Derivation of DSEs: QCD

• Classical action:
$$S = \frac{-1}{2} + \frac{1}{2} +$$

 Classical EoM (Dirac equation) for quark:

$$\frac{\delta S}{\delta \overline{\psi}} = \frac{-1}{2} + \frac{1}{2} = 0$$

 Quantum EoM for quark:

$$\frac{\delta \Gamma}{\delta d b} = \frac{-1}{2} + \frac{1}{2} + \frac{1}{2}$$

• Quark DSE:

$$\left.\frac{\delta^2 \varGamma}{\delta \bar{\psi} \delta \psi}\right|_{A,\psi,\bar{\psi}=0} \ = \ \ \begin{array}{c} -1 \\ -0 \end{array} = \ \begin{array}{c} -1 \\ \text{dressed} \end{array} \ \text{tree-level}$$

Easy!

self-energy

Derivation of DSEs: QCD

Classical action:

(ignoring prefactors & i's) (ignoring gauge fixing ⇒ ahosts)

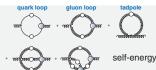
Gluon: classical equation of motion (Maxwell equation)

$$\frac{\delta S}{\delta A} =$$

Gluon: quantum equation of motion

Gluon DSE:

$$\left. \frac{\delta^2 \Gamma}{\delta A^2} \right|_{A,\psi,\bar{\psi}=0} \ = \$$

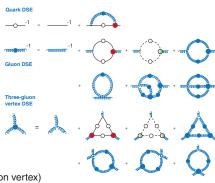


DSEs

 Quantum equations of motion: exact equations in QFT

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994), Alkofer, Smekal, Phys. Rept. 353 (2001), ...

- Like Feynman diagrams, but ingredients are dressed ⇒ integral equations
- Nonperturbative, return perturbation theory if coupling is small
- Set of all n-point CFs determines QFT
- Each DSE contains higher n-point CFs
 ⇒ infinitely coupled system
- But do we need to know every CF (e.g., 127-gluon vertex) to make predictions? Higher n-point CFs are suppressed by momentum powers, higher loops by propagators
 - ⇒ truncations: solve closed subset of equations by neglecting higher n-point CFs or using ansätze
 - ⇒ systematically improvable: can always enlarge system to get closer to full tower of exact equations



 Similar: functional renormalization group

Berges, Tetradis, Wetterich, Phys. Rept. 363 (2002), Pawlowski, Annals. Phys. 322 (2007), Dupuis et al., Phys. Rept. 910 (2021)

Quark DSE

 Quark propagator = two-point function, basic object describing a quark in QCD:

$$S_{\alpha\beta}(p) = \int d^4x \, e^{-ipx} \langle 0 \, | \, \mathsf{T} \, \psi_{\alpha}(x) \, \bar{\psi}_{\beta}(0) \, | \, 0 \rangle$$

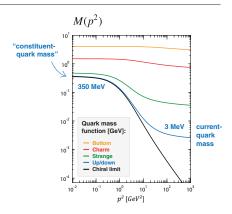
• In momentum space: 2 dressing functions

$$S(p)^{-1} = A(p^2) \left(i \not p + M(p^2) \right) \Leftrightarrow$$

$$S(p) = \frac{1}{A(p^2)} \frac{-i \not p + M(p^2)}{p^2 + M(p^2)^2} = -i \not p \ \sigma_v(p^2) + \sigma_s(p^2)$$

• Compare: propagator for free spin-1/2 particle

$$S(p) = \frac{-i p + m}{p^2 + m^2} \quad \Leftrightarrow \quad \sigma_v(p^2) = \frac{1}{p^2 + m^2} \;, \quad \sigma_s(p^2) = \frac{m}{p^2 + m^2} \label{eq:sigma}$$



 Apparently, something drastic must be happening here: dynamical mass generation

Quark DSE

· Remember chiral symmetry:

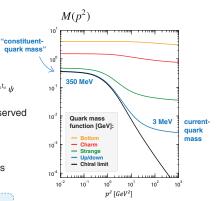
$$S\,U(N_f)_V$$
: $\psi'=e^{i\,\sum_a \varepsilon_a \mathsf{t}_a}\,\psi\,, \quad S\,U(N_f)_A$: $\psi'=e^{i\gamma_5\,\sum_a \varepsilon_a \mathsf{t}_a}\,\psi$

 If chiral symmetry in classical Lagrangian were preserved in QFT, all n-point CFs would be chirally symmetric

$$\{\gamma_5, S(p)\} = 0 \Rightarrow M(p^2) = 0$$

 This is true in perturbation theory: each diagram has odd # gamma matrices ⇒ Trace = 0 ⇒ M(p²) = 0

$$S(p)^{-1} = Z_2 \left(i \not\! p + m_0 \right) + \Sigma(p) \,, \qquad \Sigma(p) = -\frac{4g^2}{3} \, Z_\Gamma \int \frac{d^4 q}{(2\pi)^4} \, i \gamma^\mu \, S(q) \, D^{\mu\nu}(k) \, \Gamma^\nu(l,k) \,. \label{eq:sigma}$$



Quark DSE

$$S(p)^{-1} = Z_2 (i \not p + m_0) + \Sigma(p) , \qquad \Sigma(p) = -\frac{4g^2}{3} Z_\Gamma \int \frac{d^4q}{(2\pi)^4} i \gamma^\mu S(q) D^{\mu\nu}(k) \Gamma^\nu(l,k)$$

An illustrative model: gluon propagator = δ distribution Munczek, Nemirovsky, Phys. Rev. D 28 (1983)

$$\frac{4}{3}\frac{g^2}{(2\pi)^4}D^{\mu\nu}(k) \rightarrow \Lambda^2\delta^4(k)\,\delta^{\mu\nu} \quad \Rightarrow \quad S(p)^{-1} = i\not\!p + m_0 + \Lambda^2\,\gamma^\mu\,S(p)\,\gamma^\mu \quad \Rightarrow \quad A(p^2) = 1 + \frac{2\Lambda^2}{A(p^2)\,(p^2 + M(p^2)^2)}\,,$$

$$S(p)^{-1} = i p + m_0 + \Lambda^2 \gamma^{\mu} S(p) \gamma^{\mu}$$

$$\Rightarrow A(p^2) = 1 + \frac{2\Lambda^2}{A(p^2)(p^2 + M(p^2)^2)}$$

$$A(p^2)M(p^2) = m_0 + 2M(p^2) \frac{2\Lambda^2}{A(p^2)(p^2 + M(p^2)^2)}$$

Chiral limit (m₀ = 0):

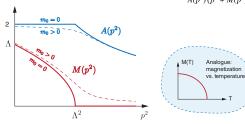
Chirally symmetric solution:

$$A(p^2) = \frac{1}{2} \left(1 + \sqrt{1 + \frac{8\Lambda^2}{p^2}} \right), \quad M(p^2) = 0$$

Chiral-symmetry breaking solution:

$$A(p^2)=2\,,\qquad M(p^2)=\sqrt{\Lambda^2-p^2}$$

 In realistic DSE solution, no sharp phase transition in chiral limit. but otherwise similar



Higgs

Quark DSE

$$S(p)^{-1} = Z_2 (i \not\! p + m_0) + \Sigma(p) \,, \qquad \Sigma(p) = -\frac{4g^2}{3} \, Z_\Gamma \int \frac{d^4q}{(2\pi)^4} \, i \gamma^\mu \, S(q) \, D^{\mu\nu}(k) \, \Gamma^\nu(l,k) \,. \label{eq:spin}$$

Renormalization:

$$\begin{split} \Sigma(p) &= i \not p \, \Sigma_A(p^2) + \Sigma_M(p^2) \\ &\Rightarrow & A(p^2) = Z_2 + \Sigma_A(p^2) \,, \\ &M(p^2) A(p^2) = Z_2 \, m_0 + \Sigma_M(p^2) \end{split}$$

Self-energy integrals are logarithmically UV-divergent

- ⇒ regularize by integrating up to cutoff.
- \Rightarrow **renormalize** by setting 2 boundary conditions: $A(\mu^2) \stackrel{!}{=} 1$, $M(\mu^2) \stackrel{!}{=} m$

$$Z_2 = 1 - \Sigma_A(\mu^2) \,, \qquad m_0 = \frac{m - \Sigma_M(\mu^2)}{1 - \Sigma_A(\mu^2)} \quad, \qquad A(p^2) = 1 + \Sigma_A(p^2) - \Sigma_A(\mu^2) \,,$$

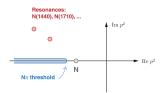
$$M(p^2)A(p^2) = m + \underbrace{\Sigma_M(p^2) - \Sigma_M(\mu^2)}_{\text{finite}} \,.$$

Divergences cancel in subtraction! Renormalized $A(p^2)$ now depends on renormalization scale μ , but $M(p^2)$ does not

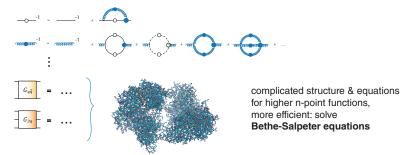
DSE can be solved iteratively: Start with guess for A(p²), M(p²), e.g., set them to 1.
 Calculate self-energy integrals & evaluate them at renormalization scale. Determine Z₂.
 Calculate A(p²), M(p²) again. Proceed until converged.

Hadrons?

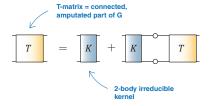
Baryon poles appear in elementary quark 6-point function:



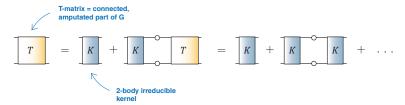
How to calculate this? In principle from DSEs:



Write down inhomogeneous BSE:



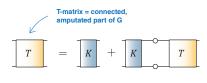
Write down inhomogeneous BSE:

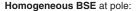


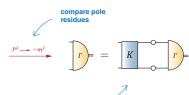
Analogy: geometric series

$$f(x)=1+x\,f(x)\\ =1+x+x^2\,f(x) \qquad \Rightarrow f(x)=\frac{1}{1-x}\\ =1+x+x^2+x^3\,f(x)$$
 "non-perturbative"
$$f(x)\approx 1+x+x^2+x^3+\dots \qquad \text{only for } |x|<1$$
 "perturbative"

Write down inhomogeneous BSE:



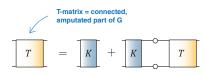




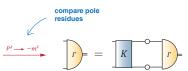
- qq irreducible kernel
- chiral symmetry constraints (V + AV WTI)
- can be systematically derived from effective action, depends on QCD's n-point functions

- · Analogue of Schrödinger equation in QFT!
- Γ = Bethe-Salpeter amplitude

Write down inhomogeneous BSE:

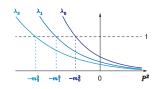


Homogeneous BSE at pole:



BSE = eigenvalue equation, pole in $T \Leftrightarrow$ eigenvalue = 1

$$KG_0 \Gamma_i = \lambda_i \Gamma_i$$



Explicitly:

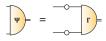
$$\Gamma(p,P) = \int\!\!\frac{d^4q}{(2\pi)^4} \; \mathbb{K}_{\alpha\gamma,\delta\beta}\left(\; p,q,P\right) [S(q_+) \, \Gamma(q,P) \, S(q_-)]_{\gamma\delta}$$

Basis decomposition:

$$\Gamma(p,P) = \sum_{i=1}^{n} f_i(p^2, \hat{p} \cdot \hat{P}, P^2) \tau_i(p,P)$$

 \Rightarrow Coupled Lorentz-invariant equations for the dressing functions f_i

• Bethe-Salpeter WF of pion: $[i\Psi(p,P)]_{\alpha\beta} = \int d^4x \, e^{-ipx} \langle 0 | T \psi_{\alpha}(x) \bar{\psi}_{\beta}(0) | P, n \rangle$



Axialvector and pseudoscalar currents:

pion electroweak decay constant

$$\begin{split} & f_{5}^{\mu}(x) = Z_{2} \bar{\psi}(x) \, i \gamma^{\mu} \gamma_{5} \, \psi(x) \,, \qquad \langle 0 \, | \, f_{5}^{\mu}(x) \, | \, P \rangle = \langle 0 \, | \, j_{5}^{\mu}(0) \, | \, P \rangle \, e^{i x \cdot P} = i f_{\pi} \, P^{\mu} e^{i x \cdot P} \,, \\ & j_{5}(x) = Z_{2} Z_{m} \bar{\psi}(x) \, i \gamma_{5} \, \psi(x) \,, \qquad \langle 0 \, | \, j_{5}(x) \, | \, P \rangle = \langle 0 \, | \, j_{5}(0) \, | \, P \rangle \, e^{i x \cdot P} = r_{\pi} \, e^{i x \cdot P} \,. \end{split}$$

$$\Rightarrow \quad f_\pi \, P^\mu = Z_2 \, \int \frac{d^4p}{(2\pi)^4} \, \mathrm{Tr} \, \{ i \gamma_5 \gamma^\mu \Psi(p,P) \} \; , \qquad r_\pi = Z_2 Z_m \, \int \frac{d^4p}{(2\pi)^4} \, \mathrm{Tr} \, \{ \gamma_5 \Psi(p,P) \} \; \qquad \bigotimes \qquad \Psi(p,P) \} \; .$$

Now plug in PCAC relation from classical Lagrangian:

$$\partial_{\mu}j_{5}^{\mu}=2mj_{5}$$
 \Rightarrow $f_{\pi}m_{\pi}^{2}=2mr_{\pi}$ \Rightarrow if f_{π} does **not** vanish in chiral limit, m_{π} must be zero!

How can one see this? From axialvector WTI (= PCAC for 3-point functions) in chiral limit:

$$f_{\pi}\Gamma(p,0) = A(p^2)M(p^2)\gamma_5$$
 We know that $M(p^2) \neq 0$ in chiral limit $\Rightarrow f_{\pi} \neq 0 \Rightarrow m_{\pi} = 0$. Goldstone theorem!

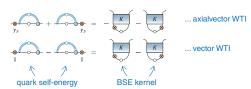
$$\text{Take trace with } S(p) \ \gamma_5 \ S(p) \ \ \Rightarrow \ \ f_\pi \ r_\pi = -\frac{\langle \bar{\psi}\psi \rangle}{N_f} = Z_2 Z_m \ N_c \int \frac{d^4p}{(2\pi)^4} \ \text{Tr} \ S(p) = Z_2 Z_m \ \frac{N_c}{(2\pi)^2} \int dp^2 \ \frac{p^2}{A(p^2)} \ \frac{M(p^2)}{p^2 + M(p^2)^2} \int dp^2 \ \frac{p^2}{A(p^2)} \ \frac{p^2}{A(p^$$

Plug this back into PCAC relation \Rightarrow $f_{\pi}^2 m_{\pi}^2 = -2m \langle \bar{\psi}\psi \rangle / N_f$ Gell-Mann-Oakes-Renner relation

Chiral symmetry and the pion

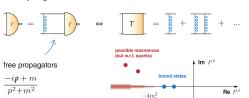
So far, everything exact ⇒ pion from BSE is automatically massless in chiral limit if

- ▶ BSE kernel respects axialvector WTI
- ▶ Chiral symmetry is dynamically broken such that $M(p^2) \neq 0$ in chiral limit (automatic in DSE)



⇒ BSE kernel and quark propagator must be related!

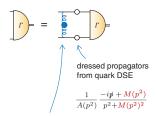
• Let's try a gluon ladder kernel:



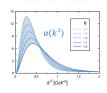
- breaks chiral symmetry
- generates bound-state poles in T, possibly also resonances
- but also quark thresholds & cuts: "hadrons" decay into quarks, no confinement
- would be ok if elementary d.o.f. were not quarks but hadrons (→ EFTs)

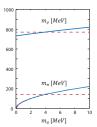
Chiral symmetry and the pion

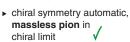
 Better: rainbow-ladder Maris, Roberts, PRC 56 (1997), Maris, Tandy, PRC 60 (1999), Qin, Chang et al., PRC 84 (2011)

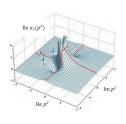


Kernel = effective gluon exchange with effective interaction

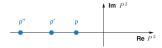








 p quark propagators do not develop real poles
 ⇒ no quark thresholds



 but also no resonances, instead bound states (need to go beyond rainbow-ladder)

Chiral symmetry and the pion

Consider again our earlier model (gluon propagator = δ distribution)

$$\frac{4}{3} \frac{g^2}{(2\pi)^4} D^{\mu\nu}(k) \to \Lambda^2 \delta^4(k) \, \delta^{\mu\nu}$$

 $A(p^2) = 2,$

Munczek, Nemirovsky, Phys. Rev. D 28 (1983)

Quark condensate:

 $\Lambda = 1 \text{ GeV}$

 $-\langle \bar{u}u \rangle = \frac{N_c}{(2\pi)^2} \int_0^{\Lambda^2} dp^2 \, p^2 \, \frac{\sqrt{\Lambda^2 - p^2}}{2\Lambda^2} = \frac{2}{15} \, \frac{N_c}{(2\pi)^2} \, \Lambda^3 \approx (220 \, \text{MeV})^3$

Λ² p²

 $M(p^2) = \sqrt{\Lambda^2 - p^2}$

• Meson BSE for $P^2 = 0 \Rightarrow P^{\mu} = 0 \Rightarrow$ pion amplitude has only 1 tensor: $\Gamma(p) = f_1(p^2) \gamma_5$

$$\Gamma(p) = \frac{4g^2}{3} \int \frac{d^4q}{(2\pi)^4} i \gamma^\mu S(q) \Gamma(q) S(q) i \gamma^\nu D^{\mu\nu}(k) \rightarrow -\Lambda^2 \gamma^\mu S(p) \Gamma(p) S(p) \gamma^\mu$$

$$\Rightarrow \quad 1 = \Lambda^2 \gamma^\mu \gamma_5 \, S(p) \gamma_5 \, S(p) \gamma^\mu = \Lambda^2 \gamma^\mu S(-p) \, S(p) \, \gamma^\mu = \frac{4\Lambda^2}{A(p^2)^2 \, (p^2 + M(p^2)^2)} \quad \stackrel{\text{yesl}}{\longleftarrow} \quad \frac{1}{A(p^2)^2 \, (p^2 + M(p^2)^2)} \quad \stackrel{\text{yesl$$

s!

BSE has eigenvalue 1 at $P^2 = 0 \Rightarrow$ massless pion in chiral limit

• Pion decay constant: use $f_1(p^2) = A(p^2)M(p^2)/f_{\pi}$

$$f_{\pi}^2 = \frac{N_c Z_2}{4\pi^2} \int dp^2 \ p^2 \frac{M(p^2)}{A(p^2)} \frac{1}{(p^2 + M(p^2)^2)^2} \left(M(p^2) - \frac{p^2}{4} \frac{dM(p^2)}{dp^2} \right) \quad ... \text{ Pagels-Stokar formula, PRD 20 (1979)}$$

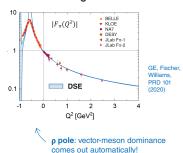
Munczek-Nemirovsky model:
$$f_\pi = \sqrt{\frac{N_c}{2}} \frac{\Lambda}{4\pi} \approx 97 \text{ MeV}$$
 not bad! **GMOR:** $m_\pi^2 = \frac{32}{15} \Lambda m \approx 2 \Lambda m$

Rainbow-ladder results

Rainbow-ladder has been very useful tool, many calculations over past > 25 years

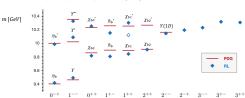
Maris, Tandy, Nucl. Phys. B Proc. Suppl. 161 (2006), Bashir, Chang, Cloet, El-Bennich, Liu, Roberts, Tandy, Comm. Th. Phys. 58 (2012), GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016),

· Pion electromagnetic form factor

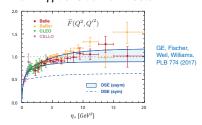


Bottomonium spectrum

Fischer, Kubrak, Williams, EPJ A 51 (2015)



• Pion $\rightarrow \gamma \gamma$ transition form factor



Quark in complex plane

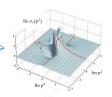
For BSE, we usually need quark propagator for **complex momenta** ($p^2 \in \mathbb{C}$).

How to do this?

• For some interactions (e.g., Maris-Tandy) easy: put $p^2 \in \mathbb{C}$ in quark DSE and "iterate once more"

$$S(p)^{-1} = Z_2(ip + m_0) - \frac{4g^2}{3} Z_{\Gamma} \int \frac{d^4q}{(2\pi)^4} i \gamma^{\mu} S(q) D^{\mu\nu}(k) \Gamma^{\nu}(l,k)$$

- In general not possible: pole in gluon propagator produces cuts in integration. Naive integration over cuts yields nonsense
- Workaround: analytic continuation from real axis
- Solution: contour deformations or Cauchy method



sampled on parabola in complex plane, limited by nearest quark singularities

Naive calculation

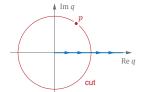
Contour deformations

Quark in complex plane

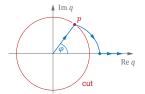
Contour deformations:

$$S(p)^{-1} = Z_2 \, (i \not p + m_0) - \frac{4g^2}{3} \, Z_\Gamma \, \int \! \frac{d^4q}{(2\pi)^4} \, i \gamma^\mu \, S(q) \, D^{\mu\nu}(k) \, \Gamma^\nu(l,k) \,$$

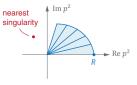
- $\bullet \ \ \text{Integration:} \quad \int d^4q \, (\dots) \quad \to \int_0^\Lambda dq^2 \int_{-1}^1 dz \, (\dots) \quad \Rightarrow \quad \pmb{q} \ \ \text{is real,} \quad \pmb{z} \in \textbf{[-1,1]}$
- Gluon momentum: $k^2=(p-q)^2=p^2+q^2-2pqz \Rightarrow q^2-2pqz+p^2-k^2=0 \Rightarrow q=p\left(z\pm i\sqrt{1-z^2-\frac{k^2}{p^2}}\right)$ $k^2=0 \Rightarrow$ circle in complex q plane with opening at q=p.



If integrand is singular at $k^2 = 0$: circular branch cut after z integration, cannot integrate q along real axis



Deform contour such that it passes through p. Because DSE is integral equation, we need quark propagator from previous iteration for these points in $q \Rightarrow$ solve DSE along this path! Ensures that you will never cross a cut



Can solve DSE in whole complex plane, up to angle where one hits the first dyn. generated singularity

Quark in complex plane

Contour deformations:

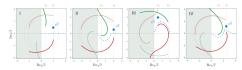
Fermion, gluon, ghost propagators, glueball correlator, rare pion decay, ρ and σ pole position, spectral functions, quark-photon vertex, timelike pion form factor, light-front wave functions,

...

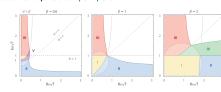
Maris, PRD 52 (1995)
Alkofer, Detmold, Fischer, Maris, PRD 70 (2004)
GE, 0909.0703 [hep-ph]
Strauss, Fischer, Kellermann, PRL 109 (2012)
Windisch, Alkofer, Haase, Liebmann, CPC 184 (2013)
Windisch, Huber, Alkofer, PRD 87 (2013)
Weil, GE, Fischer, Williams, PRD 96 (2017)
Pawlowski, Strodthoff, Wink, PRD 98 (2018)
Williams, PLB 798 (2019)
Miramontes, Sanchis-Alepuz, EPJ A 55 (2019)
GE, Duarte, Pena, Stadler, PRD 100 (2019)
Fischer, Huber, PRD 102 (2020)
Santowsky, GE, Fischer, Wallbott, Williams, PRD 102 (2020)
Wiramontes, Sanchis-Alepuz, Alkofer, PRD 103 (2021)

Santowsky, Fischer, EPJ C 82 (2022) GE, Ferreira, Stadler, PRD 105 (2022) ... Scalar scattering equation: direct access to 2nd sheet!

Cuts from K and G_0 in complex plane of integration variable:



Can still cover parts of complex t plane:



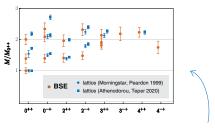
Towards ab-initio

Go towards ab-initio calculations by calculating higher n-point functions

Various approaches on the market, e.g.:

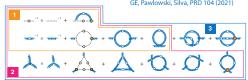
- Gauging guark DSE vields vertex equation ⇒ meson poles Chang, Roberts, PRL 103 (2009)
- Expansion of BSE kernel via nPI effective action Williams, Fischer, Heupel, PRD 93 (2016)
- Including ππ decay channel generates resonances Santowsky et al., PRD 102 (2020)

• Glueball spectrum agrees with lattice QCD Huber, Fischer, Sanchis-Alepuz, EPJ C 80 (2020), EPJ C 81 (2021)



Coupled Yang-Mills DSEs

Huber, PRD 101 (2020). GE, Pawlowski, Silva, PRD 104 (2021)



Truncation error:

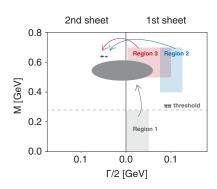
Towards ab-initio

Go towards ab-initio calculations by calculating higher n-point functions

Various approaches on the market, e.g.:

- · Gauging quark DSE yields vertex equation ⇒ meson poles Chang, Roberts, PRL 103 (2009)
- Expansion of BSE kernel via nPI effective action Williams, Fischer, Heupel, PRD 93 (2016)
- Including ππ decay channel generates resonances

Santowsky et al., PRD 102 (2020)



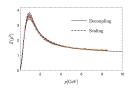
p resonance extracted from homogeneous BSE:

Solve o-meson BSE for complex total momenta on 1st sheet, analytically continue to 2nd sheet to determine pole resonance pole location

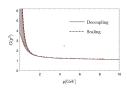
Towards precision

Markus Huber, ACHT 2025; Phys. Rept. 879 (2020) & PRD 101 (2020)

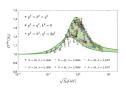
· Gluon propagator



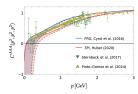
Ghost propagator



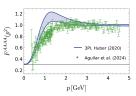
· Ghost-gluon vertex



• Three-gluon vertex: lattice vs. FRG vs. DSE



Lattice: Pinto-Gómez, de Soto, Rodriguez-Quintero, PLB 838 (2023), Sternbeck et al., Pos LATTICE 2016; FRG: Cyrol et al., PRD 94 (2016); DSE: Huber, PRD 101 (2020), Huber, Fischer, Sanchis-Aleouz, 2503,03821 Four-gluon vertex

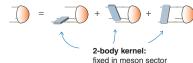


Lattice: Aguilar et al., PLB 858 (2024) **DSE:** Huber, PRD 101 (2020)

Baryons

Three-quark BSE (Faddeev equation) for baryons:

GE, Alkofer, Nicmorus, Krassnigg, PRL 104 (2010)



3-body kernel:

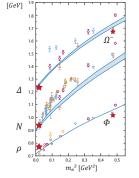
Leading diagram (3-gluon vertex) vanishes by color trace, higher-order diagrams small (?)

2-quark correlations dominant?

Rainbow-ladder



Scale set by f_{π} , shape parameter → bands Maris, Tandy, PRC 60 (1999)



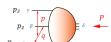
- Analogous results for many form factors Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016)
- Relativistically, nucleon also has p waves!

L = 0L = 1 see also: Qin, Roberts, Schmidt, PRD 97 (2018)

Baryons

Baryon's Faddeev amplitude:

GE, Alkofer, Nicmorus, Krassnigg, PRL 104 (2010)



$$\Psi_{\alpha\beta\gamma\delta}(p,q,P) = \sum_i f_i(p^2,q^2,p\cdot q,p\cdot P,q\cdot P) \ au_i(p,q,P)_{\alpha\beta\gamma\delta} \ \otimes \ {\sf Flavor} \ \otimes \ {\sf Color}$$

 $(\gamma_5 \otimes \gamma_5) T_{ii} (\Lambda_{\pm} \gamma_5 C \otimes \Lambda_{+})$

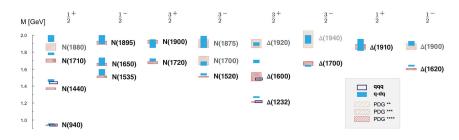
- can be arranged into eigenstates of S and L
 in baryon's rest frame: s, p, d, f, waves
- $\begin{array}{ll} \bullet \ \ \text{nonrel. quark model:} \\ \ \ \text{only 2 survive} \ (\ l = 0 \) \end{array} \ \left[\begin{smallmatrix} \text{tit-ift} \\ \frac{1}{\sqrt{2}} \text{(tit+ift-2itt)} \end{smallmatrix} \right], \ \left[\begin{smallmatrix} \text{tit-ift} \\ \frac{1}{\sqrt{2}} \text{(tit+ift-2itt)} \end{smallmatrix} \right], \end{array}$
- · Relativistically, nucleon also has p waves!

s waves p waves

projector: $\Lambda_{+}u = u$

Quark-diquark (two-body) equation
 Oettel et al., PRC 58 (1998), GE et al., Ann. Phys. 323 (2008), Cloet et al., FBS 46 (2009), Segovia et al., PRL 115 (2015)

 Three-quark and quark-diquark results very similar GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)



Diquarks 101

Wave function: Dynamics
$$\otimes$$
 Flavor \otimes Color $3 \otimes 3 = 3 \oplus 6$

Flavor:

$$2 \otimes 2 = 1_A \oplus 3_S \\ 3 \otimes 3 = \overline{3}_A \oplus 6_S \\ 4 \otimes 4 = 6_A \oplus 10_S \\ \underbrace{\begin{bmatrix} ud \end{bmatrix}}_{\begin{bmatrix} us \end{bmatrix}, \ [ds] \\ \underbrace{\{us \}, \ \{ds \}, \ \{ss \}}_{\begin{bmatrix} uc \}, \ \{cc \} \end{bmatrix}}_{\text{"bad"}}$$

Quark content	q-dq	Isospin	contributes to
SSS	s {ss}	0	Ω
ccc	c {cc}	0	Ω_{c}
uud	u [ud]	1/2	р
	u {ud}	1/2, 3/2	p, Δ ⁺
	d {uu}	1/2, 3/2	p, Δ ⁺
nns	n [ns]	0, 1	Λ, Σ
^	n {ns}	0, 1	Λ, Σ
n = u, d	s [nn]	0	Λ
	s {nn}	1	Σ

- Nucleon has "good" and "bad" diquarks, Delta only "bad"
- Λ: n [ns], n {ns}, s [nn] Σ: n [ns], n {ns}, s {nn}

Diquarks 101

Wave function:
$$\underbrace{\mathsf{Dynamics}}_{\mathcal{A},\mathcal{S}} \otimes \underbrace{\mathsf{Flavor}}_{\mathcal{A},\mathcal{S}} \otimes \underbrace{\mathsf{Color}}_{\mathcal{A}} \stackrel{!}{=} \mathcal{A}$$

- $\gamma_5 C, \dots$ scalar $\mathcal{A}: (\gamma_5 C)^T = -\gamma_5 C \Leftrightarrow \text{``good''}$
- $\bullet \ \ \gamma^\mu C, \dots \qquad \text{axialvector} \qquad \mathcal{S} \colon \ (\gamma^\mu C)^T = \gamma^\mu C \qquad \Leftrightarrow \text{``bad''}$

Total wave function:

$$\Gamma^{(\mu)}(q,P) = \sum_{i} \underbrace{f(q^2,q\cdot P,P^2 = -m^2)}_{\text{Dressing functions}} \underbrace{\tau_{i}^{(\mu)}(q,P)}_{\text{Lorentz/Dirac}} \otimes \text{ Flavor } \otimes \text{ Color}$$

Mesons and diquarks are closely related:

$$\begin{array}{c}
\text{attractive} \\
3 \otimes \overline{3} = 1 \otimes 8
\end{array}$$

$$\mathbf{3}\otimes\mathbf{3}=\overline{\overline{\mathbf{3}}}\oplus\mathbf{6}$$

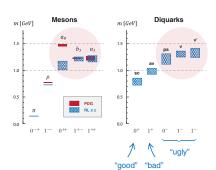
In BSE this comes out naturally: Maris, FBS 32 (2002)

Lowest-lying diquarks are dominant for ground-state octet & decuplet baryons

```
pseudoscalar mesons ⇔ scalar diquarks (~0.8 GeV)
vector mesons ⇔ axialvector diquarks (~1 GeV)
```

Higher-lying diquarks are subleading, but contribute to excited states & remaining channels

```
scalar mesons ⇔ pseudoscalar diquarks (~1.2 GeV)
axialvector mesons ⇔ vector diquarks (~1.3 GeV)
```



In RL, these are too strongly bound; simulate beyond-RL effects by (one) strength parameter c

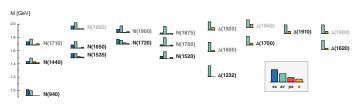
Roberts, Chang, Cloet, Roberts, FBS 51 (2011) GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Light baryon spectrum

GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

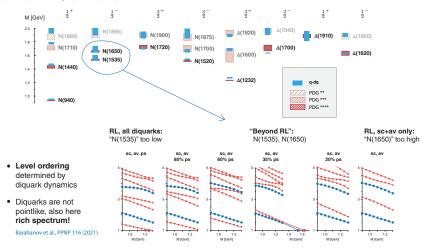
Diquark content:

Barabanov et al., PPNP 116 (2021)



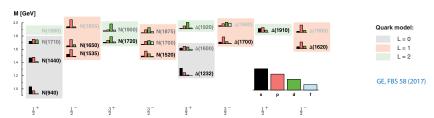
Light baryon spectrum

GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

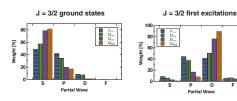


Relativistic effects

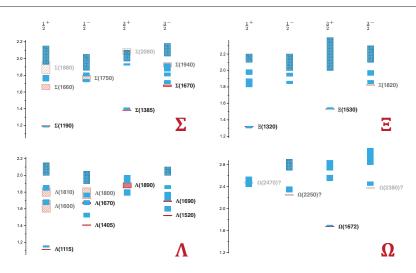
Orbital angular momentum: clear traces of nonrelativistic quark model, but strong relativistic effects (in some cases even dominant)



Relativistic contributions even up to bottom baryons! Qin, Roberts, Schmidt, PRD 97 (2018)

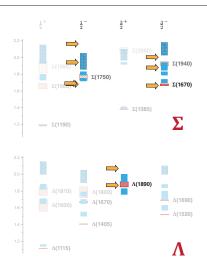


Strange baryons



GE, Fischer, FBS 60 (2019), Fischer, GE, PoS Hadron 2017

Strange baryons

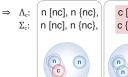


New states from Bonn-Gatchina Sarantsev, Matveev, Nikonov, Anisovich, Thoma, EPJA 55 (2019)

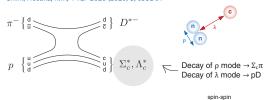
GE, Fischer, FBS 60 (2019), Fischer, GE, PoS Hadron 2017

Heavy baryons

Quark content	q-dq	Isospin	contributes to
nnc	n [nc]	0, 1	$\Lambda_{\rm c}$, $\Sigma_{\rm c}$
^	n {nc}	0, 1	Λ_c , Σ_c
n = u, d	c [nn]	0	$\Lambda_{ m c}$
, -	c {nn}	1	$\Sigma_{ m c}$



Sometimes these are assumed as dominant components, e.g. **J-PARC** charm baryon spectroscopy program (high-p) Kim, Hosaka, Kim, Noumi, Shirotori, PTEP 2014 (2014), 10, 103D01, Shim, Hosaka, Kim, PTEP 2020 (2020) 5, 053D01



Assumptions on spectrum & \(\text{production rates} \)

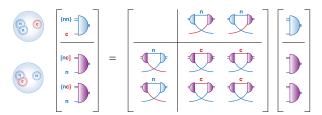
\[\text{production rates} \)

\[\text{p mode} \]

\[\text{mode} \]

Heavy baryons

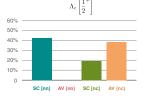
Quark-diquark BSE would not work under this assumption, e.g., Σ_c :

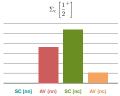


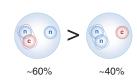
n[nc], n{nc} necessary, otherwise no equation. Presumably these are also dominant: cannot switch off n[nc], n{nc}, but c{nn}

Analogous for $\Lambda_{\mbox{\tiny c}}$ and hyperons

Results: wave function contributions Torcato, Arriaga, GE, Peña, FBS 64 (2023)







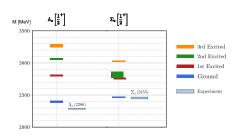
Heavy baryons

Quark-diquark BSE would not work under this assumption, e.g., Σ_c :

n[nc], n{nc} necessary, otherwise no equation. Presumably these are also dominant: cannot switch off n[nc], n{nc}, but c{nn}

Analogous for Λ_{c} and hyperons

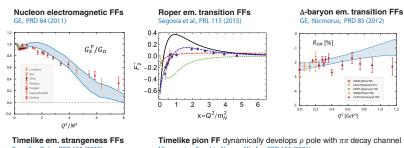
Results: **spectrum** Torcato, Arriaga, GE, Peña, FBS 64 (2023)

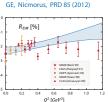


see also: Yin, Chen, Krein, Roberts, Segovia, PRD 100 (2019)

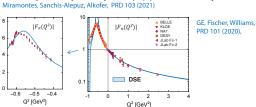
Form factors

Many form factor calculations in qqq or q(qq) approaches available:





Ramalho, Peña, PRD 101 (2020) 10 10 10 10⁻⁴ $q^2 [GeV^2]$



- 1. Introduction
- 2. Spectrum & symmetries
- 3. Quark models
- 4. QFT toolbox
- 5. Functional methods

Lecture notes "QCD and hadron physics", https://particle.uni-graz.at/en/quarks-hadrons-and-nuclei

GE, "Hadron physics with functional methods", arXiv: 2503.10397 (for Encyclopedia of Particle Physics)

Burkert, GE, Klempt, "The impact of γN and γ*N interactions on our understanding of nucleon excitations", arXiv:2506.16482

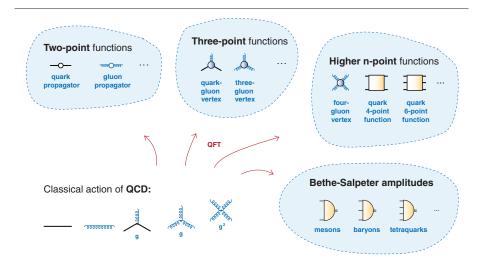
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, "Baryons as relativistic three-quark bound states", Prog. Part. Nucl. Phys. 91 (2016), arXiv: 1606.09602

Barabanov, Bedolla, Brooks, Cates, Chen et al., "Diquark correlations in hadron physics: Origin, impact and evidence", Prog. Part. Nucl. Phys. 116 (2021), arXiv: 2008.07630

6. n-point functions & tensor bases

- 7. Multiquark states
- 8. Light-front wave functions

Correlation functions



Correlation functions

propagator

propagator

vertex

fourgluon

four- quark quark gluon 4-point 6-point vertex function function

Higher n-point functions

Information is contained in Lorentz-invariant dressing functions:

$$G^{\mu\nu\dots}_{lphaeta\dots}(p_1,\dots p_n) = \sum_{i=1}^N f_i(p_1^2,p_2^2,\dots)\, au_i(p_1,\dots p_n)^{\mu
u\dots}_{lphaeta\dots}$$
Kinematics? Tensor bases?

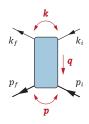
What can we learn from symmetries?

- Lorentz & parity invariance
- · Crossing symmetry, charge conjugation
- Gauge invariance

Bethe-Salpeter amplitudes

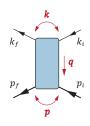
- 1. Example: 2→2 scattering
- 2. Euclidean metric
- 3. QCD's n-point functions
- 4. Tensor bases
- 5. Kinematics

- Scalar \Rightarrow only one function $\Gamma(p_i,k_i,p_f,k_f)$
- 4 momenta + momentum conservation ⇒ 3 independent momenta



- Scalar \Rightarrow only one function $\Gamma(p_i,k_i,p_f,k_f)$
- 4 momenta + momentum conservation ⇒ 3 independent momenta, define:

fine:
$$\begin{aligned} p &= \frac{p_i + p_f}{2} , \qquad k = \frac{k_i + k_f}{2} , \qquad q = p_f - p_i = k_i - k_f \\ \Rightarrow p_i &= p - \frac{q}{2} \qquad k_i = k + \frac{q}{2} \\ p_f &= p + \frac{q}{2} \qquad k_f = k - \frac{q}{2} \end{aligned} \Rightarrow p_i + k_i = p_f + k_f$$



- Scalar \Rightarrow only one function $\Gamma(p_i,k_i,p_f,k_f)$
- 4 momenta + momentum conservation ⇒ 3 independent momenta, define:

me:
$$p = \frac{p_i + p_f}{2}, \qquad k = \frac{k_i + k_f}{2}, \qquad q = p_f - p_i = k_i - k_f$$

$$\Rightarrow p_i = p - \frac{q}{2} \qquad k_i = k + \frac{q}{2}$$

$$p_f = p + \frac{q}{2} \qquad k_f = k - \frac{q}{2}$$

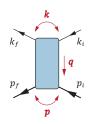
$$\Rightarrow p_i + k_i = p_f + k_f$$

• 3 momenta ⇒ 6 Lorentz invariants:

$$p^2$$
, q^2 , k^2 , $p \cdot q$, $k \cdot q$, $p \cdot k$

• Assume all particles are **onshell**: $p_i^2 = p_f^2 = M_i^2$, $k_i^2 = k_f^2 = m^2$

$$\begin{array}{c} p_i^2 = p^2 + \frac{q^2}{4} - p \cdot q = M^2 \\ p_f^2 = p^2 + \frac{q^2}{4} + p \cdot q = M^2 \\ \\ k_i^2 = k^2 + \frac{q^2}{4} + k \cdot q = m^2 \\ k_f^2 = k^2 + \frac{q^2}{4} - k \cdot q = m^2 \\ \end{array} \right\} \qquad k \cdot q = 0, \quad k^2 = m^2 - \frac{q^2}{4}$$



- Scalar \Rightarrow only one function $\Gamma(p_i,k_i,p_f,k_f)$
- 4 momenta + momentum conservation ⇒ 3 independent momenta, define:

ne:
$$p = \frac{p_i + p_f}{2}, \qquad k = \frac{k_i + k_f}{2}, \qquad q = p_f - p_i = k_i - k_f$$

$$\Rightarrow p_i = p - \frac{q}{2} \qquad k_i = k + \frac{q}{2}$$

$$\Rightarrow p_i + k_i = p_f + k_f$$

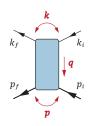
$$p_f = p + \frac{q}{2} \qquad k_f = k - \frac{q}{2}$$

• 3 momenta ⇒ 6 Lorentz invariants:

$$p^{\mathbb{Z}}$$
, q^2 , $k^{\mathbb{Z}}$, p/q , k/q , $p \cdot k$

• Assume all particles are **onshell**: $p_i^2=p_f^2=M^2, \;\; k_i^2=k_f^2=m^2$

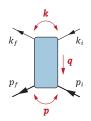
$$\begin{array}{c} p_i^2 = p^2 + \frac{q^2}{4} - p \cdot q = M^2 \\ p_f^2 = p^2 + \frac{q^2}{4} + p \cdot q = M^2 \end{array} \qquad p \cdot q = 0, \quad p^2 = M^2 - \frac{q^2}{4} \\ k_i^2 = k^2 + \frac{q^2}{4} + k \cdot q = m^2 \\ k_f^2 = k^2 + \frac{q^2}{4} - k \cdot q = m^2 \end{array} \qquad k \cdot q = 0, \quad k^2 = m^2 - \frac{q^2}{4}$$



• 3 independent momenta, 2 Lorentz invariants:

$$\begin{array}{lll} p_i = p - \frac{q}{2} & k_i = k + \frac{q}{2} & \tau = -\frac{q^2}{4M^2} & p \cdot q = 0, & p^2 = M^2 - \frac{q^2}{4} \\ p_f = p + \frac{q}{2} & k_f = k - \frac{q}{2} & \lambda = \frac{p \cdot k}{M^2} & k \cdot q = 0, & k^2 = m^2 - \frac{q^2}{4} \end{array}$$

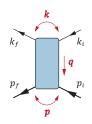
$2\rightarrow 2$ scattering (2)



• 3 independent momenta, 2 Lorentz invariants:

$$\varepsilon = \frac{M^2 - m^2}{2M^2} \quad \Rightarrow \quad m^2 = M^2(1 - 2\varepsilon)$$
$$\Rightarrow \quad p^2 + k^2 = M^2 + m^2 - \frac{q^2}{2} = 2M^2(1 + \tau - \varepsilon)$$

$2\rightarrow 2$ scattering (2)



• 3 independent momenta, 2 Lorentz invariants:

$$p_{i} = p - \frac{q}{2} \qquad k_{i} = k + \frac{q}{2} \qquad \tau = -\frac{q^{2}}{4M^{2}} \qquad p \cdot q = 0, \quad p^{2} = M^{2} - \frac{q^{2}}{4}$$

$$p_{f} = p + \frac{q}{2} \qquad k_{f} = k - \frac{q}{2} \qquad \lambda = \frac{p \cdot k}{M^{2}} \qquad k \cdot q = 0, \quad k^{2} = m^{2} - \frac{q^{2}}{4}$$

$$\bullet \quad \text{Define}$$

$$\varepsilon = \frac{M^{2} - m^{2}}{2M^{2}} \qquad \Rightarrow \quad m^{2} = M^{2}(1 - 2\varepsilon)$$

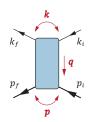
$$\Rightarrow \quad p^{2} + k^{2} = M^{2} + m^{2} - \frac{q^{2}}{2} = 2M^{2}(1 + \tau - \varepsilon)$$

$$\varepsilon = \frac{M^2 - m^2}{2M^2} \qquad \Rightarrow m^2 = M^2(1 - 2\varepsilon) \\ \Rightarrow p^2 + k^2 = M^2 + m^2 - \frac{q^2}{2} = 2M^2(1 + \tau - \varepsilon)$$

Mandelstam variables:

$$\begin{split} s &= (p_i + k_i)^2 = (p_f + k_f)^2 = (p + k)^2 = p^2 + k^2 + 2p \cdot k = 2M^2(1 + \tau + \lambda - \varepsilon) \\ u &= (p_i - k_f)^2 = (p_f - k_i)^2 = (p - k)^2 = p^2 + k^2 - 2p \cdot k = 2M^2(1 + \tau - \lambda - \varepsilon) \\ t &= (p_f - p_i)^2 = (k_i - k_f)^2 = q^2 = -4M^2\tau \\ \Rightarrow s + t + u &= 4M^2(1 - \varepsilon) = 2M^2 + 2m^2 \end{split}$$

$2\rightarrow 2$ scattering (2)



• 3 independent momenta, 2 Lorentz invariants:

$$\varepsilon = \frac{M^2 - m^2}{2M^2} \quad \Rightarrow \quad m^2 = M^2(1 - 2\varepsilon) \\ \Rightarrow \quad p^2 + k^2 = M^2 + m^2 - \frac{q^2}{2} = 2M^2(1 + \tau - \varepsilon)$$

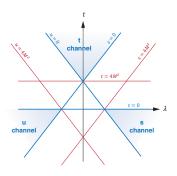
Mandelstam variables:

$$\begin{split} s &= (p_i + k_i)^2 = (p_f + k_f)^2 = (p + k)^2 = p^2 + k^2 + 2p \cdot k = 2M^2(1 + \tau + \lambda - \varepsilon) \\ u &= (p_i - k_f)^2 = (p_f - k_i)^2 = (p - k)^2 = p^2 + k^2 - 2p \cdot k = 2M^2(1 + \tau - \lambda - \varepsilon) \\ t &= (p_f - p_i)^2 = (k_i - k_f)^2 = q^2 = -4M^2\tau \end{split}$$

$$\Rightarrow s+t+u=4M^2(1-\varepsilon)=2M^2+2m^2 \quad \checkmark$$

$$\begin{array}{ll} \Rightarrow \Gamma(p_i,k_i,p_f,k_f) \\ = f(s,t,u) \\ = f(\lambda,\tau) \end{array} \Rightarrow \text{Momentum transfer:} \quad \tau = -\frac{t}{4M^2} = \frac{s+u}{4M^2} - 1 + \varepsilon$$

Mandelstam plane

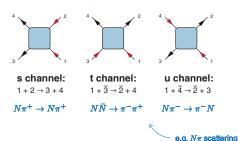


$$\tau = -\frac{t}{4M^2} = \frac{s+u}{4M^2} - 1 + \varepsilon$$

$$\lambda = \frac{s-u}{4M^2}$$

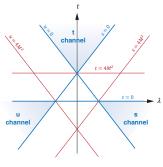
here: identical masses ($\varepsilon = 0$)

 Different processes described by same amplitude, but with different physical domains:



 Dressing functions are determined by (all) their singularities:

Mandelstam plane



 $au = -rac{t}{4M^2} = rac{s+u}{4M^2} - 1 + arepsilon$

 $\lambda = \frac{s-u}{4M^2}$

Amplitudes are **Lorentz-invariant**, no need to go into specific frame unless to relate with experiments:

CM Frame:

$$\begin{split} \lambda &= \tfrac{s-u}{M^2} = \tfrac{1}{M^2} \left[\tfrac{k^2}{2} \left(1 + \cos\theta_{\mathrm{CM}} \right) + \sqrt{k^2 + M^2} \sqrt{k^2 + m^2} \right] \\ \tau &= \tfrac{k^2}{2M^2} (1 - \cos\theta_{\mathrm{CM}}) \end{split}$$

Lab Frame:

$$\begin{vmatrix}
\lambda = \cdots \\
\tau = \cdots
\end{vmatrix}$$
 \Leftrightarrow k_{lab} , θ_{lab}

 λ and τ are the same in any frame!

But ...

17

- · Amplitudes are offshell:
 - → complicated **kinematic phase space** (here: 6 variables)
 - → how to find most convenient set of Lorentz invariants?
- · Amplitudes have Dirac and/or Lorentz structure
 - → complicated tensor bases
 - → many dressing functions
 - → complicates problem both algebraically and numerically
 - → use symmetries to find efficient tensor bases: gauge invariance & permutation symmetries (crossing symmetry, charge conjugation)

After all that, we can talk about **dynamics!**

- 1. Example: 2→2 scattering
- 2. Euclidean metric
- 3. QCD's n-point functions
- 4. Tensor bases
- 5. Kinematics

Euclidean conventions

Why Euclidean?

- We're often dealing with spacelike momenta (virtual particles)
- Loop momenta are spacelike
- Minkowski metric (+, -, -, -) is inconvenient: upper & lower indices, cumbersome to write code
- QFT is already "Euclidean":
 To make QFT well-defined, one needs imaginary-time boundary conditions:

$$\int d^4x = \int d^3x \int\limits_{-\infty(1-i\epsilon)}^{\infty(1-i\epsilon)} dx_0 \quad \Leftrightarrow \quad \int d^4p = \int d^3p \int\limits_{-\infty(1+i\epsilon)}^{\infty(1+i\epsilon)} dp_0$$

As long as amplitudes fall off fast enough at complex infinity, this is equivalent to Euclidean QFT!

$$r=-rac{q^2}{4M^2}=rac{Q^2}{4M^2}$$
 electron $F(Q^2)$

Corresponds to $i\epsilon$ prescription in Feynman propagator:

$$\int_{-\infty}^{\infty} dp_0 \; \frac{1}{p^2 - m^2 + i\varepsilon} \qquad \Rightarrow \quad p_0^2 = p^2 + m^2 - i\varepsilon$$

$$\lim_{p_0 \text{ integration}} p_0 \text{ Re } p_0$$
Wick
$$p_0 \text{ integration}$$

Euclidean conventions

So, let's employ a Euclidean metric (+, +, +, +):

$$a_E^\mu = \left[egin{array}{c} a \ ia_0 \end{array}
ight] \qquad \Rightarrow \qquad egin{array}{c} a_E \cdot b_E = -a \cdot b \ a_E^2 = -a^2 \end{array}$$

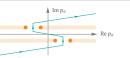
To preserve meaning of slash $\phi = a^0 \gamma^0 - a \cdot \gamma$, we must redefine γ matrices:

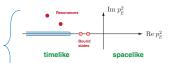
$$i\gamma_E^\mu = \begin{bmatrix} \gamma \\ i\gamma_0 \end{bmatrix}, \quad \gamma_E^5 = \gamma^5 \quad \Rightarrow \qquad \begin{aligned} \not a_E = a_E \cdot \gamma_E = i\not a & (\gamma_E^i)^2 = 1 \\ \{\gamma_E^\mu, \gamma_E^\nu\} = 2\delta^{\mu\nu} & \gamma_E^\mu = (\gamma_E^\mu)^\dagger \end{aligned}$$

⇒ Euclidean action is non-negative, defines probability measure:

$$e^{iS} = \exp \left[i \int d^4x \, \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi \right] = \exp \left[- \int d^4x_B \, \bar{\psi} \left(\partial \!\!\!/_E + m \right) \psi \right] = e^{-S_B}$$

Disclaimer: This does not mean you can simply close your eyes when computing loop integrals... if there are cuts in the way, you must still deform the integration contour (also in Euclidean)!





Lorentz invariants only pick up minus signs, Mandelstam planes don't change!

Minkowski	Euclidean
$a \cdot b$	$-a \cdot b$
a^{μ}	a^{μ}
γ^{μ}	$i\gamma^{\mu}$
γ_5	75
¢.	-igt
$g^{\mu \nu}$	$-\delta^{\mu\nu}$
$a^{\mu}b^{\nu}$	$a^{\mu}b^{\nu}$
$[\gamma^{\mu}, \gamma^{\nu}]$	$-[\gamma^{\mu}, \gamma^{\nu}]$
$[\gamma^{\mu}, \phi]$	$[\gamma^{\mu}, \phi]$
$[\gamma^{\mu}, \gamma^{\nu}, \phi]$	$i[\gamma^{\mu}, \gamma^{\nu}, d]$
[ø, b]	-[ø, ø]
$\varepsilon^{\mu\nu\rho\alpha}a_{\alpha}$	$i\varepsilon^{\mu\nu\rho\alpha}a^{\alpha}$
$\varepsilon^{\mu\nu\alpha\beta}a_{\alpha}b_{\beta}$	$-i\varepsilon^{\mu\nu\alpha\beta}a^{\alpha}b^{\beta}$
$\varepsilon^{\mu\alpha\beta\gamma}a_{\alpha}b_{\beta}c_{\gamma}$	$i\varepsilon^{\mu\alpha\beta\gamma}a^{\alpha}b^{\beta}c^{\gamma}$
$\varepsilon^{\mu\nu\alpha\beta}a_{\alpha}\gamma_{\beta}$	$-\varepsilon^{\mu\nu\alpha\beta}a^{\alpha}\gamma^{\beta}$
$\begin{split} & [\gamma^{\mu}, \phi] \\ & [\gamma^{\mu}, \gamma^{\nu}, \phi] \\ & [\phi, \phi] \\ & [\phi, b] \\ & \varepsilon^{\mu\nu\rho\alpha} a_{\alpha} \\ & \varepsilon^{\mu\nu\alpha\beta} a_{\alpha} b_{\beta} \\ & \varepsilon^{\mu\alpha\beta\gamma} a_{\alpha} b_{\beta} c_{\gamma} \end{split}$	$\begin{aligned} & [\gamma^{\mu}, \not a] \\ & i[\gamma^{\mu}, \gamma^{\nu}, \not a] \\ & - [\not a, \not b] \\ & i\varepsilon^{\mu\nu\rho\alpha}a^{\alpha} \\ & - i\varepsilon^{\mu\nu\alpha\beta}a^{\alpha}b^{\beta} \\ & i\varepsilon^{\mu\alpha\beta\gamma}a^{\alpha}b^{\beta}c^{\gamma} \end{aligned}$

Euclidean conventions

From now on. I will use Euclidean conventions:

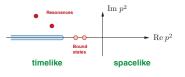
- No distinction between upper & lower indices
- $p^2 > 0$ means spacelike, $p^2 < 0$ timelike
- · For an onshell momentum in the rest frame, we write

$$P = \begin{bmatrix} 0 \\ 0 \\ 0 \\ iM \end{bmatrix} \quad \Rightarrow \quad P^2 = -M^2$$

For a general four momentum (e.g. loop momenta)

$$p = \sqrt{p^2} \begin{bmatrix} \sqrt{1 - z^2} \sqrt{1 - y^2} \sin \psi \\ \sqrt{1 - z^2} \sqrt{1 - y^2} \cos \psi \\ \sqrt{1 - z^2} y \end{bmatrix}$$

· Easy to code!



When people say

"We need to go to Minkowski space", what they usually mean is:

We need to go to the timelike region!

- 1. Example: 2→2 scattering
- 2. Euclidean metric
- 3. QCD's n-point functions
- 4. Tensor bases
- 5. Kinematics

Correlation functions in QCD

Quark propagator

Gluon propagator

Ghost propagator

$$\begin{split} S(p) &= \frac{1}{A(p^2)} \frac{-i \not p + M(p^2)}{p^2 + M(p^2)^2} \, \delta_{ij} \\ S(p)^{-1} &= A(p^2) (i \not p + M(p^2)) \, \delta_{ij} \\ &\stackrel{\text{quark}}{\underset{\text{mass}}{\text{function}}} \end{split}$$

$$D^{\mu
u}(Q) = rac{1}{Q^3} \left(Z(Q^2) T_Q^{\mu
u} + \xi L_Q^{\mu
u} \right) \delta_{ab}$$
 gluon dressing
$$T_Q^{\mu
u} = \delta^{\mu
u} - rac{Q^{\mu} Q^{
u}}{Q^2}$$
 transverse & longitudinal projectors

 $D_G(Q) = -rac{G(Q^2)}{C^2} \; \delta_{ab}$

$$D_G(Q) = -\frac{1}{Q^3} o_{ab}$$

if (+) here, then also (+) in ghost-dluon vertex

- 1 momentum.
- 2 Dirac indices ⇒ 1, p

$$S_{\alpha\beta}(p) = \sum_{i=1}^{2} f_i(p^2) \, \tau_i(p)_{\alpha\beta}$$

- 1 momentum.
- 2 Lorentz indices $\Rightarrow \delta^{\mu\nu}, Q^{\mu}Q^{\nu}$
- $D^{\mu\nu}(Q) = \sum_{i=1}^{2} f_{i}(Q^{2}) \tau_{i}(Q)^{\mu\nu}$

Correlation functions in QCD

· Ghost-gluon vertex

2 momenta,
1 Lorentz index
$$\Rightarrow p^{\mu}, Q^{\mu}$$

$$\begin{split} \Gamma^{\mu}_{\mathrm{gh}}(p,Q) &= -igf_{abc} \left[\left(1 + A(p^2,p\cdot Q,Q^2) \right) p^{\mu} \right. \\ &+ B(p^2,p\cdot Q,Q^2) \, Q^{\mu} \right] \end{split}$$

Quark-gluon vertex

- 2 momenta.
- 1 Lorentz index. 2 Dirac indices

$$\Gamma^{\mu}_{
m q}(k,Q) = ig \, {
m t_a} \sum_{i=1}^{12} rac{!}{f_i(k^2,k\cdot Q,Q^2)} \, { au_i^{\mu}}(k,Q)$$

· Three-gluon vertex

$$\Gamma^{\mu
u
ho}_{3{
m g}}(p_1,p_2,p_3) = igf_{abc}\sum_{i=1}^{14}rac{!}{f_i(p_1^2,p_2^2,p_3^2)}\, au_i^{\mu
u
ho}(p_1,p_2,p_3)$$

Four-gluon vertex

- 3 momenta. 4 Lorentz indices.
- 5 color tensors

- $\Gamma_{4{\rm g}}^{\mu\nu\rho\sigma}(p_1,p_2,p_3,p_4) = -g^2 \sum_{i=1}^{136} \sum_{i=1}^{6} \frac{f_{ij}(\dots)}{f_{ij}(\dots)} \tau_i^{\mu\nu\rho\sigma}(p_1,p_2,p_3,p_4) \tau_{abcd}^{(j)}$

Fermion-vector vertex

Let's consider a general fermion-vector vertex:

$$\Gamma^{\mu}(k,Q) = i \sum_{i=1}^{12} f_i(k^2, k \cdot Q, Q^2) \, \tau_i^{\mu}(k,Q)$$

quark-gluon vertex, quark-photon vertex, nucleon-photon vertex. ...

2 independent momenta: k_+, k_- or (simpler in practice) k, Q

$$k_{\pm} = k \pm \frac{Q}{2} \iff k = \frac{k_{+} + k_{-}}{2}, \ Q = k_{+} - k_{-}$$

12 linearly independent tensors:

This is a complete basis. But is it also the *best* choice?

The vertex has a charge-conjugation symmetry:

$$\Gamma^{\mu}(k,Q) \stackrel{!}{=} - C \Gamma^{\mu}(-k,Q)^T C^T$$
,

where $C = \gamma^4 \gamma^2$ is the charge-conjugation matrix and satisfies

$$C^T=C^\dagger=C^{-1}=-C$$
 , $C\gamma_5^TC^T=\gamma_5$, $C\gamma_\mu^TC^T=-\gamma_\mu$.

Fermion-vector vertex (2)

$$\begin{split} &\Gamma^{\mu}(k,Q) \stackrel{!}{=} -C\,\Gamma^{\mu}(-k,Q)^T\,C^T \\ &C^T = C^\dagger = C^{-1} = -C\,, \\ &C\gamma_5^TC^T = \gamma_5\,, \quad C\gamma_{\mu}^TC^T = -\gamma_{\mu} \end{split}$$

Fermion-vector vertex (2)

$$\Gamma^{\mu}(k,Q) \stackrel{!}{=} - C \Gamma^{\mu}(-k,Q)^T C^T$$
 $C^T = C^{\dagger} = C^{-1} = -C$,
 $C \gamma_5^T C^T = \gamma_5$, $C \gamma_u^T C^T = -\gamma_\mu$

But not all tensors satisfy this constraint:

Fermion-vector vertex (2)

$$\Gamma^{\mu}(k,Q) \stackrel{!}{=} - C\Gamma^{\mu}(-k,Q)^T C^T$$
 $C^T = C^{\dagger} = C^{-1} = -C$,
 $C\gamma_5^T C^T = \gamma_5$, $C\gamma_{\mu}^T C^T = -\gamma_{\mu}$

But not all tensors satisfy this constraint:

Simpler: implement symmetry directly for the basis elements

$$\begin{array}{lll} k \cdot Q \ Q^{\mu} & \rightarrow & + k \cdot Q \ CQ^{\mu}C^T = k \cdot Q \ Q^{\mu} & \checkmark \\ [\gamma_{\mu}, \mathcal{Q}] & \rightarrow & -C \left[\mathcal{Q}^T, \gamma_{\mu}^T\right]C^T = -[C \mathcal{Q}^TC^T, C\gamma_{\mu}^TC^T] = -[\mathcal{Q}, \gamma_{\mu}] = [\gamma_{\mu}, \mathcal{Q}] & \checkmark \end{array}$$

In short: use **commutators** & attach factors $k \cdot Q$ where necessary

Fermion-vector vertex (3)

Abbreviating $\boldsymbol{\omega} = \boldsymbol{k} \cdot \boldsymbol{Q}$, we arrive at the new basis

$$\gamma^{\mu}$$
 $i\omega[\gamma^{\mu},k]$ $i[\gamma^{\mu},Q]$ $[\gamma^{\mu},k,Q]$ Triple commutator is antisymmetric combination of A,B,C : ik^{μ} $k^{\mu}k$ $\omega k^{\mu}Q$ $ik^{\mu}[k,Q]$ $[A,B,C]=[A,B]C+[B,C]A+[C,A]B$ $i\omega Q^{\mu}$ $\omega Q^{\mu}k$ $Q^{\mu}Q$ $i\omega Q^{\mu}[k,Q]$ if actors make all dressing functions real

Now all tensors satisfy the constraint $\Gamma^{\mu}(k,Q) \stackrel{!}{=} - C\Gamma^{\mu}(-k,Q)^T C^T$ individually, so their dressing functions must be **even** in ω , can only depend on ω^2 :

$$\Gamma^{\mu}(k,Q) = i \sum_{i=1}^{12} f_i(k^2, \omega^2, Q^2) \tau_i^{\mu}(k,Q)$$

This also simplifies their momentum dependence:

Mathematically speaking, we have arranged the tensors and dressing functions into **singlets** of the **permutation group** S₂!

Fermion-vector vertex (4)

Amplitudes with gluon or photon legs are subject to **gauge invariance**, e.g. **Ward-Takahashi identity** (WTI) for quark-photon vertex:

$$Q^{\mu}\Gamma^{\mu}(k,Q)=S^{-1}(k_{+})-S^{-1}(k_{-})$$
 fixes longitudinal part of vertex

We could split the vertex into transverse and longitudinal part:

$$\begin{split} \Gamma^{\mu}(k,Q) &= T_Q^{\mu\nu} \, \Gamma^{\nu}(k,Q) + L_Q^{\mu\nu} \, \Gamma^{\nu}(k,Q) \\ &= \Gamma_{\perp}^{\mu}(k,Q) + \frac{Q^{\mu}}{Q^2} \left[S^{-1}(k_+) - S^{-1}(k_-) \right] \end{split}$$

But this has a kinematic singularity at $Q^2 = 0$, violates Ward identity:

$$\Gamma^{\mu}(k,0)=rac{dS(k)^{-1}}{dk^{\mu}}$$

- ⇒ Constructing tensor bases with T + L projectors is **dangerous** if we are interested in kinematic limits...
- ⇒ Must work out transverse part of vertex without introducing kinematic singularities

Fermion-vector vertex (5)

Simpler example: scalar vertex

$$\Gamma^{\mu}(k,Q) = c_1 k^{\mu} + c_2 \omega Q^{\mu}$$
 has correct permutation symmetry

Ward-Takahashi identity:

$$\begin{array}{l} Q^{\mu}\Gamma^{\mu}(k,Q)=D^{-1}(k_{+})-D^{-1}(k_{-}) \\ \text{Let's first work out the transverse part:} \\ Q^{\mu}\Gamma^{\mu}(k,Q)=\omega\left(c_{1}+c_{2}\,Q^{2}\right)\overset{!}{=}0 \quad \Rightarrow \quad c_{1}=-c_{2}\,Q^{2} \\ \Rightarrow \Gamma^{\mu}_{\perp}(k,Q)=-c_{2}\left(Q^{2}k^{\mu}-\omega\,Q^{\mu}\right) \\ =-c_{2}\left(Q^{2}\delta^{\mu\nu}-Q^{\mu}Q^{\nu}\right)k^{\nu} \end{array} \qquad \begin{array}{l} \text{No } 1/Q^{2} \text{ terms here!} \end{array}$$

 $=: t_{QQ}^{\mu\nu}$ Full vertex ightarrow we solved for c_1 , so we must put back k^{μ} :

$$\Gamma^{\mu}(k,Q)=g_1\,k^{\mu}+f_1\,t^{\mu\nu}_{QQ}\,k^{
u}$$

"minimal basis": no kinematic singularities, tensors are ordered with powers of momenta

Fermion-vector vertex (5)

Now we can work out the Ward-Takahashi identity:

$$Q^{\mu}\Gamma^{\mu}(k,Q) = D^{-1}(k_{+}) - D^{-1}(k_{-}) = g_{1} \omega$$

Define

$$\Delta = \frac{D^{-1}(k_{+}) - D^{-1}(k_{-})}{k_{+}^{2} - k_{-}^{2}} \qquad k_{\pm}^{2} = k^{2} + \frac{Q^{2}}{4} \pm k \cdot Q \quad \Rightarrow \quad k_{+}^{2} - k_{-}^{2} = 2k \cdot Q = 2\omega$$

$$\Rightarrow g_1 = 2\Delta$$

Full vertex \rightarrow we solved for c_1 , so we must put back k^{μ} :

$$\Gamma^{\mu}(k,Q) = g_1 \, k^{\mu} + f_1 \, t^{\mu \nu}_{QQ} \, k^{
u}$$

"minimal basis": no kinematic singularities, tensors are ordered with powers of momenta

Fermion-vector vertex (6)

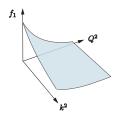
Final result for scalar vertex:

$$\Gamma^{\mu}(k,Q) = \ 2\Delta \ k^{\mu} + f_1 \, t^{\mu\nu}_{QQ} \, k^{
u} \qquad \qquad \Delta = \ \frac{D^{-1}(k_+) - D^{-1}(k_-)}{k_+^2 - k_-^2}$$

Satisfies WTI and Ward identity:

$$\Gamma^{\mu}(k,0) = 2\Delta k^{\mu} = \frac{dD^{-1}(k)}{dk^2} 2k^{\mu} = \frac{dD^{-1}(k)}{dk^{\mu}}$$

In this way, we eliminated all kinematic effects from tensor basis: Dressing functions are free of kinematic constraints at k=0 or Q=0 (kinematically independent), no kinematic singularities or zeros: their only singularities are physical poles and cuts!



Also: tensors with higher momentum powers are suppressed at low momenta ⇒ ordering principle!

$$2\Delta~k^{\mu}+f_1\,t^{\mu
u}_{QQ}~k^{
u}$$
important less important

Fermion-vector vertex (7)

The same can be done for **fermion-vector vertex**:

$$\Gamma^{\mu}(k,Q) = i \begin{bmatrix} \sum\limits_{j=1}^{4} g_{j} \, G_{j}^{\mu} + \sum\limits_{j=1}^{8} f_{j} \, T_{j}^{\mu} \end{bmatrix}$$

$$\begin{array}{cccc} \text{Gauge part:} & \text{Transverse part,} \\ \text{constrained by STI} & \text{carries dynamics} \\ \gamma^{\mu} & t^{\mu\nu}_{QQ} \, \gamma^{\nu} & t^{\mu\nu}_{QQ} \, ik^{\nu} \\ k^{\mu}_{k} & \omega \, t^{\nu}_{QQ} \, \frac{i}{2} [\gamma^{\nu}, k] & t^{\mu\nu}_{QQ} \, k^{\nu}_{k} \\ ik^{\mu} & \frac{i}{2} [\gamma^{\mu}, Q] & \omega \, t^{\nu\nu}_{QQ} \, \gamma^{\nu} \\ \omega \, \frac{i}{2} [\gamma^{\mu}, k] & \frac{i}{8} [\gamma^{\mu}, k, Q] & t^{\mu\nu}_{QQ} \, \frac{i}{2} [\gamma^{\nu}, k] \end{bmatrix}$$

For quark-photon vertex: **Ball-Chiu vertex**Ball, Chiu, PRD 22 (1980)

Chiu, PRD 22 (1980)
$$g_1 = \Sigma_A \qquad g_2 = 2\Delta_A \qquad g_3 = -2\Delta_B \qquad g_4 = 0 \qquad \qquad \Delta_A = \frac{A(k_+) - A(k_-)}{k_+^2 - k_-^2}$$

$$B(k^2) = A(k^2)M(k^2)$$

Everything else is **dynamics!** Quark-photon vertex can be calculated from BSE, f_j must have physical vector-meson poles at timelike momenta Maris, Tandy, PRC 61 (2000)