτ)2P , Pˆ·p̂,2p(if
=1i

n∑
) =p, PΓ(

if
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Chiral symmetry and the pion
Homogeneous BSE at pole:

𝚿

𝚿

𝚪=Bethe-Salpeter WF of pion:

Axialvector and pseudoscalar currents:

Now plug in PCAC relation from classical Lagrangian:

How can one see this? From axialvector WTI (= PCAC for 3-point functions) in chiral limit:

Take trace with

Plug this back into PCAC relation

⇒

⇒

⇒

⇒

⇒

pion electroweak decay constant

if      does not vanish in chiral limit,       must be zero!

Gell-Mann-Oakes-Renner relation

We know that                    in chiral limit ⇒                                 Goldstone theorem!

Maris, Roberts, Tandy, PLB 420 (1998)
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Chiral symmetry and the pion

So far, everything exact ⇒ pion from BSE is automatically massless in chiral limit if 

Let’s try a gluon ladder kernel:

BSE kernel respects axialvector WTI

Chiral symmetry is dynamically broken such that 

⇒ BSE kernel and 
    quark propagator
    must be related!

breaks chiral symmetry

generates bound-state poles 
in T, possibly also resonances

but also quark thresholds & cuts:
“hadrons” decay into quarks,
no confinement

would be ok if elementary d.o.f. were
not quarks but hadrons ( → EFTs)

(automatic in DSE)

... axialvector WTI

... vector WTI

in chiral limit

quark self-energy BSE kernel
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Chiral symmetry and the pion

Better: rainbow-ladder
Maris, Roberts,  PRC 56 (1997),  
Maris, Tandy,  PRC 60 (1999),
Qin, Chang et al., PRC 84 (2011)

Kernel = effective gluon exchange
with effective interaction

dressed propagators
from quark DSE

𝛤 𝛤=

chiral symmetry automatic,
massless pion in 
chiral limit

quark propagators do not 
develop real poles 
⇒ no quark thresholds

but also no resonances, instead bound states
(need to go beyond rainbow-ladder)

200

0
0 2 4 6 8 10

400

600

800

1000

𝑚� [𝑀𝑒𝑉]

𝑚� [𝑀𝑒𝑉]

𝑚� [𝑀𝑒𝑉]
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Chiral symmetry and the pion

Consider again our earlier model 
(gluon propagator = δ distribution)

Quark condensate:

Meson BSE for 𝑃� = 0  ⇒  𝑃� = 0  ⇒  pion amplitude has only 1 tensor:

Pion decay constant: use

Munczek-Nemirovsky model: ≈ 97 MeV GMOR:

BSE has eigenvalue 1 
at 𝑃� = 0  ⇒  massless 
pion in chiral limit

... Pagels-Stokar formula, PRD 20 (1979)

⇒  

Munczek, Nemirovsky, Phys. Rev. D 28 (1983) 

2

not bad!

not bad!

yes!

Λ = 1 GeV

Λ = 1 GeV
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Fischer, Kubrak, Williams,  EPJ A 51 (2015)

GE, Fischer, 
Weil, Williams,  
PLB 774 (2017)

Maris, Tandy, Nucl. Phys. B Proc. Suppl. 161 (2006),
Bashir, Chang, Cloet, El-Bennich, Liu, Roberts, Tandy,
Comm. Th. Phys. 58 (2012),
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 
Prog. Part. Nucl. Phys. 91 (2016),
. . . . 
 

GE, Fischer,
Williams,
PRD 101
(2020)

Rainbow-ladder results

Rainbow-ladder has been 
very useful tool, many calculations 
over past > 25 years

Bottomonium spectrum

Pion → γγ transition form factor

Pion electromagnetic form factor
9.4
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ρ pole: vector-meson dominance
comes out automatically!
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Quark in complex plane

+ + +

+++

-1
=

-1
+

-1 -1
= ++

+++

+

Quark DSE

Gluon DSE

Three-gluon
vertex DSE

For BSE, we usually need quark propagator for complex momenta (             ). 

complex
total momentum

For some interactions (e.g., Maris-Tandy) easy:
put               in quark DSE and “iterate once more”

In general not possible: pole in gluon propagator
produces cuts in integration. Naive integration 
over cuts yields nonsense

Workaround: analytic continuation from real axis

Solution: contour deformations or Cauchy method

functional derivatives of Z[J] generates CFs ⇒  DSEs are relations between CFs
(similar: classical symmetry relations → WTIs, STIs)

Naive calculation Contour deformations

How to do this? 

also complex
quark momenta

sampled on 
parabola in
complex plane,
limited by 
nearest quark
singularities
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Quark in complex plane

+ + +

+++

-1
=

-1
+

-1 -1
= ++

+++

+

Quark DSE

Gluon DSE

Three-gluon
vertex DSE

Contour deformations:

Integration:

Gluon momentum:

⇒ circle in complex plane with opening at

is real, is complex

Re 𝑞
Re 𝑝²

Im 𝑞
𝑝

𝑅

nearest 
singularity

cut cut

Re 𝑞

Im 𝑞
𝑝

𝜑

Im 𝑝²

⇒

. 

circular branch cut after z integration, 
along real axis

:If integrand is singular at Deform contour such that it passes through p. 
Because DSE is integral equation, we need
quark propagator from previous iteration for
these points in q ⇒ solve DSE along this path!
Ensures that you will never cross a cut

Can solve DSE in whole 
complex plane, up to angle 
where one hits the first 
dyn. generated singularity

cannot integrate
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Quark in complex plane

Contour deformations:

Scalar scattering equation:
direct access to 2nd sheet!

Maris, PRD 52 (1995)
Alkofer, Detmold, Fischer, Maris, PRD 70 (2004)
GE, 0909.0703 [hep-ph]
Strauss, Fischer, Kellermann,  PRL 109 (2012)
Windisch, Alkofer, Haase, Liebmann,  CPC 184 (2013)
Windisch, Huber, Alkofer,  PRD 87 (2013)
Weil, GE, Fischer, Williams,  PRD 96 (2017)
Pawlowski, Strodtho�, Wink,  PRD 98 (2018)
Williams, PLB 798 (2019)
Miramontes, Sanchis-Alepuz, EPJ A 55 (2019)
GE, Duarte, Pena, Stadler, PRD 100 (2019)
Fischer, Huber, PRD 102 (2020)
Santowsky, GE, Fischer, Wallbott, Williams,  PRD 102 (2020)
Miramontes, Sanchis-Alepuz, Alkofer,  PRD 103 (2021)
Santowsky, Fischer,  EPJ C 82 (2022)
GE, Ferreira, Stadler,  PRD 105 (2022)
. . . 

Fermion, gluon, ghost propagators,
glueball correlator, rare pion decay,
ρ and σ pole position, spectral functions,
quark-photon vertex, timelike pion
form factor, light-front wave functions,
...
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Towards ab-initio

Coupled Yang-Mills DSEs Huber, PRD 101 (2020),   
GE, Pawlowski, Silva, PRD 104 (2021)  

+ 1  1 

 1  1 + + + ++

+ + +++

Truncation error: 60% 10% 4%3

3

1

1

2

2

Go towards ab-initio calculations
by calculating higher n-point functions

...

𝛤 𝛤= 𝐾

Various approaches on the market, e.g.:

Gauging quark DSE yields 
vertex equation ⇒ meson poles

Expansion of BSE kernel via
nPI effective action

Chang, Roberts, PRL 103 (2009)

Williams, Fischer, Heupel, PRD 93 (2016)

Including ππ decay channel
generates resonances
Santowsky et al., PRD 102 (2020)

Glueball spectrum agrees with lattice QCD

BSE
lattice (Morningstar, Peardon 1999)

lattice (Athenodorou, Teper 2020)

Huber, Fischer, Sanchis-Alepuz,  EPJ C 80 (2020),  EPJ C 81 (2021)
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Towards ab-initio

Go towards ab-initio calculations
by calculating higher n-point functions

...

𝛤 𝛤= 𝐾

Various approaches on the market, e.g.:

Gauging quark DSE yields 
vertex equation ⇒ meson poles

Expansion of BSE kernel via
nPI effective action

Chang, Roberts, PRL 103 (2009)

Williams, Fischer, Heupel, PRD 93 (2016)

Including ππ decay channel
generates resonances
Santowsky et al., PRD 102 (2020)

0.1

Г/2 [GeV]

1st sheet2nd sheet

M
 [G

eV
]

0.00.1
0.0

0.2

0.4

0.6

0.8

Region 1

ππ threshold

Region 2Region 3

Solve ρ-meson BSE for complex total momenta
on 1st sheet, analytically continue to 2nd sheet
to determine pole resonance pole location

ρ resonance extracted from homogeneous BSE:
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Towards precision

Gluon propagator Ghost propagator Ghost-gluon vertex

Three-gluon vertex: lattice vs. FRG vs. DSE Four-gluon vertex

Lattice: Pinto-Gómez, de Soto, Rodriguez-Quintero, PLB 838 (2023),
Sternbeck et al., Pos LATTICE 2016;   FRG: Cyrol et al., PRD 94 (2016);
DSE: Huber, PRD 101 (2020), Huber, Fischer, Sanchis-Alepuz, 2503.03821

Lattice: Aguilar et al., PLB 858 (2024)
DSE: Huber, PRD 101 (2020)

Markus Huber, ACHT 2025;  Phys. Rept. 879 (2020) & PRD 101 (2020)
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Baryons

Three-quark BSE (Faddeev equation) for baryons:

2-body kernel:
fixed in meson sector

+  ++

++= +

3-body kernel: 
Leading diagram (3-gluon vertex) 
vanishes by color trace, 
higher-order diagrams small (?)
2-quark correlations dominant?

Rainbow-ladder
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   [ ]

(    )

1.6
1.7
1.8
1.9
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Maris,  Tandy, PRC 60 (1999)

Scale set by 𝑓� ,
shape parameter → bands

5

V. RESULTS

The explicit numerical implementation of the Faddeev
equation is described in App. A. The massive computa-
tional demand in solving the equation primarily comes from
the five Lorentz-invariant momentum combinations of Eq. (7)
upon which the amplitudes depend. In analogy to the sep-
arability assumption of the nucleon amplitude in the quark-
diquark model we omit the dependence on the angular vari-
able z0 = p̂T · q̂T but solve for all 64 dressing functions
fk(p2, q2, 0, z1, z2).

The resulting nucleon masses at the physical pion mass in
both setups A and B are shown in Table V. As a consequence
of Eq. (27), the two states ΨMA and ΨMS emerge as indepen-
dent solutions of the Faddeev equation. Both separate equa-
tions produce approximately the same nucleon mass, where
the deviation of ∼ 2% is presumably a truncation artifact as-
sociated with the omission of the angle z0. For either solution
typically only a small number of covariants are relevant which
are predominantly s-wave with a small p-wave admixture.
The corresponding amplitudes for the mixed-antisymmetric
solution are shown in Fig. 2. Comparing the relative strengths
of the amplitudes allows to identify the dominant contribu-
tions:

ΨMA :
∑

r

{
Sr

11, Vr
11, Sr

13, Vr
13, Xr

33,1

}
,

ΨMS :
∑

r

{
Ar

11, rVr
11, rPr

11, rVr
13, Xr

33,2

}
.

(29)

Fig. 3 displays the angular dependence in the variable z1
through the first few Chebyshev moments of the amplitudes
S±11 which contribute to ΨMA . The angular dependence in the
variable z2 is small compared to z1. This is analogous to the
quark-diquark model, where the dependence on the angle be-
tween the relative and total momentum of the two quarks in a
diquark amplitude is weak.

The evolution of MN and the ρ-meson mass from the BSE
vs. m2

π is plotted in Fig. 4 and compared to lattice results. The
findings for MN are qualitatively similar to those for mρ: setup
A, where the coupling strength is adjusted to the experimental
value of fπ, agrees with the lattice data. This behavior can
be understood in light of a recent study of corrections beyond
RL truncation which suggests a near cancellation in the ρ-
meson of pionic effects and non-resonant corrections from the
quark-gluon vertex [42]. Setup B provides a description of a
quark core which overestimates the experimental values while
it approaches the lattice results at larger quark masses.

A comparison to the consistently obtained quark-diquark
model result exhibits a discrepancy of only ∼ 5%. This sur-
prising and reassuring result indicates that a description of the
nucleon as a superposition of scalar and axial-vector diquark
correlations that interact with the remaining quark provides
a close approximation to the consistent three-quark nucleon
amplitude.

Ti j (Λ±γ5C ⊗ Λ+)
(γ5 ⊗ γ5) Ti j (Λ±γ5C ⊗ Λ+)

(30)

VI. CONCLUSIONS AND OUTLOOK

We have provided details on a fully Poincaré-covariant
three-quark solution of the nucleon’s Faddeev equation. The
nucleon amplitude which is generated by a gluon ladder-
exchange is predominantly described by s- and p-wave Dirac
structures, and the flavor independence of the kernel leads to
a mass degeneracy. The resulting nucleon mass is close to
the quark-diquark model result which stresses the reliability
of previous quark-diquark studies.

Due to the considerable computational efforts involved,
more results and an in-depth investigation with regard to the
complete set of invariant variables will be presented in the fu-
ture. Further extensions of the present work will include an
analogous investigation of the ∆-baryon, more sophisticated
interaction kernels, e.g. in view of pionic corrections, and ul-
timately a comprehensive study of baryon resonances.

Acknowledgements

We thank C. S. Fischer, M. Schwinzerl, and R. Williams
for useful discussions. This work was supported by the
Helmholtz Young Investigator Grant VH-NG-332, the Aus-
trian Science Fund FWF under Projects No. P20592-N16,
P20496-N16, and Doctoral Program No. W1203, and in part
by the European Union (HadronPhysics2 project “Study of
strongly interacting matter”).

APPENDIX A: NUMERICAL IMPLEMENTATION

Similar to the analogous case of a two-body Bethe-Salpeter
equation, the Faddeev equation (2) can be viewed as an eigen-
value problem for the kernel K̃(3):

K̃(3)(P2)Ψi = λi(P2)Ψi , (A1)

where P is the total momentum of the three-quark bound state
and enters the equation as an external parameter. Upon pro-
jection onto given quantum numbers, the eigenvalues of K̃(3)
constitute the trajectories λi(P2). An intersection λi(P2) = 1
at a certain value P2 = −M2

i reproduces Eq. (2) and therefore
corresponds to a potential physical state with mass Mi. The
largest eigenvalue λ0 represents the ground state of the quan-
tum numbers under consideration and the remaining ones λi≥1
its excitations; the associated eigenvectors Ψi are the bound-
state amplitudes. (Note that in this context one has to keep
in mind the possibility of anomalous states in the excitation
spectra of bound-state equation solutions [47].) To obtain the
ground-state solution, Eq. (A1) is solved via iteration within
a ’guess range’ P2 ∈ {−M2

min, −M2
max}, where Mmax is de-

termined from the singularity structure of the quark propa-
gator (see e.g. [36, 48]). Upon convergence of the eigen-
value λ0(P2) the procedure is repeated for different P2 until
λ0(P2 = −M2) = 1, thereby defining the nucleon mass M.

From a numerical point of view, it is advantageous to split
the Faddeev equation for K̃(3) = KS S into an equation for a

GE, Alkofer, Nicmorus, Krassnigg, PRL 104 (2010)

Relativistically, nucleon also has p waves!

Analogous results for many form factors

10

TABLE III: Orthonormal Dirac basis Xr
i j,k of Eq. (21) constructed from a partial-wave decomposition. The first two columns denote the

eigenvalues of total quark spin s and intrinsic orbital angular momentum l in the nucleon rest frame. The third and fourth columns define the
relation between the Xr

i j and the basis elements from Eq. (19-20). Each row involves 4 covariants; the superscripts r = ± are not displayed for
better readability. The fifth column shows the momentum-dependent covariants Ti j which appear in Eq. (21); we have abbreviated p̂T → p and
q̂t → q for clarity.

s l Ti j

1/2 0 1 ⊗ 1
1/2 0 γ

µ
T ⊗ γµT

1/2 1 1 ⊗ 1
2 [ /p, /q ]

1/2 1 1 ⊗ /p
1/2 1 1 ⊗ /q
1/2 1 γ

µ
T ⊗ γµT 1

2 [ /p, /q ]

1/2 1 γ
µ
T ⊗ γµT /p

1/2 1 γ
µ
T ⊗ γµT /q

3/2 1 3 ( /p ⊗ /q − /q ⊗ /p) − γµT ⊗ γµT [ /p, /q ]

3/2 1 3 /p ⊗ 1 − γµT ⊗ γµT /p
3/2 1 3 /q ⊗ 1 − γµT ⊗ γµT /q

3/2 2 3 /p ⊗ /p − γµT ⊗ γµT
3/2 2 /p ⊗ /p + 2 /q ⊗ /q − γµT ⊗ γµT
3/2 2 /p ⊗ /q + /q ⊗ /p
3/2 2 /q ⊗ [ /q, /p ] − 1

2 γ
µ
T ⊗ [ γµT , /p ]

3/2 2 /p ⊗ [ /p, /q ] − 1
2 γ
µ
T ⊗ [ γµT , /q ]

TABLE IV: Irreducible multiplets of the permutation group S3, constructed from the 8 covariants {Sr
11, Pr

11 ,A
r
11, Vr

11}.

ψ1
MA = S+11 ψ2

MA =
∑

r Pr
11 + S−11 ψ3

MA =
∑

r

(
Vr

11 − Pr
11

)
+ 2 S−11 ψA =

∑
r

(
Vr

11 + Pr
11

)
− 2 S−11

ψ1
MS = A+11 ψ2

MS =
∑

r rVr
11 − A−11 ψ3

MS =
∑

r r
(
Vr

11 + 3Pr
11

)
+ 2 A−11 ψS =

∑
r r
(
−Vr

11 + 3Pr
11

)
− 2 A−11

TABLE V: (adapted from Ref. [35]) Nucleon masses obtained from
the Faddeev equation in setups A and B and compared to the quark-
diquark result. The η dependence is indicated for setup B in paren-
theses.

Q-DQ [29] Faddeev (MA) Faddeev (MS)
Setup A 0.94 0.99 0.97
Setup B 1.26(2) 1.33(2) 1.31(2)

L = 0 L = 1

5

V. RESULTS

The explicit numerical implementation of the Faddeev
equation is described in App. A. The massive computa-
tional demand in solving the equation primarily comes from
the five Lorentz-invariant momentum combinations of Eq. (7)
upon which the amplitudes depend. In analogy to the sep-
arability assumption of the nucleon amplitude in the quark-
diquark model we omit the dependence on the angular vari-
able z0 = p̂T · q̂T but solve for all 64 dressing functions
fk(p2, q2, 0, z1, z2).

The resulting nucleon masses at the physical pion mass in
both setups A and B are shown in Table V. As a consequence
of Eq. (27), the two states ΨMA and ΨMS emerge as indepen-
dent solutions of the Faddeev equation. Both separate equa-
tions produce approximately the same nucleon mass, where
the deviation of ∼ 2% is presumably a truncation artifact as-
sociated with the omission of the angle z0. For either solution
typically only a small number of covariants are relevant which
are predominantly s-wave with a small p-wave admixture.
The corresponding amplitudes for the mixed-antisymmetric
solution are shown in Fig. 2. Comparing the relative strengths
of the amplitudes allows to identify the dominant contribu-
tions:

ΨMA :
∑

r

{
Sr

11, Vr
11, Sr

13, Vr
13, Xr

33,1

}
,

ΨMS :
∑

r

{
Ar

11, rVr
11, rPr

11, rVr
13, Xr

33,2

}
.

(29)

Fig. 3 displays the angular dependence in the variable z1
through the first few Chebyshev moments of the amplitudes
S±11 which contribute to ΨMA . The angular dependence in the
variable z2 is small compared to z1. This is analogous to the
quark-diquark model, where the dependence on the angle be-
tween the relative and total momentum of the two quarks in a
diquark amplitude is weak.

The evolution of MN and the ρ-meson mass from the BSE
vs. m2

π is plotted in Fig. 4 and compared to lattice results. The
findings for MN are qualitatively similar to those for mρ: setup
A, where the coupling strength is adjusted to the experimental
value of fπ, agrees with the lattice data. This behavior can
be understood in light of a recent study of corrections beyond
RL truncation which suggests a near cancellation in the ρ-
meson of pionic effects and non-resonant corrections from the
quark-gluon vertex [42]. Setup B provides a description of a
quark core which overestimates the experimental values while
it approaches the lattice results at larger quark masses.

A comparison to the consistently obtained quark-diquark
model result exhibits a discrepancy of only ∼ 5%. This sur-
prising and reassuring result indicates that a description of the
nucleon as a superposition of scalar and axial-vector diquark
correlations that interact with the remaining quark provides
a close approximation to the consistent three-quark nucleon
amplitude.

Ti j (Λ±γ5C ⊗ Λ+)
(γ5 ⊗ γ5) Ti j (Λ±γ5C ⊗ Λ+)

(30)

VI. CONCLUSIONS AND OUTLOOK

We have provided details on a fully Poincaré-covariant
three-quark solution of the nucleon’s Faddeev equation. The
nucleon amplitude which is generated by a gluon ladder-
exchange is predominantly described by s- and p-wave Dirac
structures, and the flavor independence of the kernel leads to
a mass degeneracy. The resulting nucleon mass is close to
the quark-diquark model result which stresses the reliability
of previous quark-diquark studies.

Due to the considerable computational efforts involved,
more results and an in-depth investigation with regard to the
complete set of invariant variables will be presented in the fu-
ture. Further extensions of the present work will include an
analogous investigation of the ∆-baryon, more sophisticated
interaction kernels, e.g. in view of pionic corrections, and ul-
timately a comprehensive study of baryon resonances.
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APPENDIX A: NUMERICAL IMPLEMENTATION

Similar to the analogous case of a two-body Bethe-Salpeter
equation, the Faddeev equation (2) can be viewed as an eigen-
value problem for the kernel K̃(3):

K̃(3)(P2)Ψi = λi(P2)Ψi , (A1)

where P is the total momentum of the three-quark bound state
and enters the equation as an external parameter. Upon pro-
jection onto given quantum numbers, the eigenvalues of K̃(3)
constitute the trajectories λi(P2). An intersection λi(P2) = 1
at a certain value P2 = −M2

i reproduces Eq. (2) and therefore
corresponds to a potential physical state with mass Mi. The
largest eigenvalue λ0 represents the ground state of the quan-
tum numbers under consideration and the remaining ones λi≥1
its excitations; the associated eigenvectors Ψi are the bound-
state amplitudes. (Note that in this context one has to keep
in mind the possibility of anomalous states in the excitation
spectra of bound-state equation solutions [47].) To obtain the
ground-state solution, Eq. (A1) is solved via iteration within
a ’guess range’ P2 ∈ {−M2

min, −M2
max}, where Mmax is de-

termined from the singularity structure of the quark propa-
gator (see e.g. [36, 48]). Upon convergence of the eigen-
value λ0(P2) the procedure is repeated for different P2 until
λ0(P2 = −M2) = 1, thereby defining the nucleon mass M.

From a numerical point of view, it is advantageous to split
the Faddeev equation for K̃(3) = KS S into an equation for a

[ ]

0.10.0 0.2 0.3 0.4 0.5

 [ ]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,  
Prog. Part. Nucl. Phys. 91 (2016)

see also: 
Qin, Roberts, Schmidt, 
PRD 97 (2018) 

Gernot Eichmann (Uni Graz) 69 / 149



Baryons

Baryon’s Faddeev amplitude:

nonrel. quark model: 
only 2 survive (         )

can be arranged into eigenstates of S and L
in baryon’s rest frame: s, p, d, f, .... waves

Lorentz-invariant
dressing functions

Dirac-Lorentz 
tensors: 
64 for J = 1/2,
128 for J = 3/2

Positive-energy
projector: Λ₊𝑢 = 𝑢

group theory
(same as before)

𝑝�

𝑝�
𝑞

𝑝
𝑝�

𝑃

𝛼

𝛽 𝛿

𝛾

αβγδ)p, q, P(iτ)P·P, q·q, p·, p2, q2p(if
i

∑
) =p, q, P(αβγδΨ

GE, Alkofer, Nicmorus, Krassnigg, PRL 104 (2010)

Flavor⊗ Color⊗

Relativistically, nucleon also has p waves!

= 0l

10

TABLE III: Orthonormal Dirac basis Xr
i j,k of Eq. (21) constructed from a partial-wave decomposition. The first two columns denote the

eigenvalues of total quark spin s and intrinsic orbital angular momentum l in the nucleon rest frame. The third and fourth columns define the
relation between the Xr

i j and the basis elements from Eq. (19-20). Each row involves 4 covariants; the superscripts r = ± are not displayed for
better readability. The fifth column shows the momentum-dependent covariants Ti j which appear in Eq. (21); we have abbreviated p̂T → p and
q̂t → q for clarity.

s l Ti j

1/2 0 1 ⊗ 1
1/2 0 γ

µ
T ⊗ γµT

1/2 1 1 ⊗ 1
2 [ /p, /q ]

1/2 1 1 ⊗ /p
1/2 1 1 ⊗ /q
1/2 1 γ

µ
T ⊗ γµT 1

2 [ /p, /q ]

1/2 1 γ
µ
T ⊗ γµT /p

1/2 1 γ
µ
T ⊗ γµT /q

3/2 1 3 ( /p ⊗ /q − /q ⊗ /p) − γµT ⊗ γµT [ /p, /q ]

3/2 1 3 /p ⊗ 1 − γµT ⊗ γµT /p
3/2 1 3 /q ⊗ 1 − γµT ⊗ γµT /q

3/2 2 3 /p ⊗ /p − γµT ⊗ γµT
3/2 2 /p ⊗ /p + 2 /q ⊗ /q − γµT ⊗ γµT
3/2 2 /p ⊗ /q + /q ⊗ /p
3/2 2 /q ⊗ [ /q, /p ] − 1

2 γ
µ
T ⊗ [ γµT , /p ]

3/2 2 /p ⊗ [ /p, /q ] − 1
2 γ
µ
T ⊗ [ γµT , /q ]

TABLE IV: Irreducible multiplets of the permutation group S3, constructed from the 8 covariants {Sr
11, Pr

11 ,A
r
11, Vr

11}.

ψ1
MA = S+11 ψ2

MA =
∑

r Pr
11 + S−11 ψ3

MA =
∑

r

(
Vr

11 − Pr
11

)
+ 2 S−11 ψA =

∑
r

(
Vr

11 + Pr
11

)
− 2 S−11

ψ1
MS = A+11 ψ2

MS =
∑

r rVr
11 − A−11 ψ3

MS =
∑

r r
(
Vr

11 + 3Pr
11

)
+ 2 A−11 ψS =

∑
r r
(
−Vr

11 + 3Pr
11

)
− 2 A−11

TABLE V: (adapted from Ref. [35]) Nucleon masses obtained from
the Faddeev equation in setups A and B and compared to the quark-
diquark result. The η dependence is indicated for setup B in paren-
theses.

Q-DQ [29] Faddeev (MA) Faddeev (MS)
Setup A 0.94 0.99 0.97
Setup B 1.26(2) 1.33(2) 1.31(2)

s waves
(8)

p waves
(36)

d waves
(20)
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V. RESULTS

The explicit numerical implementation of the Faddeev
equation is described in App. A. The massive computa-
tional demand in solving the equation primarily comes from
the five Lorentz-invariant momentum combinations of Eq. (7)
upon which the amplitudes depend. In analogy to the sep-
arability assumption of the nucleon amplitude in the quark-
diquark model we omit the dependence on the angular vari-
able z0 = p̂T · q̂T but solve for all 64 dressing functions
fk(p2, q2, 0, z1, z2).

The resulting nucleon masses at the physical pion mass in
both setups A and B are shown in Table V. As a consequence
of Eq. (27), the two states ΨMA and ΨMS emerge as indepen-
dent solutions of the Faddeev equation. Both separate equa-
tions produce approximately the same nucleon mass, where
the deviation of ∼ 2% is presumably a truncation artifact as-
sociated with the omission of the angle z0. For either solution
typically only a small number of covariants are relevant which
are predominantly s-wave with a small p-wave admixture.
The corresponding amplitudes for the mixed-antisymmetric
solution are shown in Fig. 2. Comparing the relative strengths
of the amplitudes allows to identify the dominant contribu-
tions:

ΨMA :
∑

r

{
Sr

11, Vr
11, Sr

13, Vr
13, Xr

33,1

}
,

ΨMS :
∑

r

{
Ar

11, rVr
11, rPr

11, rVr
13, Xr

33,2

}
.

(29)

Fig. 3 displays the angular dependence in the variable z1
through the first few Chebyshev moments of the amplitudes
S±11 which contribute to ΨMA . The angular dependence in the
variable z2 is small compared to z1. This is analogous to the
quark-diquark model, where the dependence on the angle be-
tween the relative and total momentum of the two quarks in a
diquark amplitude is weak.

The evolution of MN and the ρ-meson mass from the BSE
vs. m2

π is plotted in Fig. 4 and compared to lattice results. The
findings for MN are qualitatively similar to those for mρ: setup
A, where the coupling strength is adjusted to the experimental
value of fπ, agrees with the lattice data. This behavior can
be understood in light of a recent study of corrections beyond
RL truncation which suggests a near cancellation in the ρ-
meson of pionic effects and non-resonant corrections from the
quark-gluon vertex [42]. Setup B provides a description of a
quark core which overestimates the experimental values while
it approaches the lattice results at larger quark masses.

A comparison to the consistently obtained quark-diquark
model result exhibits a discrepancy of only ∼ 5%. This sur-
prising and reassuring result indicates that a description of the
nucleon as a superposition of scalar and axial-vector diquark
correlations that interact with the remaining quark provides
a close approximation to the consistent three-quark nucleon
amplitude.

Ti j (Λ±γ5C ⊗ Λ+)
(γ5 ⊗ γ5) Ti j (Λ±γ5C ⊗ Λ+)

(30)

VI. CONCLUSIONS AND OUTLOOK

We have provided details on a fully Poincaré-covariant
three-quark solution of the nucleon’s Faddeev equation. The
nucleon amplitude which is generated by a gluon ladder-
exchange is predominantly described by s- and p-wave Dirac
structures, and the flavor independence of the kernel leads to
a mass degeneracy. The resulting nucleon mass is close to
the quark-diquark model result which stresses the reliability
of previous quark-diquark studies.

Due to the considerable computational efforts involved,
more results and an in-depth investigation with regard to the
complete set of invariant variables will be presented in the fu-
ture. Further extensions of the present work will include an
analogous investigation of the ∆-baryon, more sophisticated
interaction kernels, e.g. in view of pionic corrections, and ul-
timately a comprehensive study of baryon resonances.
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APPENDIX A: NUMERICAL IMPLEMENTATION

Similar to the analogous case of a two-body Bethe-Salpeter
equation, the Faddeev equation (2) can be viewed as an eigen-
value problem for the kernel K̃(3):

K̃(3)(P2)Ψi = λi(P2)Ψi , (A1)

where P is the total momentum of the three-quark bound state
and enters the equation as an external parameter. Upon pro-
jection onto given quantum numbers, the eigenvalues of K̃(3)
constitute the trajectories λi(P2). An intersection λi(P2) = 1
at a certain value P2 = −M2

i reproduces Eq. (2) and therefore
corresponds to a potential physical state with mass Mi. The
largest eigenvalue λ0 represents the ground state of the quan-
tum numbers under consideration and the remaining ones λi≥1
its excitations; the associated eigenvectors Ψi are the bound-
state amplitudes. (Note that in this context one has to keep
in mind the possibility of anomalous states in the excitation
spectra of bound-state equation solutions [47].) To obtain the
ground-state solution, Eq. (A1) is solved via iteration within
a ’guess range’ P2 ∈ {−M2

min, −M2
max}, where Mmax is de-

termined from the singularity structure of the quark propa-
gator (see e.g. [36, 48]). Upon convergence of the eigen-
value λ0(P2) the procedure is repeated for different P2 until
λ0(P2 = −M2) = 1, thereby defining the nucleon mass M.

From a numerical point of view, it is advantageous to split
the Faddeev equation for K̃(3) = KS S into an equation for a

s waves p waves
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VI. CONCLUSIONS AND OUTLOOK

We have provided details on a fully Poincaré-covariant
three-quark solution of the nucleon’s Faddeev equation. The
nucleon amplitude which is generated by a gluon ladder-
exchange is predominantly described by s- and p-wave Dirac
structures, and the flavor independence of the kernel leads to
a mass degeneracy. The resulting nucleon mass is close to
the quark-diquark model result which stresses the reliability
of previous quark-diquark studies.

Due to the considerable computational efforts involved,
more results and an in-depth investigation with regard to the
complete set of invariant variables will be presented in the fu-
ture. Further extensions of the present work will include an
analogous investigation of the ∆-baryon, more sophisticated
interaction kernels, e.g. in view of pionic corrections, and ul-
timately a comprehensive study of baryon resonances.
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Similar to the analogous case of a two-body Bethe-Salpeter
equation, the Faddeev equation (2) can be viewed as an eigen-
value problem for the kernel K̃(3):

K̃(3)(P2)Ψi = λi(P2)Ψi , (A1)

where P is the total momentum of the three-quark bound state
and enters the equation as an external parameter. Upon pro-
jection onto given quantum numbers, the eigenvalues of K̃(3)
constitute the trajectories λi(P2). An intersection λi(P2) = 1
at a certain value P2 = −M2

i reproduces Eq. (2) and therefore
corresponds to a potential physical state with mass Mi. The
largest eigenvalue λ0 represents the ground state of the quan-
tum numbers under consideration and the remaining ones λi≥1
its excitations; the associated eigenvectors Ψi are the bound-
state amplitudes. (Note that in this context one has to keep
in mind the possibility of anomalous states in the excitation
spectra of bound-state equation solutions [47].) To obtain the
ground-state solution, Eq. (A1) is solved via iteration within
a ’guess range’ P2 ∈ {−M2

min, −M2
max}, where Mmax is de-

termined from the singularity structure of the quark propa-
gator (see e.g. [36, 48]). Upon convergence of the eigen-
value λ0(P2) the procedure is repeated for different P2 until
λ0(P2 = −M2) = 1, thereby defining the nucleon mass M.

From a numerical point of view, it is advantageous to split
the Faddeev equation for K̃(3) = KS S into an equation for a
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Diquark correlations

Quark-diquark (two-body) equation
Oettel et al., PRC 58 (1998),  GE et al., Ann. Phys. 323 (2008),  Cloet et al., FBS 46 (2009),  Segovia et al.,  PRL 115 (2015)

Three-quark and quark-diquark results very similar
GE, Fischer, Sanchis-Alepuz,  PRD 94 (2016)

Barabanov et al., Prog. Part. Nucl. Phys. 116 (2021)
Diquark clustering in baryons?
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Diquarks 101

Wave function:
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Diquarks 101

Wave function:

Total wave function:
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Diquark correlations
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Diquark correlations

− −

Light baryon spectrum
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Diquark correlations
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Light baryon spectrum
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Relativistic effects

− −

Orbital angular momentum: clear traces of nonrelativistic quark model,
but strong relativistic effects (in some cases even dominant)

Relativistic contributions
even up to bottom baryons!

J = 3/2 ground states J = 3/2 first excitations

L = 0

Quark model:

L = 1

L = 2

GE, FBS 58 (2017)
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Strange baryons
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Strange baryons
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New states from Bonn-Gatchina
Sarantsev, Matveev, Nikonov, Anisovich, Thoma,  
EPJA 55 (2019)

GE, Fischer, FBS 60 (2019),  Fischer, GE, PoS Hadron 2017

Gernot Eichmann (Uni Graz) 78 / 149



Heavy baryons

Kim, Hosaka, Kim, Noumi, Shirotori, PTEP 2014 (2014), 10, 103D01,
Shim, Hosaka, Kim,  PTEP 2020 (2020) 5, 053D01

n n
c

n c
n

n

c

n

 Λ� , Σ�
 Λ� , Σ�
 Λ�
 Σ�

 0, 1
 0, 1
 0
 1

Λ�:      n [nc], n {nc},       c [nn]
Σ�:      n [nc], n {nc},       c {nn}

 Quark content  q-dq  Isospin  contributes to

 n [nc]

 c [nn]
 c {nn}

 n {nc}
 nnc

 n = u, d

Sometimes these are assumed as dominant components,
e.g. J-PARC charm baryon spectroscopy program (high-p)

Decay of ρ mode → Σ�π
Decay of λ mode → pD

Assumptions
on spectrum &
production rates

spin-spin
interaction

⇒

d
u
u

d
u
c

u
d

c
d

ρ

λ

ρ mode

λ mode
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Heavy baryons

>n n
c

n c
n

~60% ~40%

n n
c

n c
n

Quark-diquark BSE would not work under this assumption, e.g., Σ�:

Results: wave function contributions

n[nc], n{nc} necessary, 
otherwise no equation.
Presumably these are
also dominant: cannot
switch off n[nc], n{nc},
but c{nn}

Analogous for Λ� 
and hyperons
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n

n

n

n

c

c

c

c

n

c

{nc}

{nn}

n

50%

60%

40%

SC [nn] AV {nn} SC [nc] AV {nc} SC [nn] AV {nn} SC [nc] AV {nc}

20%
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30%

0

Torcato, Arriaga, GE, Peña, FBS 64 (2023)
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Heavy baryons

n n
c

n c
n

Quark-diquark BSE would not work under this assumption, e.g., Σ�:

Results: spectrum

n[nc], n{nc} necessary, 
otherwise no equation.
Presumably these are
also dominant: cannot
switch off n[nc], n{nc},
but c{nn}

Analogous for Λ� 
and hyperons
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n

n

n

c

c

c

c

n

c

{nc}

{nn}

n

M [MeV]
Torcato, Arriaga, GE, Peña, 
FBS 64 (2023)

see also:
Yin, Chen, Krein, 
Roberts, Segovia,
PRD 100 (2019)
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Form factors

Nucleon electromagnetic FFs 
GE,  PRD 84 (2011)

∆-baryon em. transition FFs 
GE,  Nicmorus,  PRD 85 (2012)

Roper em. transition FFs
Segovia et al., PRL 115 (2015)

Timelike em. strangeness FFs
Ramalho, Peña,  PRD 101 (2020)

Timelike pion FF dynamically develops 𝜌 pole with 𝜋𝜋 decay channel
Miramontes, Sanchis-Alepuz, Alkofer,  PRD 103 (2021)
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Many form factor calculations in qqq or q(qq) approaches available:

BELLE
KLOE
NA7
DESY
JLab F𝜋-1
JLab F𝜋-2

DSE
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GE, Fischer, Williams,  
PRD 101 (2020), 
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Lecture notes “QCD and hadron physics”,
https://particle.uni-graz.at/en/quarks-hadrons-and-nuclei

GE, “Hadron physics with functional methods”, 
arXiv: 2503.10397 (for Encyclopedia of Particle Physics)

Burkert, GE, Klempt, “The impact of γN and γ*N 
interactions on our understanding of nucleon 
excitations”,  arXiv:2506.16482

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,
“Baryons as relativistic three-quark bound states”,
Prog. Part. Nucl. Phys. 91 (2016),  arXiv: 1606.09602

Barabanov, Bedolla, Brooks, Cates, Chen et al.,
“Diquark correlations in hadron physics: Origin,
impact and evidence”, Prog. Part. Nucl. Phys. 116 (2021),  
arXiv: 2008.07630

2.  Spectrum & symmetries

1.  Introduction

3.  Quark models

7.  Multiquark states

8.  Light-front wave functions

4. QFT toolbox

5. Functional methods

6. n-point functions & tensor bases
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Correlation functions

Classical action of QCD:

g g
g 2

Two-point functions

quark 
propagator

. . .

gluon
propagator quark-

gluon 
vertex

QFT

three-
gluon 
vertex

. . .

Three-point functions

four-
gluon 
vertex

mesons baryons tetraquarks

quark
4-point

function

quark
6-point

function

Higher n-point functions

Bethe-Salpeter amplitudes

...

...
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Correlation functions

Two-point functions

quark 
propagator

. . .

gluon
propagator quark-

gluon 
vertex

three-
gluon 
vertex

. . .

Three-point functions

four-
gluon 
vertex

mesons baryons tetraquarks

quark
4-point

function

quark
6-point

function

Higher n-point functions

Bethe-Salpeter amplitudes

...

...

Lorentz & parity invariance

Crossing symmetry, charge conjugation
Gauge invariance

Information is contained in Lorentz-invariant
dressing functions:

What can we learn from symmetries?

Tensor bases?Kinematics?

Gµν...
αβ...(p1, . . . pn) =

N∑

i=1

fi(p
2
1, p

2
2, . . . ) τi(p1, . . . pn)µν...αβ...
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1.  Example: 2→2 scattering

2.  Euclidean metric

3.  QCD’s n-point functions

4.  Tensor bases

5.  Kinematics
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2→2 scattering (1)

Scalar ⇒ only one function

4 momenta + momentum conservation ⇒ 3 independent momenta,
define:

3 momenta ⇒ 6 Lorentz invariants:

Assume all particles are onshell:

𝑞

𝑝�

𝑘�𝑘�

𝑘

𝑝

𝑝�

,
2

fp+ip=p ,
2

fk+ik=k fk−ik=ip−fp=q

⇒
⇒2

q−p=ip

2

q
+p=fp

2

q
+k=ik

2

q−k=fk
fk+fp=ik+ip

k·q, p·q, k·, p2, k2, q2p

2M=f
2p=i

2p 2m=f
2k=i

2k

 ⇒ 2 variables left:

,

2M=q·p−4

2q
+2p=i

2p

2M=q·p+4

2q
+2p=f

2p

2m=q·k−4

2q
+2k=f

2k

2m=q·k+4

2q
+2k=i

2k

4

2q−2M=2, p= 0q·p

4

2q−2m=2, k= 0q·k

2M4

2q−=τ

2M

k·p
=λ

)f, kf, pi, kipΓ(
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2→2 scattering (2)

3 independent momenta, 2 Lorentz invariants:

Define

Momentum transfer:

Crossing variable:

Mandelstam variables:

𝑞

𝑝�

𝑘�𝑘�

𝑘

𝑝

𝑝�
⇒

⇒

⇒
⇒

⇒

2

q−p=ip

2

q
+p=fp

2

q
+k=ik

2

q−k=fk

4

2q−2M=2, p= 0q·p

4

2q−2m=2, k= 0q·k

2M4

2q−=τ

2M

k·p
=λ

2M2

2M − 2m=ε
)ε−τ(1 +2M= 2

2

2q−2m+2M=2k+2p

)ε2−(12M=2m

)ε−λ+τ(1+2M= 2k·p+22k+2p=2)k+p= (2)fk+fp= (2)ik+ip= (s

)ε−λ−τ(1+2M= 2k·p2−2k+2p=2)k−p= (2)ik−fp= (2)fk−ip= (u

τ2M4−=2q=2)fk−ik= (2)ip−fp= (t

2m+ 22M) = 2ε−(12M= 4u+t+s

ε1 +−2M4

u+s=2M4

t−=τ

2M4
u−s=λ

)f, kf, pi, kipΓ(

)λ, τ(f=

)s, t, u(f=
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Mandelstam plane

Different processes described by same amplitude,
but with different physical domains:

Dressing functions are
determined by (all) their singularities:

e.g. Nπ scattering

s channel:
1 + 2 → 3 + 4

t channel:
1 + 3 → 2 + 4

u channel:
1 + 4 → 2 + 3

here: identical masses (ε = 0)

ε1 +−2M4

u+s=2M4

t−=τ

2M4
u−s=λ

u
channel

s
channel

𝑡 = 0

𝑡 = 4𝑀�

𝑡

𝜆

𝑢 = 0 𝑠 =
 0

𝑢 = 4𝑀
� 𝑠 =

 4𝑀
�

t
channel

1

2

3

4

1

2

3

4

1

2

3

4

+Nπ→+Nπ +π−π→N̄N N−π→−Nπ

= +  cuts +  (...)
s

t
u

++
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Mandelstam plane

Amplitudes are Lorentz-invariant,
no need to go into specific frame 
unless to relate with experiments:

see Astrid’s lectures next week

λ and τ are the same in any frame!

CM Frame:

Lab Frame:

ε1 +−2M4

u+s=2M4

t−=τ

2M4
u−s=λ

u
channel

s
channel

t
channel

]
2m+2k

√
2M+2k

√
) +CMθ(1 + cos2

2k
[

2M

1=2M

u−s=λ

)CMθcos−(12M2

2k
=τ

=λ

=τ
labθlabk

...

... ,

)
e|k|

2M+2k
√(

=ip

)
′e|k|

2M+2k
√(

=fp

CMθ
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But ...

Amplitudes have Dirac and/or Lorentz structure

 →  complicated tensor bases

 →  many dressing functions

 →  complicates problem both algebraically and numerically

 →  use symmetries to find efficient tensor bases:
     gauge invariance & permutation symmetries 
     (crossing symmetry, charge conjugation)

After all that, we can 
talk about dynamics!

Amplitudes are offshell:
  

 →  complicated kinematic phase space (here: 6 variables)

 →  how to find most convenient set of Lorentz invariants?

µνρσΓ αβγδΓ αβ
µνΓ  
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1.  Example: 2→2 scattering

2.  Euclidean metric

3.  QCD’s n-point functions

4.  Tensor bases

5.  Kinematics
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Euclidean conventions

Why Euclidean?

We’re often dealing with spacelike momenta
(virtual particles)

Loop momenta are spacelike

Minkowski metric (+, –, –, –) is inconvenient:
upper & lower indices, cumbersome to write code

QFT is already “Euclidean”:

As long as amplitudes fall off fast enough 
at complex infinity, this is equivalent to 
Euclidean QFT!

 2M4

2Q=
2M4

2q−=τ

To make QFT well-defined, one needs 
imaginary-time boundary conditions:

∫
d4x =

∫
d3x

∞(1−iε)∫

−∞(1−iε)

dx0 ⇔
∫

d4p =

∫
d3p

∞

∞

(1+iε)∫

∫

−∞

−∞

(1+iε)

dp0

Corresponds to iε prescription 
in Feynman propagator:

p₄ integration

iε+2m−2p
1

Re 

Im 

Re 

Im 

p₀ integration

Wick 
rotation

0p iε−2m+2p=0
2p⇒d

)2Q(F

electron

proton
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Euclidean conventions

spaceliketimelike

So, let’s employ a Euclidean metric (+, +, +, +): 

To preserve meaning of slash

Euclidean action is non-negative, 
    defines probability measure: 

Disclaimer: This does not mean 
you can simply close your eyes 
when computing loop integrals...
if there are cuts in the way, you 
must still deform the integration 
contour (also in Euclidean)!

Lorentz invariants only pick up minus signs, 
Mandelstam planes don’t change!

,

,

RR

aµE =

[
a

ia0

]
aE · bE = −a · b

2a−=E
2a

/a = a0γ

we must redefine matrices:γ

0 − a · γ

iγµ
E =

[
γ
iγ0

]
, γ5

E = γ5 ⇒
/aE = aE · γE = i/a

{γµ
E , γν

E} = 2δµν

(γi
E)2 = 1

γµ
E = γµ

E

)†

eiS = exp

[
i

∫
d4x ψ (i/∂ − m) ψ

]
= exp

[
−
∫

d4xE ψ (/∂E + m) ψ

]
= e−SE

Re 

Im 

Re 

Im 

Resonances

Bound 
states

2pIm

2p
E

Re

E
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Euclidean conventions

spaceliketimelike

From now on, I will use Euclidean conventions:

When people say
“We need to go to Minkowski space”,
what they usually mean is:
We need to go to the timelike region!

No distinction between upper & lower indices

means spacelike, timelike

For a general four momentum (e.g. loop momenta)

Easy to code!

Re Im Re Im 

Resonances

Bound 
states

2pIm

2pRe⇒ 



iM
0
0
0





=P 2M−=2P





z
y2z−1

√ ψcos2y−1
√

2z−1
√ ψsin2y−1

√
2z−1

√





2p
√

=p

0>2p 0<2p

For an onshell momentum in the rest frame, we write

Gernot Eichmann (Uni Graz) 93 / 149



1.  Example: 2→2 scattering

2.  Euclidean metric

3.  QCD’s n-point functions

4.  Tensor bases

5.  Kinematics

Gernot Eichmann (Uni Graz) 93 / 149



Correlation functions in QCD

Q

Q

)
Q
µνξL+Q

µνT)2Q(Z
(

2Q

1) =Q(µνD

2Q

νQµQ−µνδ=Q
µνT

νQµQµνδ

2Q

νQµQ
=Q

µνL

Quark propagator

Ghost propagator

Gluon propagator

1 momentum, 
2 Dirac indices ⇒ 

color

if (+) here, then also (+)
in ghost-gluon vertex

transverse &
longitudinal
projectors

quark
mass
function

gluon dressing

Re Im Re Im 

ijδ
2)2p(M+2p

)2p(M+p/i−
)2p(A

1) =p(S

ijδ

abδ

abδ

))2p(M+p/i)(2p(A=1−)p(S

p/1, 

Sαβ (p) =

2∑

i=1

fi(p
2) τi(p)αβ

1 momentum, 
2 Lorentz indices ⇒ , 

D
µν µν

(Q) =

2∑

i=1

fi(Q
2) τi(Q)

2Q

)2Q(G−) =Q(GD
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Correlation functions in QCD

,  

,  ,  

,  

, , 

,  

, 

, 

, 

, 

,  ,  

Q Q

k

Ghost-gluon vertex

Three-gluon vertex

Four-gluon vertex

Quark-gluon vertex

2 momenta, 
1 Lorentz index ⇒ 

2 momenta, 
1 Lorentz index,
2 Dirac indices

2 momenta, 
3 Lorentz indices

3 momenta, 
4 Lorentz indices,
5 color tensors

]
µQ)2Q, Q·, p2p(B+

µp
)

)2Q, Q·, p2p(A1 +abcigf−) =p, Q(gh
µΓ

µ, Qµp

)k, Q()k, Q( i
µτ)2Q, Q·, k2k(if

=1i

12∑
atig=q

µΓ

=1i

14∑
)3, p2, p1p(i

µνρτ)3
2, p2

2, p1
2p(ifabcigf) =3, p2, p1p(3g

µνρΓ

=1i

136∑
=1j

5∑
abcd

)j(
τ)4, p3, p2, p1p(i

µνρστ). . .(ijf2g−) =4, p3, p2, p1p(
µνρσΓ
4g

!

!

!!
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Fermion-vector vertex

 

 

Q

Qk k

+k

+k

−k

−k

Let’s consider a general fermion-vector vertex:

2 independent momenta: 

12 linearly independent tensors:

The vertex has a charge-conjugation symmetry:

where is the charge-conjugation matrix and satisfies

This is a complete basis.
But is it also the best choice?

or (simpler in practice)

)k, Q()k, Q( i
µτ)2Q, Q·, k2k(if

=1i

12∑
i=µΓ

,

,

,

,

, .

,

2

Q±k=±k ⇔
2

−k++k=k −k−+k=Q

µγ k/µγ Q/µγ Q/k/µγ
µk k/µk Q/µk Q/k/µk
µQ k/µQ Q/µQ Q/k/µQ

)k, Q(µ =
! TCT)Qk,−(µΓC−Γ

2γ4γ=C

C−=1−C=†C=TC 5γ=TC5
TCγ µγ−=TCµ

TCγ

quark-gluon vertex, 
quark-photon vertex, 
nucleon-photon vertex, ... 
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Q

k

+k −k

But not all tensors satisfy this constraint:

Simpler: implement symmetry directly for the basis elements

In short: use commutators & attach factors          where necessary

leads to symmetry relations 
between dressing functions

,

,

µγ k/µγ Q/µγ

Q/µγ

Q/k/µγ
µk

µγ

µk

k/µk Q/µk Q/k/µk
µQ k/µQ Q/µQ Q/k/µQ

)k, Q(µ =
! TCT)Qk,−(µΓC−Γ

C−=1−C=†C=TC

5γ=TC5
TCγ µγ−=TCµ

TCγ

µγ=TCµ
TCγ−

µk=TC)µk−(C−

µQ2Q/µγ− −=µQ/=TCµ
TQ/=TCµ

TγTQ/C− Cγ γ

= 1CTC

→ 
→ 

µQ =TCµQ µQC− −→ 

→ 

→ 

µQ =TCµQ µQC→ 

]Q/,µγ[ ]Q/,µγ] = [µQ, γ/[−] =TCµ
T, CγTCTQ/C[−=TC]µ

T, γTQ/[C−
Q·k

Q·k

Q·kQ·k+

Fermion-vector vertex (2)
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µQ =TCµQ µQC→ 

]Q/,µγ[ ]Q/,µγ] = [µQ, γ/[−] =TCµ
T, CγTCTQ/C[−=TC]µ

T, γTQ/[C−
Q·k

Q·k

Q·kQ·k+
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But not all tensors satisfy this constraint:

Simpler: implement symmetry directly for the basis elements

In short: use commutators & attach factors          where necessary

leads to symmetry relations 
between dressing functions

,

,

µγ k/µγ Q/µγ

Q/µγ

Q/k/µγ
µk

µγ

µk

k/µk Q/µk Q/k/µk
µQ k/µQ Q/µQ Q/k/µQ

)k, Q(µ =
! TCT)Qk,−(µΓC−Γ

C−=1−C=†C=TC

5γ=TC5
TCγ µγ−=TCµ

TCγ

µγ=TCµ
TCγ−

µk=TC)µk−(C−

µQ2Q/µγ− −=µQ/=TCµ
TQ/=TCµ

TγTQ/C− Cγ γ

= 1CTC

→ 
→ 

µQ =TCµQ µQC− −→ 

→ 

→ 

µQ =TCµQ µQC→ 

]Q/,µγ[ ]Q/,µγ] = [µQ, γ/[−] =TCµ
T, CγTCTQ/C[−=TC]µ

T, γTQ/[C−
Q·k

Q·k

Q·kQ·k+
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Abbreviating                 , we arrive at the new basis

This also simplifies their momentum dependence:

Mathematically speaking, we have arranged the tensors and
dressing functions into singlets of the permutation group S  !

Now all tensors satisfy the constraint
individually, so their dressing functions must be even in ω,
can only depend on      : 

Triple commutator is antisymmetric 
combination of A, B,C :

i factors make all dressing functions real

)k, Q()k, Q( i
µτ)2Q, ,2k(if

=1i

12∑
i=µΓ

)k, Q(µ =
! TCT)Qk,−(µΓC−Γ

Q·k=ω

µγ

µik

µiωQ

]k/,µγ[iω

k/µk

k/µωQ

]Q/,µγ[i

Q/µωk

Q/µQ

]Q/k,/,µγ[

]Q/k,/[µik

]Q/k,/[µiωQ

2ω

2ω

B]C, A+ [A]B, C+ [C]A, B] = [A, B,C[

00

ω
ω

if if

2

Fermion-vector vertex (3)
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Amplitudes with gluon or photon legs are subject to gauge invariance,
e.g. Ward-Takahashi identity (WTI) for quark-photon vertex:

We could split the vertex into transverse and longitudinal part:

Constructing tensor bases with T + L projectors is dangerous
if we are interested in kinematic limits...

But this has a kinematic singularity at             , violates Ward identity:

fixes longitudinal part of vertex

⇒ 

⇒ 

)−k(1−S−)+k(1−S) =k, Q(µΓµQ

)k, Q(νΓQ
µνL) +k, Q(νΓQ

µνT) =k, Q(µΓ

]
)−k(1−S−)+k(1−S

[
2Q

µQ
) +k,Q(⊥

µ= Γ

= 02Q

µdk

)k( 1−dS
0) =k,(µΓ

Must work out transverse part of vertex without introducing 
kinematic singularities

Fermion-vector vertex (4)
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Simpler example: scalar vertex

Ward-Takahashi identity:

Let’s first work out the transverse part:

Full vertex → we solved for    , so we must put back

has correct permutation symmetry

“minimal basis”: no kinematic singularities,
 tensors are ordered with powers of momenta

Careful: don’t use

which would introduce
kinematic singularity!

No terms here!

⇒ 

⇒ 

)−k(1−D−)+k(1−D) =k, Q(µΓµQ

µω Q2c+µk

µk

1c

1c

) =k, Q(µΓ

= 0
!

)2Q2c+1c(ω) =k, Q(µΓµQ 2Q2c−=1c

2Q

1c−=2c ,

)µω Q−µk2Q(2c−) =k, Q(⊥
µΓ

νk)νQµQ−µνδ2Q(2c−=

QQ
µνt=:

2/Q1

νkQQ
µνt1f+µk1g) =k, Q(µΓ

:

Fermion-vector vertex (5)
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+k −k Ward-Takahashi identity:
Now we can work out the

Define

Full vertex → we solved for    , so we must put back

“minimal basis”: no kinematic singularities,
 tensors are ordered with powers of momenta

⇒ 

⇒ 

)−k(1−D−)+k(1−D

)−k(1−D−)+k(1−D

) =k, Q(µΓµQ

µk1c

νkQQ
µνt1f+µk1g) =k, Q(µΓ

= ω1g

= 2∆1g

−
2k−+

2k
∆ =

:

Q·k±
4

2Q
+2k=±

2k ω= 2Q·k= 2−
2k−+

2k

Fermion-vector vertex (5)
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Final result for scalar vertex:

Also: tensors with higher momentum 
powers are suppressed at low momenta 
⇒ ordering principle!  

Satisfies WTI and Ward identity:

In this way, we eliminated all kinematic effects from tensor basis:

)−k(1−D−)+k(1−D

νkQQ
µνt1f+µk

) =k, Q(µΓ

2∆

νkQQ
µνt1f+µk2∆

µk) =k, 0(µΓ 2∆

−
2k−+

2k
∆ =

µdk

)k(1−dD
=µk22dk

)k(1−dD
=

Dressing functions are free of kinematic constraints at
(kinematically independent), no kinematic singularities or zeros:
their only singularities are physical poles and cuts! 

= 0k = 0Qor

2k

2Q

1f

important less important

Fermion-vector vertex (6)
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The same can be done for fermion-vector vertex:

For quark-photon vertex: Ball-Chiu vertex

Everything else is dynamics! Quark-photon vertex can be calculated 
from BSE,     must have physical vector-meson poles at timelike momenta

Gauge part: 
constrained by STI

Transverse part,
carries dynamics

Ball, Chiu, PRD 22 (1980)

Maris, Tandy, PRC 61 (2000)

⇒ 

) =k, Q(µΓ

]
j
µTjf

=1j

8∑
+j

µGjg
=1j

4∑[
i

µγ

µik

k/µk

]k/,µγ[2
iω

νγQQ
µνt

]k/,νγ[2
i

QQ
µνω t

]Q/,µγ[2
i

]Q/k,/,µγ[6
1

νikQQ
µνt

k/νkQQ
µνt

νγQk
µνω t

]k/,νγ[2
i

Qk
µνt

A= Σ1g A= 2∆2g B2∆−=3g = 04g

)−k(−)+k(A
A

A

−
2k−+

2k
∆  =

)−k(+)+k(A
A

A
Σ  =

2

)2k(M)2k(A) =2k(B

νaµb−µνb δ·a=ab
µνt

= 0ab
µνtµa

= 0νbab
µνt

jf

Fermion-vector vertex (7)
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