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Summary of Lecture 1

In the previous lecture:
We observe that from a wide range of order of magnitude, light scattering allows one to
probe the structure of matter usually through a Fourier Transform.

We ask ourselves how to generalise photon scattering to the femtometer scale

The solution is provided by DVCS (photon electroproduction).

We saw that when a parton is hit by a hard photon, it needs to quickly (perturbatively)
release this energy in order not to break the photon
⇒ DVCS factorises between a hard part, computed in pQCD and GPDs (non-perturbative)

GPDs are generalisation of the EM Form Factor measured in elastic scattering and of
PDFs measured in inclusive processes (DIS).

Finally, we demonstrated that the Fourier Transform of GPDs yield the 2+1D probability
density to find a quark or a gluon with fixed momentum fraction at a given b⊥ position in
a hadron.
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Chiral-Even Nucleon GPDs

Unpolarised nucleon GPDs
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The number of GPDs depends on the hadron spin
GPDs E and Ẽ do not reduce to PDFs when ∆→ 0
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Place of GPDs in the Hadron physics context

figure from A. Accardi et al., Eur.Phys.J.A 52 (2016) 9, 268
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Connection with the Energy-Momentum Tensor
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Hadron EMT in QCD
In QCD, the energy momentum tensor of the nucleon is a correlator of the
EMT operator, evaluated between two nucleon states:

⟨p′, s′|T{µν}
q,g |p, s⟩ = ū

[
P{µγν}Aq,g (t;µ) +

∆µ∆ν − gµν∆2

M
Cq,g (t;µ)

+Mgµν C̄q,g (t;µ) +
P{µiσν}∆

2M
Bq,g (t;µ)

]
u

The total EMT is scale independent as it defines a conserved current
Different definitions exist for the EMT, we stick to the one above
4 form factors are needed to parameterise the (symmetric) EMT
correlator in the spin-1/2 case
Constraints exist on some of these form factors:

A(0) = 1, B(0) = 0, C̄ (t) = 0

Note that there is no constraint on C .
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Connection to GPDs I

The quark sector of the EMT is given as:

Tµν
q = q̄γ{µi

←→
D ν}q such that

←→
D µ =

1
2

(−→
D −←−D

)
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Connection to GPDs II

Consequently, EMT Form Factors A, B and C are connected to GPDs H
and E through:

1
2P+

1
P+

[
⟨P +

∆

2
|ψ̄q(0)γ+i

←→
∂ +ψq(0)|P − ∆

2
⟩
]

=
ūγ+u

2P+
uAq,g (t;µ) +

∆+∆+

2M(P+)2
ūuCq,g (t;µ) + ū

iσ+µ∆µ

4MP+
uBq,g (t;µ)

∫ 1

−1
dxxHq(x , ξ, t) = Aq(t) + 4ξ2Cq(t)∫ 1

−1
dxxEq(x , ξ, t) = Bq(t)− 4ξ2Cq(t)∫ 1

−1
dxHg (x , ξ, t) = Ag (t) + 4ξ2C g (t)∫ 1

−1
dxE g (x , ξ, t) = Bg (t)− 4ξ2C g (t)

In principle, from GPDs
extracted from experimental
data, we would be able to get
experimental information on
these Form Factors.
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ūγ+u

2P+
uAq,g (t;µ) +

∆+∆+

2M(P+)2
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ūuCq,g (t;µ) + ū
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Ji sum rule

The quark and gluon contributions to the angular momentum J are

2Jq =Aq(0) + Bq(0)

=

∫
dxx (Hq(x , ξ, 0) + Eq(x , ξ, 0))

2Jg =Ag (0) + Bg (0)

=

∫
dx (Hg (x , ξ, 0) + E g (x , ξ, 0))

X.D. Ji, Phys.Rev.Lett. 78 (1997) 610-613
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Pressure in Relativistic hydrodynamics

In relativistic hydrodynamics → pressure for a anisotropic fluid enters
the description of the EMT θ:

θµν(r) = (ε+ pt)
PµPν

M2 − ptη
µν + (pr − pt)

zµzν

r2

Selcuk S. Bayin, Astrophys. J. 303, 101–110 (1986)
figure from C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

On can define isotropic pressure p and pressure anisotropy s:

p(r) =
pr (r) + 2pt(r)

3
s(r) = pr (r)− pt(r)

Question
Can we obtain an analoguous definition within hadron physics?
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Energy and pressure distributions in the Breit frame

And from them, extract pressure and shear forces following:

εa(r) = M

∫
d3∆

(2π)3
e−i∆·r

{
Aa(t) + C̄a(t) +

t

4M2 [Ba(t)− 4Ca(t)]
}
,

pr ,a(r) = M

∫
d3∆

(2π)3
e−i∆·r

{
−C̄a(t)−

4
r2

t−1/2

M2
d
dt

(
t3/2 Ca(t)

)}
,

pt,a(r) = M

∫
d3∆

(2π)3
e−i∆·r

{
−C̄a(t) +

4
r2

t−1/2

M2
d
dt

[
t

d
dt

(
t3/2 Ca(t)

)]}
,

pa(r) = M

∫
d3∆

(2π)3
e−i∆·r

{
−C̄a(t) +

2
3

t

M2 Ca(t)

}
,

sa(r) = M

∫
d3∆

(2π)3
e−i∆·r

{
− 4
r2

t−1/2

M2
d2

dt2
(
t5/2 Ca(t)

)}
,

C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89
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Interpretation of GPDs II
Connection to the Energy-Momentum Tensor

energy 
density 

momentum 
flux 

shear  
stress 

pressure 

momentum 
density c −2 

momentum 
density 

How energy, momentum, pressure are
shared between quarks and gluons
Caveat: renormalization scheme and scale dependence

C. Lorcé et al., PLB 776 (2018) 38-47,
M. Polyakov and P. Schweitzer,
IJMPA 33 (2018) 26, 1830025

C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

∫ 1

−1
dx x Hq(x , ξ, t;µ) = Aq(t;µ) + 4ξ2Cq(t;µ)∫ 1

−1
dx x Eq(x , ξ, t;µ) = Bq(t;µ)− 4ξ2Cq(t;µ)

Ji sum rule (nucleon)

Fluid mechanics analogy

X. Ji, PRL 78, 610-613 (1997)
M.V. Polyakov PLB 555, 57-62 (2003)
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Lorentz covariance and its consequences
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Mellin Moments of GPDs
Connection with local operators

We can generalise what we obtained on the EFF for higher moments:

1
2

∫
dx xm

∫
e ixP

+z−

2π
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z+=0,z=0

=

∫
dx

2(iP+)m
dm

(dz−)m

[
e ixP

+z−

2π

]
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z=0

z+=0

=
im

2(P+)m+1 ⟨P +
∆

2
|

dm

(dz−)m

[
ψ̄q(−

z

2
)γ+ψq(

z

2
)
]
|P −

∆

2
⟩|z=0

=
1

2(P+)m+1 ⟨P +
∆

2
|ψ̄q(0)γ+

(
i
←→
∂ +

)m
ψq(0)|P −

∆

2
⟩

we recover local operators as in DIS Oµµ1...µm = Sψ̄γµ
←→
∂ µ1 ...

←→
∂ µmψ

... but evaluated between off-diagonal states

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 14 / 44



Mellin Moments of GPDs
Connection with local operators

We can generalise what we obtained on the EFF for higher moments:

1
2

∫
dx xm

∫
e ixP

+z−

2π
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z+=0,z=0

=

∫
dx

2(iP+)m
dm

(dz−)m

[
e ixP

+z−

2π

]
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z=0

z+=0

=
im

2(P+)m+1 ⟨P +
∆

2
|

dm

(dz−)m

[
ψ̄q(−

z

2
)γ+ψq(

z

2
)
]
|P −

∆

2
⟩|z=0

=
1

2(P+)m+1 ⟨P +
∆

2
|ψ̄q(0)γ+

(
i
←→
∂ +

)m
ψq(0)|P −

∆

2
⟩

we recover local operators as in DIS Oµµ1...µm = Sψ̄γµ
←→
∂ µ1 ...

←→
∂ µmψ

... but evaluated between off-diagonal states

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 14 / 44



Mellin Moments of GPDs
Connection with local operators

We can generalise what we obtained on the EFF for higher moments:

1
2

∫
dx xm

∫
e ixP

+z−

2π
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z+=0,z=0

=

∫
dx

2(iP+)m
dm

(dz−)m

[
e ixP

+z−

2π

]
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z=0

z+=0

=
im

2(P+)m+1 ⟨P +
∆

2
|

dm

(dz−)m

[
ψ̄q(−

z

2
)γ+ψq(

z

2
)
]
|P −

∆

2
⟩|z=0

=
1

2(P+)m+1 ⟨P +
∆

2
|ψ̄q(0)γ+

(
i
←→
∂ +

)m
ψq(0)|P −

∆

2
⟩

we recover local operators as in DIS Oµµ1...µm = Sψ̄γµ
←→
∂ µ1 ...

←→
∂ µmψ

... but evaluated between off-diagonal states

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 14 / 44



Mellin Moments of GPDs
Connection with local operators

We can generalise what we obtained on the EFF for higher moments:

1
2

∫
dx xm

∫
e ixP

+z−

2π
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z+=0,z=0

=

∫
dx

2(iP+)m
dm

(dz−)m

[
e ixP

+z−

2π

]
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z=0

z+=0

=
im

2(P+)m+1 ⟨P +
∆

2
|

dm

(dz−)m

[
ψ̄q(−

z

2
)γ+ψq(

z

2
)
]
|P −

∆

2
⟩|z=0

=
1

2(P+)m+1 ⟨P +
∆

2
|ψ̄q(0)γ+

(
i
←→
∂ +

)m
ψq(0)|P −

∆

2
⟩

we recover local operators as in DIS Oµµ1...µm = Sψ̄γµ
←→
∂ µ1 ...

←→
∂ µmψ

... but evaluated between off-diagonal states

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 14 / 44



Mellin Moments of GPDs I
Polynomiality property

Mm =
1

2(P+)m+1 ⟨P +
∆

2
|ψ̄q(0)γ+

(
i
←→
∂ +

)m
ψq(0)|P −

∆

2
⟩

=
1

(P+)m
ū(p′)γ+u(p)

2P+

m∑
i=0
even

Ai,m(t)∆
µ1 ...∆µiPµi+1 ...Pµmnµ1 ...nµm

+
1

(P+)m
ū(p′)iσ+α∆αu(p)

4MP+

m∑
i=0
even

Bi,m(t)∆
µ1 ...∆µiPµi+1 ...Pµmnµ1 ...nµmnµ1 ...nµm

+ mod(m, 2)
∆+

2MP+
ū(p′)u(p)(

∆+

P+
)mCm+1(t)

=
ū(p′)γ+u(p)

2P+

m∑
i=0
even

Ai,m(t)(−2ξ)i +
ū(p′)iσ+α∆αu(p)

4MP+

m∑
i=0
even

Bi,m(t)(−2ξ)i

+ mod(m, 2)
ū(p′)u(p)

2M
(−2ξ)m+1Cm+1(t)

Using the Gordon Identity the last structure can be reabsorbed:

ū(p′)γµu(p) =
Pµ

M
ū(p′)u(p) + ū(p′)

iσµν∆ν

2M
u(p)
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ū(p′)u(p)(

∆+

P+
)mCm+1(t)

=
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ū(p′)iσ+α∆αu(p)

4MP+

m∑
i=0
even

Bi,m(t)(−2ξ)i

+ mod(m, 2)
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ū(p′)u(p) + ū(p′)
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Mellin Moments of GPDs II

We deduce that the GPDs Mellin moments are:

∫ 1

−1
dx xmHq(x , ξ, t;µ) =

[m2 ]∑
j=0

(2ξ)2jAq
2j,m(t;µ) +mod(m, 2)(2ξ)m+1C q

m+1(t;µ)

∫ 1

−1
dx xmE q(x , ξ, t;µ) =

[m2 ]∑
j=0

(2ξ)2jBq
2j,m(t;µ)−mod(m, 2)(2ξ)m+1C q

m+1(t;µ)

X. Ji, J.Phys.G 24 (1998) 1181-1205
A. Radyushkin, Phys.Lett.B 449 (1999) 81-88

Mellin Moments of GPDs are even polynomials in ξ of a given degree !
A0,m(0) are the moments of the PDF
A0,0(t) is the Dirac Form Factor
B0,0(t) is the Pauli Form Factor
Cm+1(t) are the Mellin moment of a new object: the D-term
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Introducing the D-term
We want to define a function D so that for odd m:∫ 1

−1
dy ymD(y , t) = (−2)m+1Cm+1(t)

What is the connection between y , x and ξ (we stick to ξ > 0)?
m∑
i=0
even

Ai,m(t)(−2ξ)i =
∫ 1

−1
dx xmH(x , ξ, t)− ξm+1

∫ 1

−1
dy ymD(y , t)

=

∫ 1

−1
dx xm

[
H(x , ξ, t)−Θ(−ξ ≤ x ≤ ξ)D

(
x

ξ
, t

)]

D-term is a function of 2 variables
only ! (like the PDF)
It lives only in the so-called ERBL
region
It triggers singular behaviours (ξ → 0
and x → ξ)
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Consequence of Polynomiality

m∑
i=0
even

Ai,m(t)(−2ξ)i =
∫ 1

−1
dx xm

[
H(x , ξ, t)−Θ(−ξ ≤ x ≤ ξ)D

(
x

ξ
, t

)]

After introducing the D-term, we obtained a new polynomiality
relation with the same power on the left and right-hand side.

This has an important consequence: in mathematics, this relation is
called the Lugwig-Helgason condition

O. Teryaev, PLB510 125-132 (2001)
N. Chouika et al., EPJC 77 906 (2017)

It implies that H − D is the Radon transform of a third function,
called a Double Distribution F .
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N. Chouika et al., EPJC 77 906 (2017)

It implies that H − D is the Radon transform of a third function,
called a Double Distribution F .
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A brief introduction of the Radon Transform

Radon transform : integral of a function over a line L ∈ R2

source: wikipedia

Definition

R[f ][θ, s] =

∫ ∞
−∞

dzf (x(z), y(z))

x(z) = z sin(θ) + s cos(θ)

y(z) = −zcos(θ) + s sin(θ)

Connected to 2D Fourier
transform through Fourier
Slice Theorem.

The Radon transform is a key ingredient of Computed tomography
(medical X-ray imaging)
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Radon Dictionnary for GPDs

GPD variable are (x , ξ) instead of (s, θ). A way to build the dictionary is to
took again at the polynomiality condition :

For GPDs: ∫
dxxmH(x , ξ) =

∑
i

Ai ,m(2ξ)i

For canonical Radon transform:∫
dssmG (s, θ) =

∑
i

gi ,m cosm−i θ sini θ = cosm θ
∑
i

gi ,m tani θ

We thus deduce

x =
s

cos θ
, ξ = tan θ
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Radon transform and Double Distributions
The connection between GPDs and DDs is given through:

H(x , ξ, t)−Θ(−ξ ≤ x ≤ ξ)D
(
x

ξ
, t

)
=

∫
Ω

dβdα δ(x − β − αξ)F (β, α, t)

A. Radysuhkin, PRD 56 (1997) 5524-5557
D. Müller et al., Fortsch. Phy. 42 101 (1994)

The D-term can be reabsorbed as:

H(x , ξ, t) =

∫
Ω

dβdα δ(x − β − αξ) [F (β, α, t) + ξδ(β)D(α, t)]

M. Polyakov and C. Weiss, PRD60 114017 (1999)

The properties of the DD guarantee the one of the GPD

1

1

-1

-1
x

ξ

DGLAP

DGLAP

ERBL

ERBL

GDA

GDA
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Polynomiality revisited with DD

Polynomiality of GPDs Mellin moments is equivalent to the existence
of the DDs.

In fact, generalised form factors Ai ,m(t) can be reinterpreted in terms
of DDs:∫

dx xmH(x , ξ, t) =

∫
Ω

dβdα (β + αξ)mF (β, α, t) + ξm+1
∫ 1

−1
dααmD(α, t)

=
m∑
i

ξi
(m
i

)∫
Ω

dβdααiβm−iF (β, α, t)︸ ︷︷ ︸
=(−2)iAi,m(t)

++ ξm+1
∫ 1

−1
dααmD(α, t)︸ ︷︷ ︸

=(−2)m+1Cm+1(t)

A direct consequence is the link between the DD and the PDF:

q(x) =

∫ 1−|x|

−1+|x|
dαF (x , α, 0)
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Model of Double Distributions

Many GPDs models rely on DD in order to fulfil the polynomiality
condition.
The most common way is to use the Radyushkin DD Ansatz:

F (β, α, t) = q(β, t)× πN(β, α)

πN(β, α) =
Γ
(
N + 3

2

)
√
πΓ(N + 1)

((1− |β|)2 − α2)N

(1− |β|)2N+1

1 =

∫ 1−|β|

−1+|β|
dαπN(β, α)

Musatov, I.V. and Radyushkin, A.V., PRD61 074027 (2000)

This was used for many model, both on the nucleon and the pion
several reasons:

▶ Simple to implement
▶ Gives results driven by the PDF (much better known)
▶ It allows to fulfil easily the GPDs sum rules (connection to EFF)

However, this functional form has been shown not to be a very flexible
fitting parametrisation

C. Mezrag et al.,PRD 88 (2013) 1, 014001
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Covariant computations and DD

DDs naturally appear in explicitly covariant computations

k −∆/2 k +∆/2

k − P

P +∆/2P −∆/2

∆

k −∆/2 k + ∆/2

∆

k + P

P −∆/2 P +∆/2

Inserting local operators, one recovers polynomials in ξ and therefore
DDs.

B.C. Tiburzi and G. A. Miller, PRD 67 (2003) 113004
C. Mezrag et al., arXiv:1406.7425 and FBS 57 (2016) 9, 729-772

However these computations suffer from other issue, for instance
regarding the so-called positivity property.
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The lightfront wave functions (LFWFs) formalism
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Hadrons seen as Fock States

Lightfront quantization allows to expand hadrons on a Fock basis:

|P, π⟩ ∝
∑
β

Φqq̄
β |qq̄⟩+

∑
β

Φqq̄,qq̄
β |qq̄, qq̄⟩+ . . .

|P,N⟩ ∝
∑
β

Φqqq
β |qqq⟩+

∑
β

Φqqq,qq̄
β |qqq, qq̄⟩+ . . .

Non-perturbative physics is contained in the N-particles
Lightfront-Wave Functions (LFWF) ΦN

see for instance S. Brodsky et al., Phys.Rept.S 301 (1998) 299-486
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LFWFs

(x1, k⊥,1, s1)
(x2, k⊥,2, s2)

(xi, k⊥,i, si)

(xN , k⊥,N , sN )

Momentum information for each
parton:

▶ Momentum fraction along the
lightcone xi carried by each
partons such that

∑N
i xi = 1

with 0 ≤ xi ≤ 1.
▶ Momentum in the transverse

plane k⊥,i for each parton

other quantum number such as
parton spin projection

Example: pion
The pion has two independent two-body LFWFs:

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 27 / 44



LFWFs

(x1, k⊥,1, s1)
(x2, k⊥,2, s2)

(xi, k⊥,i, si)

(xN , k⊥,N , sN )

Momentum information for each
parton:

▶ Momentum fraction along the
lightcone xi carried by each
partons such that

∑N
i xi = 1

with 0 ≤ xi ≤ 1.
▶ Momentum in the transverse

plane k⊥,i for each parton

other quantum number such as
parton spin projection

Example: pion
The pion has two independent two-body LFWFs:

|π,P⟩ =
∫

[dxid2k⊥,i ]
[
ϕ↑↓q1q2 (xi , k⊥,i )|q1(↑)q2(↓)⟩+ ϕ↑↑q1q2 (xi , k⊥,i )|q1(↑)q2(↑)⟩

]
+ . . .
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Overlap of LFWFs and GPDs

Starting from the matrix element:

⟨π,P +
∆

2
|ψ̄

(
−
z

2

)
γ+ψ

( z

2

)
|π,P −

∆

2
⟩

=

[∫
[dxid2k⊥,i ](ϕ

↑↓
q1q2 )

∗⟨q1q2|+ . . .

]
ψ̄
(
−
z

2

)
γ+ψ

( z

2

)[∫
[dx ′i d

2k ′
⊥,i ]ϕ

↑↓
q1q2 |q1q2⟩+ . . .

]

The operator ψ̄γ+ψ can be evaluated between partonic states:

⟨q1q2|ψ̄
(
−
z

2

)
γ+ψ

( z

2

)
|q1q2⟩

These matrix elements can be computed, leaving us with an overlap of
LFWFs of the type:

⟨π,P +
∆

2
|ψ̄

(
−
z

2

)
γ+ψ

( z

2

)
|π,P −

∆

2
⟩ ∝

∫
[dxid2k⊥,i ][dx ′i d

2k ′
⊥,i ]δ(. . . )(ϕ

↑↓
q1q2 )

∗ϕ↑↓q1q2

+ . . .

where δ(. . . ) guarantees the momentum conservation.
M. Diehl et al., Nucl.Phys. B596 (2001) 33-65
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GPD partonic interpretation

Two different partonic interpretations:
ξ−x −x−ξ

−1≤ x≤−ξ

x +ξ ξ−x

−ξ≤ x ≤ ξ

x+ξ x−ξ

ξ≤ x≤ 1

This has a impact on the way the LFWFs overlap:
DGLAP: |x | > |ξ|

▶ Same N LFWFs

▶ No ambiguity

ERBL: |x | < |ξ|

▶ N and N + 2 partons LFWFs

▶ Ambiguity
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▶ N and N + 2 partons LFWFs

▶ Ambiguity
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Forward limit

In the forward limit ∆→ 0
▶ we recover a symmetric behaviour in momentum space
▶ the incoming/outgoing LFWFs describe the same hadron

Immediate consequence:

⟨π,P|ψ̄
(
−
z

2

)
γ+ψ

( z

2

)
|π,P⟩ ∼

∫
[dxid2k⊥,i ]|ϕ↑↓q1q2 (xi , k⊥,i )|2 + . . .

The PDFs depend only on square modulus of LFWFs.
Note that we recover formally a expression of a norm:

⟨π,P|ψ̄
(
−
z

2

)
γ+ψ

( z

2

)
|π,P⟩ ∼

∞∑
N

|ϕN |2
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The positivity property

Beyond the forward limit, in the DGLAP region, the overlap of LFWFs
keeps an interesting structure:

⟨π,P +
∆

2
|ψ̄

(
−
z

2

)
γ+ψ

( z

2

)
|π,P −

∆

2
⟩ ∼

∞∑
N

(ϕNout)
∗ × ϕNin

It ends up being a scalar product between two elements ⟨Φout |Φin⟩

The Cauchy-Schwartz inequality naturally yields:

|⟨Φout |Φin⟩| ≤ ||Φin||||Φout ||

|H(x , ξ, t)x≥ξ≥0| ≤

√
q

(
x − ξ
1− ξ

)
q

(
x + ξ

1 + ξ

)

A. Radysuhkin, Phys. Rev. D59, 014030 (1999)
B. Pire et al., Eur. Phys. J. C8, 103 (1999)

M. Diehl et al., Nucl. Phys. B596, 33 (2001)
P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)

Same type of inequality for gluon GPDs.
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Nucleon LFWFs classification

In the nucleon case, the procedure applies with three quarks at leading
Fock state:

⟨0|ϵijkuiα(z1)ujβ(z2)dk
γ (z3)|P, ↑⟩

It results in defining 6 independent LFWFs
X. Ji, et al., Nucl Phys B652 383 (2003)

The LFWFs carry different amount of OAM projections:

states ⟨↓↓↓ |P, ↑⟩ ⟨↓↓↑ |P, ↑⟩ ⟨↑↓↑ |P, ↑⟩ ⟨↑↑↑ |P, ↑⟩
OAM 2 1 0 -1

LFWFs ψ6 ψ3, ψ4 ψ1, ψ2 ψ5
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Overlap representation for the nucleon

Starting from the matrix element:

⟨N,P +
∆

2
|ψ̄

(
−
z

2

)
γ+ψ

( z

2

)
|N,P −

∆

2
⟩

=

[∫
[dxid2k⊥,i ](ϕ

↕↕↕
uud )

∗⟨uud |+ . . .

]
ψ̄
(
−
z

2

)
γ+ψ

( z

2

)[∫
[dx ′i d

2k ′
⊥,i ]ϕ

↕↕↕
uud |uud⟩+ . . .

]

The operator ψ̄γ+ψ can be evaluated between partonic states:

⟨uud |ψ̄
(
−
z

2

)
γ+ψ

( z

2

)
|uud⟩

These matrix elements can be computed, leaving us with an overlap of
LFWFs of the type:

⟨N,P +
∆

2
|ψ̄

(
−
z

2

)
γ+ψ

( z

2

)
|N,P −

∆

2
⟩ ∝

∫
[dxid2k⊥,i ][dx ′i d

2k ′
⊥,i ]δ(. . . )(ϕ

↕↕↕
uud )

∗ϕ
↕↕↕
uud

+ . . .

where δ(. . . ) guarantees the momentum conservation.
M. Diehl et al., Nucl.Phys. B596 (2001) 33-65
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Positivity constraints for the Nucleon

In the nucleon case, spin degrees of freedom complicate a bit the relations:

1
2

∫
e ixP

+z−

2π
⟨P +

∆

2
|ψ̄q(−z

2
)γ+ψq(

z

2
)|P − ∆

2
⟩dz−|z+=0,z=0

=
1

2P+

[
Hq(x , ξ, t)ūγ+u + Eq(x , ξ, t)ū

iσ+α∆α

2M
u

]
.

The positivity relation should constrain both H and E :

∣∣∣∣Hq − ξ2

1− ξ2E
q

∣∣∣∣ ≤
√

1
1− ξ2)q

(
x − ξ
1− ξ

)
q

(
x + ξ

1 + ξ

)
This can be made more constraining:

(1− ξ2)
(
Hq − ξ2

1− ξ2E
q

)2

+
t0 − t

4M2 (Eq)2 ≤ q

(
x − ξ
1− ξ

)
q

(
x + ξ

1 + ξ

)
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Impact parameter space positivity constraints

Limitation of the previous inequalities:
The bound is given by the PDFs, meaning t = 0 limit.
The GPDs are expected to decrease with t and thus the bound is less
and less constraining

The solution is provided by the impact parameter space representation:

(1− ξ2)
∣∣∣Ĥπ(x , ξ, b⊥)∣∣∣ ≤

√
Ĥπ

(
x , 0,

b⊥
1 + ξ

)
Ĥπ

(
x , 0,

b⊥
1− ξ

)
This inequality is more constraining, but I do not know examples of it being
used for realistic phenomenology in the nucleon case.
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Polynomiality vs. Positivity

Polynomiality
Properties of Mellin moments (local operators)
Comes from Lorentz Covariance and discrete symmetries
Delicate cancellations between DGLAP and ERBL region
Equivalent to the existence of underlying Double Distributions

Positivity
Bound on GPDs given in terms of PDFs
Comes from the underlying structure of the Fock space (Hilbert space)
Involves only the DGLAP region
Naturally fulfilled within LFWFs formalism

Is there a way to fulfil both?
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Delicate cancellation at work

Positivity apply only to the
DGLAP region
Polynomiality is obtainby
integrating on the whole range
in x

What happens if we split the
computation of polynomiality
between DGLAP and ERBL
region ?

n
∫ +1
+ξ

dx xnHDGLAP(x, ξ)
∫ +ξ
−ξ

dx xnHERBL(x, ξ)
∫ +1
−1 dx xnH(x, ξ)

0 (−1+ξ)2(1+4ξ)
(1+ξ)2

− 4(−2+ξ)ξ2

(1+ξ)2
1

1
(−1+ξ)2

(
1+4ξ+10ξ2

)
3(1+ξ)2

− 4ξ3(−5+2ξ)
3(1+ξ)2

1
3

(
1 + 2ξ2

)
2

(−1+ξ)2
(
1+4ξ+10ξ2+20ξ3

)
7(1+ξ)2

− 4ξ4(−8+5ξ)
7(1+ξ)2

1
7 (1 + 2ξ2)

3
(−1+ξ)2

(
1+4ξ+10ξ2+20ξ3+35ξ4

)
14(1+ξ)2

− 4ξ5(−7+4ξ)
7(1+ξ)2

1
14

(
1 + 2ξ2 + 3ξ4

)
4

5(−1+ξ)2
(
1+4ξ+10ξ2+20ξ3+35ξ4+56ξ5

)
126(1+ξ)2

− 20ξ6(−10+7ξ)
63(1+ξ)2

5
126

(
1 + 2ξ2 + 3ξ4

)
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1 + 2ξ2

)
2

(−1+ξ)2
(
1+4ξ+10ξ2+20ξ3

)
7(1+ξ)2

− 4ξ4(−8+5ξ)
7(1+ξ)2

1
7 (1 + 2ξ2)

3
(−1+ξ)2

(
1+4ξ+10ξ2+20ξ3+35ξ4

)
14(1+ξ)2

− 4ξ5(−7+4ξ)
7(1+ξ)2

1
14

(
1 + 2ξ2 + 3ξ4

)
4

5(−1+ξ)2
(
1+4ξ+10ξ2+20ξ3+35ξ4+56ξ5

)
126(1+ξ)2

− 20ξ6(−10+7ξ)
63(1+ξ)2

5
126

(
1 + 2ξ2 + 3ξ4

)
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Pragmatic solution: DD-based fit

For fitting strategies in the DD space :
▶ Specific form better than others

P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)

▶ possibility to reject parameters combinations outside the positivity
range

“Try and test” way to fulfil positivity in DD space

It has been tested on pseudo-data and it really helps constraining
GPDs

slide from P. Sznajder et al.,

SPIN 2021
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Systematic Way: The covariant extension

Question: Being given a GPD in the DGLAP region fulfilling positivity
▶ 1) can we complete it in the ERBL region such that polynomiality is

fulfilled?
▶ 2) is this completion unique?

Alternative formulation: being given a GPD in the DGLAP region
fulfilling positivity can we find a unique DD generating it ?

two types of lines: DGLAP and
ERBL lines

All point of the support are crossed
by infinitely many DGLAP lines

But the line β = 0 !

when getting close to β = 0 the
slope of DGLAP lines →∞
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Anwer

Mathematical Answer : Yes ! We can uniquely extract the DD but not
the D-term.

N. Chouika et al., EPJC78, 478 (2018)

There is a condition : the line ξ = 0 should be in the domain probed
P. Dall’Olio et al., PRD 109 (2024) 9, 096013

ξ

x1

1

−1

−1

x = ξ

λ = 1

ξ

x1

1

−1

−1

x = ξ

λ = 0.2

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 40 / 44



Anwer

Mathematical Answer : Yes ! We can uniquely extract the DD but not
the D-term.

N. Chouika et al., EPJC78, 478 (2018)

There is a condition : the line ξ = 0 should be in the domain probed
P. Dall’Olio et al., PRD 109 (2024) 9, 096013

ξ

x1

1

−1

−1

x = ξ

λ = 1

ξ

x1

1

−1

−1

x = ξ

λ = 0.2
Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 40 / 44



Numerical Solution

Mathematical answer: yes! We can uniquely extract the DD but not
the D-term.

N. Chouika et al., EPJC78, 478 (2018)

In practice: numerical difficulties due to ill-posed character of the
inverse Radon transform
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Regularisation is obtained by either Finite Element Method of Artificial
Neural Network
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Benchmark results

We benchmark numerical techniques using the DD model by
Goloskokov and Kroll

FEM regularisation approach works significantly better than the ANN
one
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Uncertainties increases as expected when the size of the DGLAP area
probed is reduced, but the result remains fairly good
This also might be because the target function is quite regular
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Modelling GPD: a challenge

Summary so far
GPDs obeys multiple theoretical constraint

▶ Polynomiality coming from Lorentz covariance
▶ Positivity derived from LF Hilbert space

Modelling them so that they fulfil these properties is difficult

Dura Physicae Lex sed Physicae Lex
Requires deep understanding of the physics at stake
Strongly help constraining experimental extraction

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 43 / 44



Modelling GPD: a challenge

Summary so far
GPDs obeys multiple theoretical constraint

▶ Polynomiality coming from Lorentz covariance
▶ Positivity derived from LF Hilbert space

Modelling them so that they fulfil these properties is difficult

Dura Physicae Lex sed Physicae Lex
Requires deep understanding of the physics at stake
Strongly help constraining experimental extraction

Cédric Mezrag (Irfu-DPhN) IWSHSSI October 14th , 2025 43 / 44



Questions ?
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