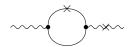
Gravitational waves in thermal environments

Atsuhisa Ota (Chongqing U.)

Based on arXiv:2510.22346.

November 1, 2025

Motivation


Question:

How do gravitons behave in a thermal plasma?

- Practical importance: relevant to the radiation-dominated universe/thermal or warm inflation.
- Standard approach: hydrodynamics on an FLRW background + linearized GR.

$$h_{ij}'' + 2\mathcal{H}h_{ij} + k^2 h_{ij} = 0.$$

• Missing interactions (in-in formalism):

Previous results

Setup:

GR + thermal scalar χ + interaction pict ($\kappa = \sqrt{32\pi G}$).

$$\begin{split} S_0 &= \frac{1}{2} \int d^4x a^2 \left((h^{i\prime}_{\ j})^2 - (\partial_k h^i_{\ j})^2 \right), \\ S_{\rm int} &= -\frac{\kappa}{2} \int d^4x a^2 h^{ij} \partial_i \chi \partial_j \chi + \frac{\kappa^2}{4} \int d^4x a^2 h^{ik} h_k{}^j \partial_i \chi \partial_j \chi, \\ \langle \mathcal{O} \rangle &= {\rm Tr} [\hat{D}_{\rm tot} \mathcal{O}], \ \hat{D}_{\rm tot} = \hat{D}_h \otimes \hat{D}_\chi^{\rm th}. \end{split}$$

Goal:

GW power spectrum:

$$(2\pi)^3 \delta(\vec{k} + \vec{k}') P_h(k) = \langle h^i{}_j(\vec{k}) h^j{}_i(\vec{k}') \rangle$$

Previous results (AO,Sasaki,Wang 2023)

- (a) (b) (c) (d) (d) (e) (e) (e)
- (a) Tadpole
- (b) Effective mass
- (c) Induced GWs
- (d) Radiation exchange
- (e) Tree level spectrum

We found

$$(a) + (b) = 0$$

in the local thermal ensemble

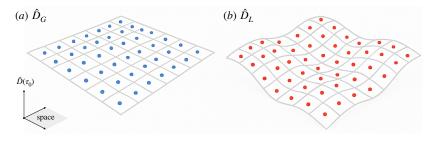
$$\operatorname{Tr}\left[\hat{D}_{\chi,L}^{\operatorname{th}}\hat{T}_{\mu\nu}^{I}\right] = (\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}.$$

Radiation exchange

 P_h is enhanced by exchanging radiation.

(d)
$$= \left(\ln \frac{\tau}{\tau_{\rm R}} - 1 + \frac{\tau_{\rm R}}{\tau}\right) P_h^{\rm tree}$$

- Reheating time (initial time of RD): τ_R
- Thermal correction dominates over the tree graph: $\ln \frac{\tau}{\tau_{\rm R}} = \mathcal{O}(10)$
- Negative effective mass. (This talk)
- Super horizon secular growth. (Large diff is explicitly broken in $H_{\rm int} \sim hT$).



Outline

- 1 The issue: initial environmental ensemble
- 2 Diffeomorphism and Weyl Ward Identities
- 3 Example: The hard-thermal-loop limit in an FLRW background
- 4 Summary

The issue: initial environmental ensemble

*What do we mean by "initial thermal ensemble"?

- (a) : thermal in background ($\kappa \to 0$).
- (b) : thermal in local inertial frame:

$$\operatorname{Tr}\left[\hat{D}_{\chi,L}^{\operatorname{th}}\hat{T}_{\mu\nu}^{I}\right] = \underbrace{(\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}}_{\text{perturbed}}.$$

• The issue: initial environmental ensemble

- 2 Diffeomorphism and Weyl Ward Identities
- **Solution** Example: The hard-thermal-loop limit in an FLRW background

4 Summary

Thermal effective action for GWs

*In-in path integral

$$e^{iW[h]} = \oint_{\hat{\mathbf{D}}_{L/G}^{th}} \mathcal{D}\chi e^{iS[\chi;h]} = e^{i\Gamma[h]}$$

Thermal correction to $S_{\rm EH}[h]$ is (FLRW)

$$\Gamma[h] = -\frac{1}{2} \int d^4x \left[\kappa a^2 \tau_{\mu\nu} h^{\mu\nu} + \kappa^2 a^4 h^{\mu\nu} \pi_{\mu\nu\rho\sigma} h^{\rho\sigma} \right].$$

The diffeomorphism symmetry under $x^{\mu} \to x^{\mu} - \kappa \xi^{\mu}$ is

$$\delta_{\xi}\Gamma[h] = 0.$$

This generates Ward identities for $\tau_{\mu\nu}$ and $\pi_{\mu\nu\rho\sigma}$.

Ward identities of diff. symmetry

The Ward identities of diffeormorphism symmetry in a flat FLRW background (\mathcal{H} : conformal Hubble):

Ward identities:

$$\mathcal{O}(\kappa^{0}): \ \partial^{\mu}(a^{2}\tau_{\mu\nu}) - \mathcal{H} \ a^{2} \underbrace{\tau_{\rho\sigma} \eta^{\rho\sigma}}_{=0 \text{ for CFTs}} \delta^{0}_{\nu} = 0,$$

$$\mathcal{O}(\kappa^{1}): \ \partial^{\mu}(a^{4}\pi_{\mu\nu\rho\sigma}) + \frac{1}{4} \Big[\partial_{\rho}(a^{2}\tau_{\sigma\nu}) + \partial_{\sigma}(a^{2}\tau_{\rho\nu}) \Big]$$

$$- \frac{1}{2} \delta^{0}_{\nu} \mathcal{H} \ a^{2} \underbrace{\left(\tau_{\rho\sigma} + 2\eta^{\mu\nu} a^{2}\pi_{\mu\nu\rho\sigma}\right)}_{=0 \text{ for CFTs}} = 0.$$

^{*}Correct environmental ensemble \hat{D} must satisfy these.

The issue: initial environmental ensemble

- 2 Diffeomorphism and Weyl Ward Identities
- 3 Example: The hard-thermal-loop limit in an FLRW background
- 4 Summary

Hard thermal limit effective action

Collision less thermal plasma with the global ensemble \hat{D}_G :

Flat spacetime case by [R. Francisco, J. Frenkel, J. Taylor (2016)]

$$\tau_{\mu\nu} = a^2 \rho \int \frac{d\Omega}{4\pi} Q_{\mu} Q_{\nu}, \quad Q_{\mu} = (-1, \vec{n}), \quad \rho \propto a^{-4}.$$

$$\pi^{G}_{\mu\nu\rho\sigma} = \frac{\rho}{4} \int \frac{d\Omega}{4\pi} \left(\frac{Q_{\mu} Q_{\nu} Q_{\rho} Q_{\sigma}}{(Q \cdot \partial)^2} \partial \cdot \partial - \frac{\partial_{\langle \mu} Q_{\nu} Q_{\rho} Q_{\sigma \rangle}}{Q \cdot \partial} \right).$$

 $\langle \mu\nu\rho\sigma\rangle = \mu\nu\rho\sigma + \nu\rho\sigma\mu + \rho\sigma\mu\nu + \sigma\mu\nu\rho$

This satisfies the WI:

$$\partial^{\mu}(a^4 \pi^G_{\mu\nu\rho\sigma}) + \frac{1}{4} \left[\partial_{\rho}(a^2 \tau_{\sigma\nu}) + \partial_{\sigma}(a^2 \tau_{\rho\nu}) \right] - \frac{1}{2} \delta^0_{\nu} \mathcal{H} a^2 \left(\tau_{\rho\sigma} + 2 \eta^{\mu\nu} a^2 \pi^G_{\mu\nu\rho\sigma} \right) = 0$$

Hard thermal limit effective action

Collision less thermal plasma with the local ensemble \hat{D}_L :

$$\pi^L_{\mu\nu\rho\sigma} = \pi^G_{\mu\nu\rho\sigma} - \underbrace{\frac{1}{8}a^{-2}\tau_{\langle\mu\rho}\eta_{\nu\sigma\rangle}}_{Ph_{ii}}.$$

The WI reduces to

$$\delta_{\nu}^{0} \mathcal{H} \tau_{\rho\sigma} = 0,$$

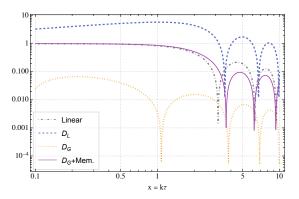
which contradicts with $\mathcal{H} \neq 0$ and $\tau_{\rho\sigma} \neq 0$.

Correct graviton dynamics

EoM becomes integral equation:

$$h_{ij}^{"} + 2\mathcal{H} h_{ij}^{'} + k^{2} h_{ij} = -24\mathcal{H}^{2} \int_{\tau_{0}}^{\tau} d\bar{\tau} K(k(\tau - \bar{\tau})) \partial_{\bar{\tau}} h_{ij}(\bar{\tau}) + \text{(time boundary)},$$

• Tachyonic mass: eliminated by diffeomorphism symmetry.


$$m_{\text{eff}}^2: -\frac{2}{5}H^2 \to \frac{8}{5}H^2 > 0.$$

• Secular growth: Integral equation requires a proper initial data and history: Time boundary (integral constants) can be chosen such that large diff is respected.

Large diff. :
$$h_{ij} \rightarrow h_{ij} + \epsilon_{ij}$$

Consistency with the known results

Weinberg's damping Tensor mode as a special case [Weinberg 2003]:

Weinberg's case respected both small and large diff symmetry (based on kinetic theory).

Summary

- The issues of tachyonic mass and IR secular growth for gravitons in environments (QFT based)
- Tachyonic mass is eliminated when small diff is imposed for the effective action.
- IR secular growth is eliminated when large diff is imposed for the IR effective EoM (possible by tuning integral constant)
- Ward identities in FLRW background are found and used.
- In interaction theory, environmental initial distribution should be global. Local feature appears dynamically.
- First step to QFT based medium effects on GWs.

Things not discussed today

- The field redefinition dependence and off-shellness of WIs.
- Inherent incompleteness of thermal Minkowski limit.
- Nearly instantaneous $(\beta \ll \tau)$ response in

$$\hat{T}_{\mu\nu} = \hat{T}^{I}_{\mu\nu} + i \int_{\tau_0 \sim \beta}^{\tau} d\tau_1 \underbrace{\left[\hat{H}_{int}(\tau_1), \hat{T}^{I}_{\mu\nu}\right]}_{\supset \delta(\tau)} + \mathcal{O}(\kappa^2),$$