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Summary so far

Last time, we have studied the renormalisation of a light-ray quark
operator at one loop.
Singularities appear when integrating over the transverse degrees of
freedom.
Renormalisation can be performed in the same way as for local
operators, trading products for convolutions in momentum space
We derived the evolution equations, in analogy with the
renormalisation group equation.
The anomalous dimensions are momentum dependent and are called
splitting functions.
NB : For those willing to perfom the one-loop Pqq computation, you
can follow appendix B of arxiv:2206.01412
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Non-singlet Splitting function

P±,[0]
(
y , κ =

ξ

x

)
= θ(1 − y)P

±,[0]
1 (y , κ) + θ(κ− 1)P±,[0]

2 (y , κ) .

where

P
−,[0]
1 (y , κ) =2CF
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Probing GPDs through exclusive processes

I really recommend reading the Ph.D. thesis of H. Dutrieux:
https://inspirehep.net/literature/2614733
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Experimental connection to GPDs

Observables
(cross sections,

asymmetries . . . )

Compton
Form Factors
H,E, H̃, . . .

GPDs
H,E , H̃, . . .

1/Q2

expansion,
. . .

αS

expansion and
convolution

CFFs play today a central role in our understanding of GPDs
Extraction generally focused on CFFs
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Deep Virtual Compton Scattering

−q2 = Q2

q′e−(k)

p1 = P − ∆
2

p2 = P + ∆
2GPDs

e−(k − q)

(x + ξ)P+ (x − ξ)P+

q2 = −Q2

e− e−

p1 p2

k k′

FF

q2 = −Q2

e− e−

p1 p2

k k′

FF

Best studied experimental process connected to GPDs
→ Data taken at Hermes, Compass, JLab 6, JLab 12

Interferes with the Bethe-Heitler (BH) process
▶ Blessing: Interference term boosted w.r.t. pure DVCS one
▶ Curse: access to the angular modulation of the pure DVCS part difficult

M. Defurne et al., Nature Commun. 8 (2017) 1, 1408
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Amplitude

cross-sections =
∑

|BH + DVCS |2

=
∑

|BH|2 + BH∗DVCS + DVCS∗BH︸ ︷︷ ︸
interference term

+|DVCS |2

The DVCS amplitude is parametrised in terms of Compton Form factors
which are complex functions:

H(ξ, t,Q2) =

ˆ 1

−1

dx
ξ
T

(
x

ξ
;αs

)
H(x , ξ, t)

and similar definitions for E, H̃ and Ẽ .
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Recent CFF extractions
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M. Cuic̀ et al., PRL 125, (2020), 232005

PARTONS Fits NN 2019
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H. Moutarde et al., EPJC 79, (2019), 614

Recent effort on bias reduction in CFF extraction (ANN)
additional ongoing studies, J. Grigsby et al., PRD 104 (2021) 016001

Studies of ANN architecture to fulfil GPDs properties (dispersion
relation,polynomiality,. . . )
Recent efforts on propagation of uncertainties (allowing impact studies
for JLAB12, EIC and EicC)

see e.g. H. Dutrieux et al., EPJA 57 8 250 (2021)
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Let us discuss these results
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Finite t corrections

Kinematic corrections in t/Q2 and M2/Q2
V. Braun et al., PRL 109 (2012), 242001

M. Defurne et al. PRC 92 (2015) 55202

Sizeable even for t/Q2 ∼ 0.1
Not currently included in global fits.
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Dispersion relation and the D-term

At all orders in αS , dispersion relations relate the real and imaginary
parts of the CFF. I. Anikin and O. Teryaev, PRD 76 056007

M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
H. Dutrieux et al., EPJC 85 (2025) 1, 105

V. Martinez Fernandez and C. Mezrag, arXiv:2509.05059

S(t,Q2) =

ˆ 1

−1
dωT (ω)D(ω) = ℜH(ξ)− 2

π

 1

0

x2ℑH(x)

(ξ − x)(ξ + x)

dx
ξ

D(α, t) is related to the EMT.
M.V. Polyakov PLB 555, 57-62 (2003)

0.1 1
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-5
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µF [GeV2]2

∑
d 1
q

q

figure from H. Dutrieux et al.,
Eur.Phys.J.C 81 (2021) 4

First attempt from JLab 6 GeV data
Burkert et al., Nature 557 (2018) 7705, 396-399

Tensions with other studies
→ uncontrolled model-dependence

K. Kumericki, Nature 570 (2019) 7759, E1-E2
H. Moutarde et al., Eur.Phys.J.C 79 (2019) 7, 614

H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

Scheme/scale dependence
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The DVCS deconvolution problem I
From CFF to GPDs

Observables
(cross sections,

asymmetries . . . )

Compton
Form Factors
H,E, H̃, . . .

GPDs
H,E , H̃, . . .

Assuming
this step is

under control

Can we
unambiguously

get GPDs?

It has been known for a long time that this is not the case at LO as
ℑT ∝ δ(x ± ξ)

Are QCD corrections improving the situation?
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Introducing shadow GPDs

CFF Definition

H(ξ, t,Q2)︸ ︷︷ ︸
Observable

=

ˆ 1

−1

dx
ξ

T

(
x

ξ
,
Q2

µ2 , αs(µ
2)

)

︸ ︷︷ ︸
Perturbative DVCS kernel

H(x , ξ, t, µ2)

Shadow GPD definition
We define shadow GPD H(n) of order n such that when T is expanded in
powers of αs up to n one has:

0 =

ˆ 1

−1

dx
ξ
T (n)

(
x

ξ
,
Q2

µ2
0
, αs(µ

2
0)

)
H(n)(x , ξ, t, µ2

0) invisible in DVCS

0 = H(n)(x , 0, 0) invisible in DIS

A part of the GPD functional space is invisible to DVCS and DIS combined
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Finding Shadow GPDs I

We want our shadow GPDs to fulfill all the good theoretical properties
of standard GPDs, especially polynomiality

We look for solution in the Double Distribution space:

Hshadow(x , ξ) =

ˆ 1

−1
dβ

ˆ 1−|β|

−1+|β|
dαfshadow(β, α)δ(x − β − αξ)

which is in one to one correspondance with the polynomiality property
N. Chouika et al, EPJC 77 (2017)

We expanded fshadow on polynomials of order N, so that we have a
number of coefficient of order
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Finding Shadow GPDs II

We impose the following conditions :
No forward limit H(x , 0) = 0 → N + 2 equations

T ⊗ H = (C (0) + αsC
(1) + αs ln(Q

2/µ2)C coll)⊗ H = 0
This bring respectively N + 1, N − 1 and N + 1 new equations
For definiteness, we add another constraint such that
fshadow(1 − α, α) = 0 (continuity of the DD).

With a number of parameters of order N2, we find our first solution for
N = 25

Adding Mellin moments (computed on the Lattice) provides other sets of
order N equations.
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A word about evolution

Could evolution solve the issue ?

We define Γ(µ2, µ2
0) the GPD evolution operator expanded as:

Γ(µ2, µ2
0) = 1 + αs(µ

2)K (0) ln

(
µ2

µ2
0

)
+ O(α2

s )

Because observables do not depend of the scale, we have :

C coll + C 0 ⊗ K (0) = 0

We expect CFF computed from evolved NLO shadow GPDs to exhibit
an α2

s behaviour under evolution (provided that the logs remain small
enough).
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The DVCS deconvolution problem II
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NLO analysis of shadow GPDs:
▶ Cancelling the line x = ξ is necessary

but no longer sufficient
▶ Additional conditions brought by

NLO corrections reduce the size of
the “shadow space”...

▶ ... but do not reduce it to 0
→ NLO shadow GPDs

H. Dutrieux et al., PRD 103 114019 (2021)

Evolution
▶ it was argued that evolution would

solve this issue
A. Freund PLB 472, 412 (2000)

E. Moffat et al., PRD 108 (2023)

▶ but in practice it is not the case
H. Dutrieux et al., PRD 103 114019 (2021)
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A tale of two eigenvalues

(
a± δ
0 ± δ

)
=

(
λ1 0
0 ϵ

)(
x
y

)

(a, b) is our experimental vector (measured), (x , y) is our unknown
Now let’s assume that λ1 ∼ 1 and λ2 = ϵ << 1
Finally, our experimental data are known with a finite precision δ and
b is compatible with zero.
Let us put numbers everywhere : a = 1.4, δ = 0.1, λ1 = 2, ϵ = 10−3

x = 0.7 ± 0.05, y = 0 ± 100

You should use theory constraints if you know some to get relevant
values for y :

√
x2 + y2 ≤ ρmax ⇒ y = 0 ±

√
ρ2
max − x2

even if ρmax ≃ 10, you gain an order of magnitude and theory is
driving your knowledge of y .
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NLO analysis of shadow GPDs:
▶ Cancelling the line x = ξ is necessary

but no longer sufficient
▶ Additional conditions brought by

NLO corrections reduce the size of
the “shadow space”...

▶ ... but do not reduce it to 0
→ NLO shadow GPDs

H. Dutrieux et al., PRD 103 114019 (2021)

Evolution
▶ it was argued that evolution would

solve this issue
A. Freund PLB 472, 412 (2000)

E. Moffat et al., PRD 108 (2023)

▶ but in practice it is not the case
H. Dutrieux et al., PRD 103 114019 (2021)

Theoretical uncertainties promoted
to main source of GPDs uncertainties
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Improving the deconvolution problem

Introduce theoretical inputs coming from QCD constraints
▶ Change of methods with introduction of theoretical bias
▶ Positivity is going to play an important role

Go to multichannel analysis
▶ Shadow GPDs are process-dependent, i.e. some processes can see the

shadow GPDs of others
▶ Some exclusive processes are expected not to have shadow GPDs at all

(but they are harder to measure).
⋆ Double DVCS is the most obvious one

K. Deja et al.,PRD 107 (2023) 9, 094035

⋆ New 2 → 3 exlusive processes are also good candidates
R. Boussarie et al., JHEP 02 (2017) 054

O. Grocholski et al.,Phys.Rev.D 104 (2021) 11,
J.-W. Qiu and Z. Yu, JHEP 08 (2022) 103
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GPD properties and replicas techniques

Model H = Hvisible + Hshadow with two different neural networks fulfilling
by construction all the properties but one, the positivity property.

The positivity property
∣∣∣Hq(x , ξ, t)−

�������ξ2

1 − ξ2 E
q(x , ξ, t)

∣∣∣ ≤
√

1
1 − ξ2 q

(
x + ξ

1 + ξ

)
q

(
x − ξ

1 − ξ

)

H. Dutrieux et al., EPJC 82 (2022) 3, 252
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Impact of Lattice QCD
Lattice QCD can now compute matrix elements connected to GPDs:

I (ν, ξ, t, z2) =

ˆ
dxC (x , ν, ξ, z2, µ2)H(x , ξ, t, µ2)
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Our strategy

Focus on the ImH

Formally, no loss of information but the D-term
However we lose redundancy.
We need to put as much knowledge as possible :

▶ Polynomiality
▶ Positivity
▶ Support properties in x and ξ
▶ Scale evolution properties
▶ Analytic properties
▶ Asymptotique behaviour at large x or t.

We need to improve the hard kernel where it matters the most
→ kinematic power corrections
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Summary

Introduction to GPDs and their place in hadron structure studies

We have discussed their interpretation as probability densities on the
lightcone
Focus on two important properties: polynomiality and positivity
We have studied the one loop evolution properties
And finally we have discussed the origin of uncertainties in attempts to
extract GPDs from experimental data.
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ˆ 1

−1
dx xmHq(x , ξ, t;µ) =

[m2 ]∑
j=0

(2ξ)2jAq
2j,m(t;µ) +mod(m, 2)(2ξ)m+1Cq

m+1(t;µ)

ˆ 1

−1
dx xmEq(x , ξ, t;µ) =

[m2 ]∑
j=0

(2ξ)2jBq
2j,m(t;µ)−mod(m, 2)(2ξ)m+1Cq

m+1(t;µ)
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Conclusion

Extracting GPDs requires many steps
We are now in a position to fully exploit JLab data.
Significant progresses have been made on critical theory aspects.
Will we reach a 15% relative uncertainty ?

What do we learn on the dynamics of QCD with experimental
extractions of GPDs?
What should we improve to learn more ?
→ The path is different than the one taken for PDFs or TMDs
Where should we dedicate our effort ?

A few words at the end
Time is precious,

and asking questions can make you save a lot of it !
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Thank you for your attention !
Some final questions ?
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