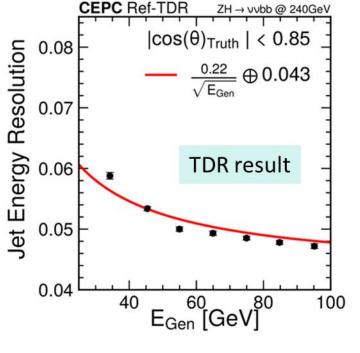
Jet Energy Resolution Validation

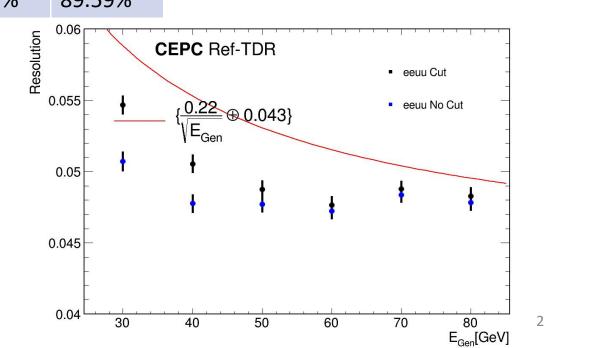
Shuo Han, Minqia Li, Kaili Zhang, Hao Zhu 1 IHEP

Validation


- Dataset: ee \rightarrow uu events given by Kaili.
- O Six data points: E60_eeuu, E80_eeuu, E100_eeuu, 25000
- E120_eeuu, E140_eeuu, E160_eeuu.
- Reconstructed by CEPCSW25.3.7.
- Jet Reconstruction by eekt.
- \circ Jet truth match with ΔR .

• Add cut on χ^2 /ndf • χ^2 /ndf < 2.0						2.5 3 3.5
data	E60	E80	E100	E120	E140	E160
efficiency	87.47%	88.17%	88.69%	89.06%	89.37%	89.59%

20000


15000

10000

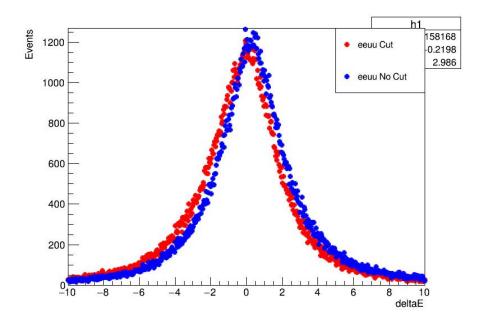
_	$\bigcap_{i=1}^{n}$
	Cut
	\sim \sim \sim

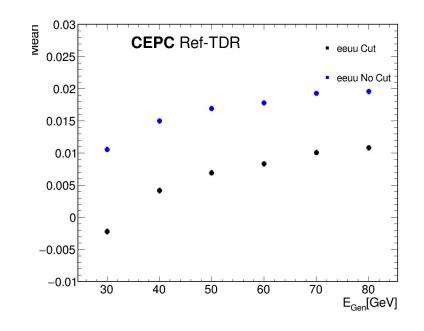
- $\circ |\cos\theta| < 0.85.$
- Calculation
- $\circ \Delta E = E(RecoJet) E(GenJet).$
- \circ Resolution = $\Delta E/E$ (Use TwoSidedCB to fit the $\Delta E/E$).
- Result
- \circ Cut on χ^2 /ndf dosen't have positive impact on JER.

h1

Entries

Std Dev

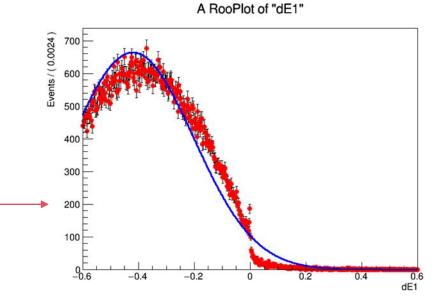

Mean

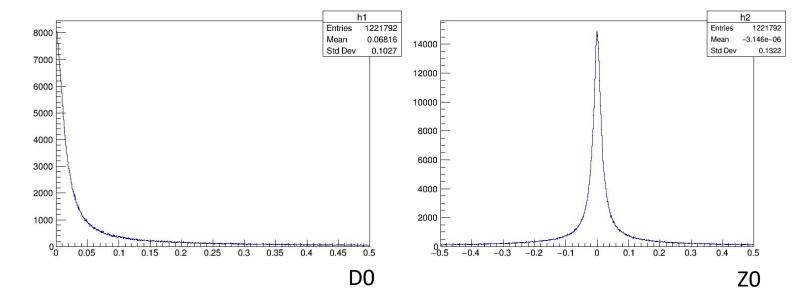

1707557

0.6081

Validation

- Comparison between events before and after χ^2 /ndf cut.
- \circ When collision energy rises, mean value of $\Delta E/E$ gradually deviates from 0.
- $\circ \chi^2$ /ndf cut makes a overall decline while pulling it toward 0.
- Conclusion
- $\circ \chi^2$ /ndf cut optimize the jet energy reconstruction.





2025-8-22

Backup

- Additional Validation: adding D0 and Z0 cut in PFO reconstruction
- 0.0 < 0.2 and |Z0| < 0.2
- Result
- JER is 4 times higher than before.
- Distribution of dE deviate from 0.

2025-8-22