Theory and phenomenology of Generalised Partons Distributions

Cédric Mezrag

CEA Saclay, Irfu DPhN

October 17th, 2025

2025 International Workshop and School on Hadron Structure and Strong Interactions

• Last time, we have studied the renormalisation of a **light-ray** quark operator at one loop.

- Last time, we have studied the renormalisation of a **light-ray** quark operator at one loop.
- Singularities appear when integrating over the transverse degrees of freedom.

- Last time, we have studied the renormalisation of a light-ray quark operator at one loop.
- Singularities appear when integrating over the transverse degrees of freedom.
- Renormalisation can be performed in the same way as for local operators, trading products for convolutions in momentum space

- Last time, we have studied the renormalisation of a light-ray quark operator at one loop.
- Singularities appear when integrating over the transverse degrees of freedom.
- Renormalisation can be performed in the same way as for local operators, trading products for convolutions in momentum space
- We derived the evolution equations, in analogy with the renormalisation group equation.

- Last time, we have studied the renormalisation of a light-ray quark operator at one loop.
- Singularities appear when integrating over the transverse degrees of freedom.
- Renormalisation can be performed in the same way as for local operators, trading products for convolutions in momentum space
- We derived the evolution equations, in analogy with the renormalisation group equation.
- The anomalous dimensions are momentum dependent and are called splitting functions.
 - NB : For those willing to perfom the one-loop \mathcal{P}_{qq} computation, you can follow appendix B of arxiv:2206.01412

Non-singlet Splitting function

$$\mathcal{P}^{\pm,[0]}\left(y,\kappa=rac{\xi}{x}
ight)= heta(1-y)\mathcal{P}_1^{\pm,[0]}\left(y,\kappa
ight)+ heta(\kappa-1)\mathcal{P}_2^{\pm,[0]}\left(y,\kappa
ight)\,.$$

Non-singlet Splitting function

$$\mathcal{P}^{\pm,[0]}\left(y,\kappa=\frac{\xi}{x}\right)=\theta(1-y)\mathcal{P}_{1}^{\pm,[0]}\left(y,\kappa\right)+\theta(\kappa-1)\mathcal{P}_{2}^{\pm,[0]}\left(y,\kappa\right).$$

where

$$\mathcal{P}_{1}^{-,[0]}(y,\kappa) = 2C_{F}\left\{\left(\frac{2}{1-y}\right)_{+} - \frac{1+y}{1-\kappa^{2}y^{2}} + \delta(1-y)\left[\frac{3}{2} - \ln\left(\left|1-\kappa^{2}\right|\right)\right]\right\},$$

$$\mathcal{P}_{2}^{-,[0]}(y,\kappa) = 2C_{F}\left[\frac{1+(1+\kappa)y+(1+\kappa-\kappa^{2})y^{2}}{(1+y)(1-\kappa^{2}y^{2})} - \left(\frac{1}{1-y}\right)_{++}\right],$$

Non-singlet Splitting function

$$\mathcal{P}^{\pm,[0]}\left(y,\kappa=\frac{\xi}{x}\right)=\theta(1-y)\mathcal{P}_{1}^{\pm,[0]}\left(y,\kappa\right)+\theta(\kappa-1)\mathcal{P}_{2}^{\pm,[0]}\left(y,\kappa\right).$$

where

$$\mathcal{P}_{1}^{-,[0]}(y,\kappa) = 2C_{F}\left\{\left(\frac{2}{1-y}\right)_{+} - \frac{1+y}{1-\kappa^{2}y^{2}} + \delta(1-y)\left[\frac{3}{2} - \ln\left(\left|1-\kappa^{2}\right|\right)\right]\right\},\$$

$$\mathcal{P}_{2}^{-,[0]}(y,\kappa) = 2C_{F}\left[\frac{1+(1+\kappa)y+(1+\kappa-\kappa^{2})y^{2}}{(1+y)(1-\kappa^{2}y^{2})} - \left(\frac{1}{1-y}\right)_{++}\right],$$

and

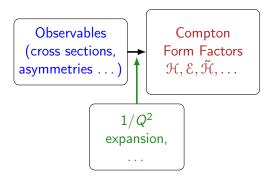
$$\int_{x}^{1} dy \left(\frac{1}{1-y}\right)_{+} f(y) = \int_{x}^{1} dy \frac{f(y) - f(1)}{1-y} + f(1) \ln(1-x)$$

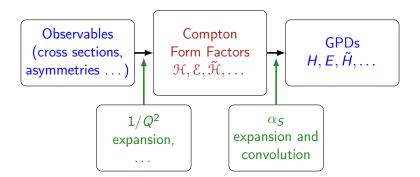
$$\int_{x}^{\infty} dy \left(\frac{1}{1-y}\right)_{++} f(y) = \int_{x}^{\infty} \frac{dy}{1-y} \left[f(y) - f(1) \left(1 + \theta(y-1) \frac{1-y}{y}\right) \right] + f(1) \ln(1-x),$$

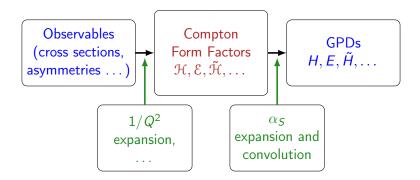
Probing GPDs through exclusive processes

I really recommend reading the Ph.D. thesis of H. Dutrieux: https://inspirehep.net/literature/2614733

Observables (cross sections, asymmetries . . .)

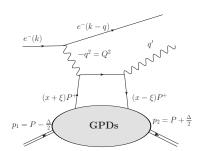






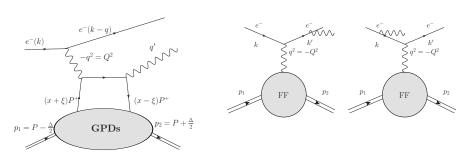
- CFFs play today a central role in our understanding of GPDs
- Extraction generally focused on CFFs

Deep Virtual Compton Scattering



- Best studied experimental process connected to GPDs
 - \rightarrow Data taken at Hermes, Compass, JLab 6, JLab 12

Deep Virtual Compton Scattering



- Best studied experimental process connected to GPDs
 - \rightarrow Data taken at Hermes, Compass, JLab 6, JLab 12
- Interferes with the Bethe-Heitler (BH) process
 - ▶ Blessing: Interference term boosted w.r.t. pure DVCS one
 - Curse: access to the angular modulation of the pure DVCS part difficult

M. Defurne et al., Nature Commun. 8 (2017) 1, 1408

Amplitude

$$\begin{aligned} & \text{cross-sections} = \sum |BH + DVCS|^2 \\ & = \sum |BH|^2 + \underbrace{BH^*DVCS + DVCS^*BH}_{\text{interference term}} + |DVCS|^2 \end{aligned}$$

Amplitude

cross-sections =
$$\sum |BH + DVCS|^2$$

= $\sum |BH|^2 + \underbrace{BH^*DVCS + DVCS^*BH}_{\text{interference term}} + |DVCS|^2$

The DVCS amplitude is parametrised in terms of Compton Form factors which are complex functions:

Amplitude

cross-sections =
$$\sum |BH + DVCS|^2$$

= $\sum |BH|^2 + \underbrace{BH^*DVCS + DVCS^*BH}_{\text{interference term}} + |DVCS|^2$

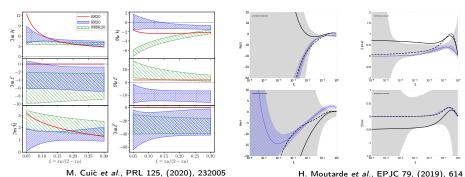
The DVCS amplitude is parametrised in terms of Compton Form factors which are complex functions:

$$\mathcal{H}(\xi, t, Q^2) = \int_{-1}^1 \frac{\mathrm{d}x}{\xi} T\left(\frac{x}{\xi}; \alpha_s\right) H(x, \xi, t)$$

and similar definitions for \mathcal{E} , $\tilde{\mathcal{H}}$ and $\tilde{\mathcal{E}}$.

Recent CFF extractions

8 / 26

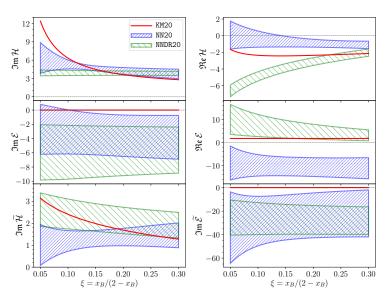


- Recent effort on bias reduction in CFF extraction (ANN)

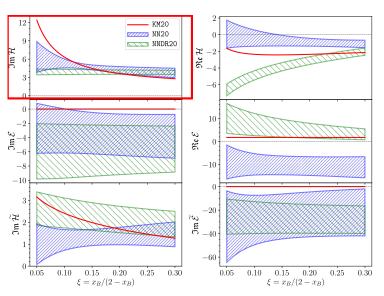
 additional ongoing studies, J. Grigsby et al., PRD 104 (2021) 016001
- Studies of ANN architecture to fulfil GPDs properties (dispersion relation, polynomiality, . . .)
- Recent efforts on propagation of uncertainties (allowing impact studies for JLAB12, EIC and EicC)

see e.g. H. Dutrieux et al., EPJA 57 8 250 (2021)

Let us discuss these results



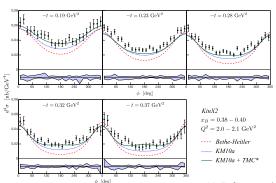
Let us discuss these results



Finite t corrections

Kinematic corrections in t/Q^2 and M^2/Q^2

V. Braun et al., PRL 109 (2012), 242001

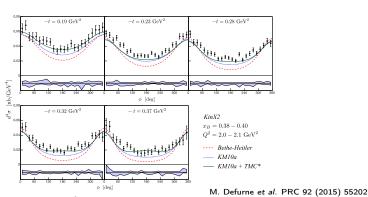


M. Defurne et al. PRC 92 (2015) 55202

Finite t corrections

Kinematic corrections in t/Q^2 and M^2/Q^2

V. Braun et al., PRL 109 (2012), 242001



- Sizeable even for $t/Q^2 \sim 0.1$
- Not currently included in global fits.

Dispersion relation and the D-term

• At all orders in α_S , dispersion relations relate the real and imaginary parts of the CFF.

Anikin and O. Teryaev, PRD 76 056007
 M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
 H. Dutrieux et al., EPJC 85 (2025) 1, 105
 V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

$$S(t, Q^2) = \int_{-1}^1 d\omega T(\omega) D(\omega) = \Re \mathcal{H}(\xi) - \frac{2}{\pi} \int_0^1 \frac{x^2 \Im \mathcal{H}(x)}{(\xi - x)(\xi + x)} \frac{dx}{\xi}$$

Dispersion relation and the D-term

• At all orders in α_S , dispersion relations relate the real and imaginary parts of the CFF.

I. Anikin and O. Teryaev, PRD 76 056007
 M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
 H. Dutrieux et al., EPJC 85 (2025) 1, 105

V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

$$S(t,Q^2) = \int_{-1}^1 d\omega T(\omega) D(\omega) = \Re \mathcal{H}(\xi) - \frac{2}{\pi} \int_0^1 \frac{x^2 \Im \mathcal{H}(x)}{(\xi - x)(\xi + x)} \frac{dx}{\xi}$$

• $D(\alpha, t)$ is related to the EMT.

M.V. Polyakov PLB 555, 57-62 (2003)

Dispersion relation and the D-term

• At all orders in α_S , dispersion relations relate the real and imaginary parts of the CFF.

I. Anikin and O. Teryaev, PRD 76 056007 M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932 H. Dutrieux et al., EPJC 85 (2025) 1, 105 V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

$$S(t, Q^2) = \int_{-1}^{1} d\omega T(\omega) D(\omega) = \Re \mathcal{H}(\xi) - \frac{2}{\pi} \int_{0}^{1} \frac{x^2 \Im \mathcal{H}(x)}{(\xi - x)(\xi + x)} \frac{dx}{\xi}$$

• $D(\alpha, t)$ is related to the EMT.

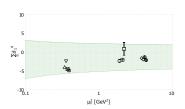


figure from H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

M.V. Polyakov PLB 555, 57-62 (2003)

• First attempt from JLab 6 GeV data

Burkert et al., Nature 557 (2018) 7705, 396-399

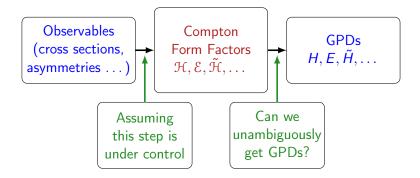
- Tensions with other studies
 - → uncontrolled model-dependence

K. Kumericki, Nature 570 (2019) 7759, E1-E2
 H. Moutarde et al., Eur.Phys.J.C 79 (2019) 7, 614
 H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

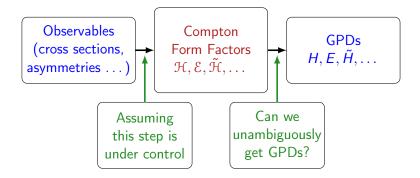
Schamo/scalo dopondonco

Scheme/scale dependence

The DVCS deconvolution problem I



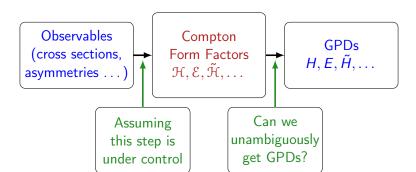
The DVCS deconvolution problem I



• It has been known for a long time that this is not the case at LO as $\Im \mathcal{T} \propto \delta(\mathbf{x} \pm \mathbf{\xi})$

The DVCS deconvolution problem I

From CFF to GPDs



- It has been known for a long time that this is not the case at LO as $\Im \mathcal{T} \propto \delta(\mathbf{x} \pm \mathbf{\xi})$
- Are QCD corrections improving the situation?

Introducing shadow GPDs

CFF Definition

$$\underbrace{\mathcal{H}(\xi, t, Q^2)}_{\text{Observable}} = \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} \underbrace{T\left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right)}_{\text{Perturbative DVCS kernel}} H(x, \xi, t, \mu^2)$$

Introducing shadow GPDs

CFF Definition

$$\underbrace{\mathcal{H}(\xi, t, Q^2)}_{\text{Observable}} = \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} \underbrace{\mathcal{T}\left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right)}_{\text{Perturbative DVCS kernel}} H(x, \xi, t, \mu^2)$$

Shadow GPD definition

We define shadow GPD $H^{(n)}$ of order n such that when T is expanded in powers of α_s up to n one has:

$$0 = \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} T^{(n)} \left(\frac{x}{\xi}, \frac{Q^2}{\mu_0^2}, \alpha_s(\mu_0^2) \right) H^{(n)}(x, \xi, t, \mu_0^2) \quad \text{invisible in DVCS}$$

$$0 = H^{(n)}(x, 0, 0) \quad \text{invisible in DIS}$$

A part of the GPD functional space is invisible to DVCS and DIS combined

Finding Shadow GPDs I

 We want our shadow GPDs to fulfill all the good theoretical properties of standard GPDs, especially polynomiality

Finding Shadow GPDs I

- We want our shadow GPDs to fulfill all the good theoretical properties of standard GPDs, especially polynomiality
- We look for solution in the Double Distribution space:

$$H_{\mathrm{shadow}}(x,\xi) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha f_{\mathrm{shadow}}(\beta,\alpha) \delta(x-\beta-\alpha\xi)$$

which is in one to one correspondance with the polynomiality property

N. Chouika et al, EPJC 77 (2017)

Finding Shadow GPDs I

- We want our shadow GPDs to fulfill all the good theoretical properties of standard GPDs, especially polynomiality
- We look for solution in the Double Distribution space:

$$H_{\mathrm{shadow}}(x,\xi) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha f_{\mathrm{shadow}}(\beta,\alpha) \delta(x-\beta-\alpha\xi)$$

which is in one to one correspondance with the polynomiality property

N. Chouika et al, EPJC 77 (2017)

• We expanded $f_{\rm shadow}$ on polynomials of order N, so that we have a number of coefficient of order ?

- We want our shadow GPDs to fulfill all the good theoretical properties of standard GPDs, especially polynomiality
- We look for solution in the Double Distribution space:

$$H_{\mathrm{shadow}}(x,\xi) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha f_{\mathrm{shadow}}(\beta,\alpha) \delta(x-\beta-\alpha\xi)$$

which is in one to one correspondance with the polynomiality property

N. Chouika et al, EPJC 77 (2017)

• We expanded $f_{\rm shadow}$ on polynomials of order N, so that we have a number of coefficient of order N^2 .

We impose the following conditions:

• No forward limit $H(x,0) = 0 \rightarrow N + 2$ equations

We impose the following conditions:

- No forward limit $H(x,0) = 0 \rightarrow N + 2$ equations
- $T \otimes H = (C^{(0)} + \alpha_s C^{(1)} + \alpha_s \ln(Q^2/\mu^2)C^{\text{coll}}) \otimes H = 0$ This bring respectively N+1, N-1 and N+1 new equations

We impose the following conditions:

- No forward limit $H(x,0) = 0 \rightarrow N + 2$ equations
- $T \otimes H = (C^{(0)} + \alpha_s C^{(1)} + \alpha_s \ln(Q^2/\mu^2)C^{\text{coll}}) \otimes H = 0$ This bring respectively N+1, N-1 and N+1 new equations
- For definiteness, we add another constraint such that $f_{\rm shadow}(1-\alpha,\alpha)=0$ (continuity of the DD).

We impose the following conditions:

- No forward limit $H(x,0) = 0 \rightarrow N + 2$ equations
- $T \otimes H = (C^{(0)} + \alpha_s C^{(1)} + \alpha_s \ln(Q^2/\mu^2)C^{\text{coll}}) \otimes H = 0$ This bring respectively N+1, N-1 and N+1 new equations
- For definiteness, we add another constraint such that $f_{\rm shadow}(1-lpha,lpha)=0$ (continuity of the DD).

With a number of parameters of order N^2 , we find our first solution for N=25

We impose the following conditions:

- No forward limit $H(x,0) = 0 \rightarrow N + 2$ equations
- $T \otimes H = (C^{(0)} + \alpha_s C^{(1)} + \alpha_s \ln(Q^2/\mu^2)C^{\text{coll}}) \otimes H = 0$ This bring respectively N+1, N-1 and N+1 new equations
- For definiteness, we add another constraint such that $f_{\rm shadow}(1-\alpha,\alpha)=0$ (continuity of the DD).

With a number of parameters of order N^2 , we find our first solution for N=25

Adding Mellin moments (computed on the Lattice) provides other sets of order N equations.

• Could evolution solve the issue ?

- Could evolution solve the issue ?
- We define $\Gamma(\mu^2, \mu_0^2)$ the GPD evolution operator expanded as:

$$\Gamma(\mu^2, \mu_0^2) = 1 + \alpha_s(\mu^2) K^{(0)} \ln\left(\frac{\mu^2}{\mu_0^2}\right) + \mathcal{O}(\alpha_s^2)$$

- Could evolution solve the issue ?
- We define $\Gamma(\mu^2, \mu_0^2)$ the GPD evolution operator expanded as:

$$\Gamma(\mu^2, \mu_0^2) = 1 + \alpha_s(\mu^2) K^{(0)} \ln\left(\frac{\mu^2}{\mu_0^2}\right) + \mathcal{O}(\alpha_s^2)$$

Because observables do not depend of the scale, we have :

$$C^{\mathrm{coll}} + C^0 \otimes K^{(0)} = 0$$

- Could evolution solve the issue ?
- We define $\Gamma(\mu^2, \mu_0^2)$ the GPD evolution operator expanded as:

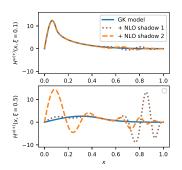
$$\Gamma(\mu^2, \mu_0^2) = 1 + \alpha_s(\mu^2) K^{(0)} \ln\left(\frac{\mu^2}{\mu_0^2}\right) + \mathcal{O}(\alpha_s^2)$$

Because observables do not depend of the scale, we have :

$$C^{\mathrm{coll}} + C^0 \otimes K^{(0)} = 0$$

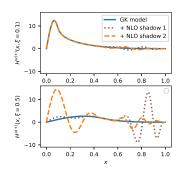
• We expect CFF computed from evolved NLO shadow GPDs to exhibit an α_s^2 behaviour under evolution (provided that the logs remain small enough).

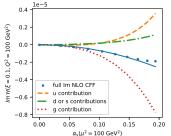
The DVCS deconvolution problem II



- NLO analysis of shadow GPDs:
 - ▶ Cancelling the line $x = \xi$ is necessary but **no longer** sufficient
 - Additional conditions brought by NLO corrections reduce the size of the "shadow space"...
 - ... but do not reduce it to 0
 - ightarrow NLO shadow GPDs
 - H. Dutrieux et al., PRD 103 114019 (2021)

The DVCS deconvolution problem II





• NLO analysis of shadow GPDs:

- ► Cancelling the line $x = \xi$ is necessary but **no longer** sufficient
- Additional conditions brought by NLO corrections reduce the size of the "shadow space"...
- ... but do not reduce it to 0
 - ightarrow NLO shadow GPDs

H. Dutrieux et al., PRD 103 114019 (2021)

Evolution

it was argued that evolution would solve this issue

> A. Freund PLB 472, 412 (2000) E. Moffat *et al.*, PRD 108 (2023)

but in practice it is not the case

H. Dutrieux et al., PRD 103 114019 (2021)

A tale of two eigenvalues

$$\begin{pmatrix} \mathbf{a} \pm \delta \\ \mathbf{0} \pm \delta \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \epsilon \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

- (a, b) is our experimental vector (measured), (x, y) is our unknown
- ullet Now let's assume that $\lambda_1 \sim 1$ and $\lambda_2 = \epsilon << 1$
- ullet Finally, our experimental data are known with a finite precision δ and b is compatible with zero.
- Let us put numbers everywhere : a=1.4, $\delta=0.1$, $\lambda_1=2$, $\epsilon=10^{-3}$

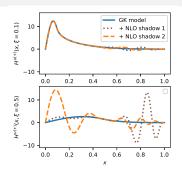
$$x = 0.7 \pm 0.05, \quad y = 0 \pm 100$$

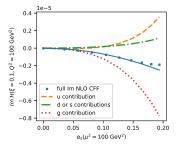
 You should use theory constraints if you know some to get relevant values for y:

$$\sqrt{x^2 + y^2} \le \rho_{\text{max}} \Rightarrow y = 0 \pm \sqrt{\rho_{\text{max}}^2 - x^2}$$

• even if $ho_{
m max} \simeq 10$, you gain an order of magnitude and theory is driving your knowledge of y.

The DVCS deconvolution problem II





• NLO analysis of shadow GPDs:

- ▶ Cancelling the line $x = \xi$ is necessary but **no longer** sufficient
- Additional conditions brought by NLO corrections reduce the size of the "shadow space"...
- ... but do not reduce it to 0
 - \rightarrow NLO shadow GPDs

H. Dutrieux et al., PRD 103 114019 (2021)

Evolution

it was argued that evolution would solve this issue

> A. Freund PLB 472, 412 (2000) E. Moffat *et al.*, PRD 108 (2023)

but in practice it is not the case

H. Dutrieux et al., PRD 103 114019 (2021)

Theoretical uncertainties promoted to main source of GPDs uncertainties

Improving the deconvolution problem

- Introduce theoretical inputs coming from QCD constraints
 - Change of methods with introduction of theoretical bias
 - Positivity is going to play an important role

Improving the deconvolution problem

- Introduce theoretical inputs coming from QCD constraints
 - ► Change of methods with introduction of theoretical bias
 - Positivity is going to play an important role
- Go to multichannel analysis
 - Shadow GPDs are process-dependent, i.e. some processes can see the shadow GPDs of others
 - Some exclusive processes are expected not to have shadow GPDs at all (but they are harder to measure).
 - ★ Double DVCS is the most obvious one

K. Deja et al., PRD 107 (2023) 9, 094035

***** New $2 \rightarrow 3$ exlusive processes are also good candidates

R. Boussarie et al., JHEP 02 (2017) 054 O. Grocholski et al., Phys. Rev. D 104 (2021) 11, J.-W. Qiu and Z. Yu, JHEP 08 (2022) 103

GPD properties and replicas techniques

Model $H = H_{\text{visible}} + H_{\text{shadow}}$ with two different neural networks fulfilling by construction all the properties but one, the positivity property.

GPD properties and replicas techniques

Model $H = H_{\text{visible}} + H_{\text{shadow}}$ with two different neural networks fulfilling by construction all the properties but one, the positivity property.

The positivity property

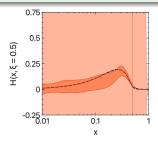
$$\left|H^{q}(x,\xi,t) - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}^{q}(x,\xi,t)\right| \leq \sqrt{\frac{1}{1-\xi^{2}}} q\left(\frac{x+\xi}{1+\xi}\right) q\left(\frac{x-\xi}{1-\xi}\right)$$

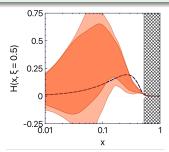
GPD properties and replicas techniques

Model $H = H_{\text{visible}} + H_{\text{shadow}}$ with two different neural networks fulfilling by construction all the properties but one, the positivity property.

The positivity property

$$\left|H^{q}(x,\xi,t) - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}^{q}(x,\xi,t)\right| \leq \sqrt{\frac{1}{1-\xi^{2}} q\left(\frac{x+\xi}{1+\xi}\right) q\left(\frac{x-\xi}{1-\xi}\right)}$$





H. Dutrieux et al., EPJC 82 (2022) 3, 252

21/26

Impact of Lattice QCD

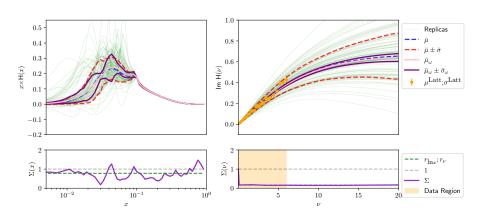
Lattice QCD can now compute matrix elements connected to GPDs:

$$I(\nu, \xi, t, z^2) = \int dx C(x, \nu, \xi, z^2, \mu^2) H(x, \xi, t, \mu^2)$$

Impact of Lattice QCD

Lattice QCD can now compute matrix elements connected to GPDs:

$$I(\nu, \xi, t, z^2) = \int \mathrm{d}x C(x, \nu, \xi, z^2, \mu^2) H(x, \xi, t, \mu^2)$$

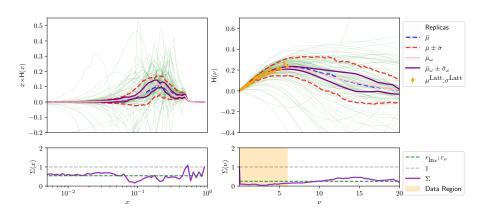


M. Riberdy et al., Eur.Phys.J.C 84 (2024) 2, 201

Impact of Lattice QCD

Lattice QCD can now compute matrix elements connected to GPDs:

$$I(\nu, \xi, t, z^2) = \int dx C(x, \nu, \xi, z^2, \mu^2) H(x, \xi, t, \mu^2)$$



M. Riberdy et al., Eur. Phys. J.C 84 (2024) 2, 201

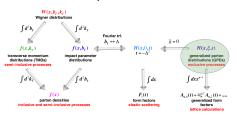
ullet Focus on the ${
m Im}{\cal H}$

- Focus on the ImH
- Formally, no loss of information but the *D*-term However we lose redundancy.

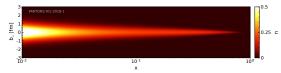
- Focus on the Im升
- Formally, no loss of information but the *D*-term However we lose redundancy.
- We need to put as much knowledge as possible :
 - Polynomiality
 - Positivity
 - Support properties in x and ξ
 - Scale evolution properties
 - Analytic properties
 - Asymptotique behaviour at large x or t.

- Focus on the Im升
- Formally, no loss of information but the *D*-term However we lose redundancy.
- We need to put as much knowledge as possible :
 - Polynomiality
 - Positivity
 - Support properties in x and ξ
 - Scale evolution properties
 - Analytic properties
 - ► Asymptotique behaviour at large *x* or *t*.
- We need to improve the hard kernel where it matters the most
 - → kinematic power corrections

• Introduction to GPDs and their place in hadron structure studies



- Introduction to GPDs and their place in hadron structure studies
- We have discussed their interpretation as probability densities on the lightcone

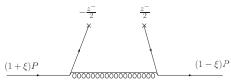


- Introduction to GPDs and their place in hadron structure studies
- We have discussed their interpretation as probability densities on the lightcone
- Focus on two important properties: polynomiality and positivity

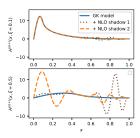
$$\int_{-1}^{1} dx \ x^{m} H^{q}(x,\xi,t;\mu) = \sum_{j=0}^{\left[\frac{m}{2}\right]} (2\xi)^{2j} A_{2j,m}^{q}(t;\mu) + mod(m,2)(2\xi)^{m+1} C_{m+1}^{q}(t;\mu)$$

$$\int_{-1}^{1} dx \ x^{m} E^{q}(x,\xi,t;\mu) = \sum_{j=0}^{\left[\frac{m}{2}\right]} (2\xi)^{2j} B_{2j,m}^{q}(t;\mu) - mod(m,2)(2\xi)^{m+1} C_{m+1}^{q}(t;\mu)$$

- Introduction to GPDs and their place in hadron structure studies
- We have discussed their interpretation as probability densities on the lightcone
- Focus on two important properties: polynomiality and positivity
- We have studied the one loop evolution properties



- Introduction to GPDs and their place in hadron structure studies
- We have discussed their interpretation as probability densities on the lightcone
- Focus on two important properties: polynomiality and positivity
- We have studied the one loop evolution properties
- And finally we have discussed the origin of uncertainties in attempts to extract GPDs from experimental data.



Conclusion

- Extracting GPDs requires many steps
- We are now in a position to fully exploit JLab data.
- Significant progresses have been made on critical theory aspects.
- Will we reach a 15% relative uncertainty ?

Conclusion

- Extracting GPDs requires many steps
- We are now in a position to fully exploit JLab data.
- Significant progresses have been made on critical theory aspects.
- Will we reach a 15% relative uncertainty?
- What do we learn on the dynamics of QCD with experimental extractions of GPDs?
- What should we improve to learn more ?
 → The path is different than the one taken for PDFs or TMDs
- Where should we dedicate our effort ?

Conclusion

- Extracting GPDs requires many steps
- We are now in a position to fully exploit JLab data.
- Significant progresses have been made on critical theory aspects.
- Will we reach a 15% relative uncertainty?
- What do we learn on the dynamics of QCD with experimental extractions of GPDs?
- What should we improve to learn more ?
 - ightarrow The path is different than the one taken for PDFs or TMDs
- Where should we dedicate our effort ?

A few words at the end

Time is precious, and asking questions can make you save a lot of it!

Thank you for your attention!
Some final questions?