

Determination of the spin and parity of all-charm tetraquarks

Xining Wang

Tsinghua University / Nanjing Normal University

理论与实验联合研讨会--新粒子寻找 Sep 13, 2025

All-charm Tetraquarks on CMS

CMS: family of 3 tetraquark candidates in 6 - 8 GeV range:

- Analysis with Run 2 data
- Interference among three resonances with same J^P simplify
 - Strongly motivated by dips observed in data
 - Indicate coherent production process and share same J^P

Spin parity analysis

eriment at the LHC, CERN brded: 2016-Aug-13 06:39:34.675328 G vent / LS: 278769 / 13873923 / 76

J/ψ polarizations

J/ψ polarizations

Symmetries:

- angular momentum: $|\lambda_1 \lambda_2| \leq J$
- identical J/ψ bosons $A_{\lambda_1\lambda_2}=(-1)^JA_{\lambda_2\lambda_1}$

— P & C conserved in QCD:

X with definite J^{PC}

$$C = +1$$

$$A_{\lambda_1 \lambda_2} = P (-1)^J A_{-\lambda_1 - \lambda_2}$$

Test 8+ J_X^P models:

$$\begin{array}{lll} 0^{-+} & 0^{-} & A_{++} = -A_{--} \\ 0^{++} & 0^{+}_{m} \text{ and } 0^{+}_{h} & A_{++} = A_{--} \text{ and } A_{00} & \leftarrow \text{note 2 d.o.f.} \\ 1^{-+} & 1^{-} & A_{+0} = -A_{0+} = A_{-0} = -A_{0-} \\ 1^{++} & 1^{+} & A_{+0} = -A_{0+} = -A_{-0} = A_{0-} \\ 2^{-+} & 2^{-}_{m} \text{ and } 2^{-}_{h} & A_{++} = -A_{--} \text{ and } A_{+0} = A_{0+} = -A_{-0} = -A_{0-} \leftarrow \text{note 2 d.o.f.} \\ 2^{++} & 2^{+}_{m} & A_{++} = A_{--}, A_{00}, A_{+0} = A_{0+} = A_{-0} = A_{0-}, \text{ and } A_{+-} = A_{-+} \end{array}$$

note 4 d.o.f. for 2⁺⁺, test one model

Angular Analysis

```
F_{0,0}^{J}(\theta^{*}) \times \left| 4 \left| \frac{A_{00}}{a_{00}} \right|^{2} \sin^{2}\theta_{1} \sin^{2}\theta_{2} + 2 \left| \frac{A_{++}}{a_{-+}} \right| \left| \frac{A_{--}}{a_{00}} \right| \sin^{2}\theta_{2} \cos(2\Phi - \phi_{--} + \phi_{++}) \right|
                        + |A_{++}|^2 (1 + 2A_{f_1} \cos \theta_1 + \cos^2 \theta_1) (1 + 2A_{f_2} \cos \theta_2 + \cos^2 \theta_2)
                        + |A_{--}|^2 (1 - 2A_{f_1} \cos \theta_1 + \cos^2 \theta_1) (1 - 2A_{f_2} \cos \theta_2 + \cos^2 \theta_2)
                                                                                                                                                            spin = 0 \& \ge 1
                        +4|A_{00}||A_{++}|(A_{f_1}+\cos\theta_1)\sin\theta_1(A_{f_2}+\cos\theta_2)\sin\theta_2\cos(\Phi+\phi_{++})
                        +4|A_{00}||A_{--}|(A_{f_1}-\cos\theta_1)\sin\theta_1(A_{f_2}-\cos\theta_2)\sin\theta_2\cos(\Phi-\phi_{--})
     +F_{1,1}^{J}(\theta^{*}) \times \left[2|\mathbf{A}_{+0}|^{2}(1+2A_{f_{1}}\cos\theta_{1}+\cos^{2}\theta_{1})\sin^{2}\theta_{2}+2|\mathbf{A}_{0-}|^{2}\sin^{2}\theta_{1}(1-2A_{f_{2}}\cos\theta_{2}+\cos^{2}\theta_{2})\right]
                         +2|A_{-0}|^2(1-2A_{f_1}\cos\theta_1+\cos^2\theta_1)\sin^2\theta_2+2|A_{0+}|^2\sin^2\theta_1(1+2A_{f_2}\cos\theta_2+\cos^2\theta_2)
                         +4|A_{+0}||A_{0-}|(A_{f_1}+\cos\theta_1)\sin\theta_1(A_{f_2}-\cos\theta_2)\sin\theta_2\cos(\Phi+\phi_{+0}-\phi_{0-})
                         +4|A_{0+}||A_{-0}|(A_{f_1}-\cos\theta_1)\sin\theta_1(A_{f_2}+\cos\theta_2)\sin\theta_2\cos(\Phi+\phi_{0+}-\phi_{-0})
                                                                                                                                                                        spin \ge 1
     +F_{1,-1}^{J}(\theta^*) \times \left|4|A_{+0}||A_{0+}|(A_{f_1}+\cos\theta_1)\sin\theta_1(A_{f_2}+\cos\theta_2)\sin\theta_2\cos(2\Psi-\phi_{+0}+\phi_{0+})\right|
                            +4|A_{0-}||A_{-0}||A_{f_1}-\cos\theta_1)\sin\theta_1(A_{f_2}-\cos\theta_2)\sin\theta_2\cos(2\Psi-\phi_{0-}+\phi_{-0})
+4|A_{+0}||A_{-0}|\sin^2\theta_1\sin^2\theta_2\cos(2\Psi-\Phi-\phi_{+0}+\phi_{-0})+4|A_{0-}||A_{0+}|\sin^2\theta_1\sin^2\theta_2\cos(2\Psi+\Phi-\phi_{0-}+\phi_{0+})
     +F_{2,2}^{J}(\theta^{*}) \times \left| |A_{+-}|^{2} (1 + 2A_{f_{1}} \cos \theta_{1} + \cos^{2} \theta_{1}) (1 - 2A_{f_{2}} \cos \theta_{2} + \cos^{2} \theta_{2}) \right|
                                                                                                                                                                                                    Valid
                         + |A_{-+}|^2 (1 - 2A_{f_1} \cos \theta_1 + \cos^2 \theta_1) (1 + 2A_{f_2} \cos \theta_2 + \cos^2 \theta_2)
                                                                                                                                                                       spin \ge 2
                                                                                                                                                                                                    for any J
     +F_{2,-2}^J(\theta^*) 	imes \left[2|A_{+-}||A_{-+}|\sin^2\theta_1\sin^2\theta_2\cos(4\Psi-\phi_{+-}+\phi_{-+})
ight] + 	ext{other 26 interference terms for spin}
         where \Psi=\Phi_1+\Phi/2 and F_{ij}^J(	heta^*)=\sum_{} f_m\,d_{im}^J(	heta^*)d_{jm}^J(	heta^*)
```

arXiv:1001.3396

Lorentz-Invariant Amplitude

• Expect three *X* resonances to have the same tensor structure:

$$A(X_{J=0} \to V_1 V_2) = \begin{pmatrix} a_1(q^2) m_V^2 \epsilon_1^* \epsilon_2^* + a_2(q^2) f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3(q^2) f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \end{pmatrix}$$

$$O_{m}^+ \qquad O_{h}^+ \qquad O_{h}^-$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} \text{ at large } m_X \quad A_{++} = A_{--}$$

$$arXiv:1001.3396$$

$$A(X_{J=1} \to V_1 V_2) = \begin{pmatrix} b_1(q^2) \left[(\epsilon_1^* q) (\epsilon_2^* \epsilon_X) + (\epsilon_2^* q) (\epsilon_1^* \epsilon_X) \right] + b_2(q^2) \epsilon_{\alpha\mu\nu\beta} \epsilon_X^\alpha \epsilon_1^{*,\mu} \epsilon_2^{*,\nu} \tilde{q}^\beta \end{pmatrix}$$

$$1^- \qquad 1^+$$

$$more for spin-2 \qquad A_{+0} = -A_{0+} = A_{-0} = -A_{0-} \qquad A_{+0} = -A_{0+} = -A_{-0} = A_{0-}$$

7

Lorentz-Invariant Amplitude

Expect three X resonances to have the same tensor structure:

$$A(X_{J=2} \to V_{1}V_{2}) = 2c_{1}(q^{2})t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2c_{2}(q^{2})t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu,\beta} \\ + c_{3}(q^{2})\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + c_{4}(q^{2})\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \\ + m_{V}^{2}\left(2c_{5}(q^{2})t_{\mu\nu}\epsilon_{1}^{*\mu}\epsilon_{2}^{*\nu} + 2c_{6}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}\left(\epsilon_{1}^{*\nu}\epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha}\epsilon_{2}^{*\nu}\right) + c_{7}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon_{1}^{*\epsilon_{2}}\right) \\ 2\frac{1}{m}(A_{++} = -A_{--})$$

$$(A_{+0} = A_{0+} = -A_{-0} = -A_{0-})$$

 2_m^+ — minimal representative model including all amplitudes:

unique
$$\hbox{4 d.o.f. } A_{00}, A_{++} = A_{--}, A_{+0} = A_{0+} = A_{0+} = A_{0-}, A_{+-} = A_{-+}, \hbox{ for } 2^{++} \\ \hbox{ (or } J \geq 2)$$

basis of 2^{++} could be equivalent to 2_m^+ , 0_m^+ , 0_m^+ , 1^+ if data consistent with 2_m^+ \Rightarrow unambiguously 2^{++} (or $J \ge 2$)

Simplification in Angular Analysis

• Full model possible, but very complex

$$\mathcal{P}(\Phi, \theta_1, \theta_2; m_{4\mu})$$

(1) Same properties of 3 resonances:

$$\mathscr{P}(m_{4\mu}, \overrightarrow{\Omega}) = \mathscr{P}(m_{4\mu}) \cdot T(\overrightarrow{\Omega} \mid m_{4\mu})$$
 empirical angular

(2) Pairwise tests of J_X^P hypotheses i and j:

1 optimal observable

• Final 2D model:

$$\mathscr{P}_{ijk}(m_{4\mu},\mathscr{D}_{ij}) = \mathscr{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathscr{D}_{ij} | m_{4\mu})$$

Decay Angles

Production angles not use
Consistent with unpolarized (backup)

decay angles (consistency check): distinguish models

Optimal Observable

• 1D projection of data, optimal for $j = 0^-(2_m^-)$ vs $i = 2_m^+$

optimal observable

$$\mathcal{D}_{ij}(\overrightarrow{\Omega} \mid m_{4\mu}) = \frac{\mathcal{P}_{i}(\overrightarrow{\Omega} \mid m_{4\mu})}{\mathcal{P}_{i}(\overrightarrow{\Omega} \mid m_{4\mu}) + \mathcal{P}_{j}(\overrightarrow{\Omega} \mid m_{4\mu})}$$

1D projections from 2D ⇒ limited information

background model from MC control in sidebands systematic variations

2D parameterization:

$$\mathscr{P}_{ijk}(m_{4\mu},\mathscr{D}_{ij}) = \mathscr{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathscr{D}_{ij} \mid m_{4\mu})$$

Statistical Analysis

- Hypothesis test with toy MC for $J_1^P = 2_m^+$ vs $J_2^P = 0^-$
- Test statistic $q = -2\ln(\mathcal{L}_{J_2^P}/\mathcal{L}_{J_1^P})$
- Consistency of data with J_1^P/J_2^P using p-value:

$$p = P(q \le q_{obs}|J_1^P + bkg)$$

$$p = P(q \ge q_{obs}|J_2^P + bkg)$$

• Significance:

Converted from p-value via Gaussian one-sided tail integral

Confidence level

$$CL_{s} = \frac{P(q \ge q_{obs}|J_{2}^{P} + bkg)}{P(q \ge q_{obs}|J_{1}^{P} + bkg)}$$

		Observ	ved .	Expected		
		p-value	Z-score	p-value	Z-score	
$0^{-} \text{ vs } 2_{m}^{+}$	0 ⁻ 2 ⁺ _m	2.7×10^{-13} 4.2×10^{-1}	7.2 0.2	$6.5 \times 10^{-14} \\ 0.50$	7.4 0.0	

Hypothesis test

• Combine 2D fit: $\mathscr{P}_{ijk}(m_{4\mu}, \mathscr{D}_{ij})$

$$-J^P = 2_m^+$$
 model survives

Statistical Analysis

Scan mixture of 0⁺⁺ amplitudes

Scan mixture of 2⁻⁺ amplitudes

Summary

- J^{PC} analysis of exotic hadron decays at LHC (production-independent)
 - consistent picture: set of 3 exotic teraquark resonances with the same J^{PC}

$$-PC = + + \text{ very certain}$$

$$n = (1,)2,3,4$$

$$-J \neq 1$$
 at > 99 % CL

$$-J \neq 0$$
 at > 95 % CL

THANKS!

- -J > 2 possible, but highly unlikely, require $L \ge 2$
- -J=2 consistent, rare in nature, naively expected J=0

CMS is painting a coherent picture of $J/\psi J/\psi$ structures

BACKUP

J/ψ polarizations

- (1) $m_{4\mu}$ spectrum $X \to 4\mu \text{arXiv:}2306.07164$
- (2) p_T and p_Z of $X \to 4\mu$ match to data
- (3) polarization J_z or $J_{z'}$ of X unpolarized for J=0 exact

for J=1,2,... depends on production mechanism

— vary J_z or $J_{z'}$ systematics or test

(4) Φ_1 , θ^* or Φ_1' , θ'^* production angles flat for unpolarized — test in data non-flat for polarized

(5) Φ , θ_1 , θ_2 decay angles — analysis

do not use in the primary analysis

CMS Preliminary

135 fb⁻¹ (13 TeV)

Data

New conventional hadrons at LHC

New exotic hadrons at LHC

Status

- Models of potential quark configurations for $J/\psi J/\psi$ mesons.
 - Meson-meson "molecule" $(c\bar{c}-c\bar{c})$
 - Pair of diquarks $(cc-\bar{c}\bar{c})$
 - Hybrid with a valence gluon
 - Peaks as artifact of dicharmonia production thresholds
 - •

Family of all-charm tetraquarks with same J^{PC} offers new perspectives on interpretation for **exotics**

$J/\psi J/\psi$: 6-15 GeV fits

Fit model

□ Final 2D fit model (0⁺ vs. 0⁻): $P(m_X, D_{0^-}) = \\ + N_{(interf-BW1BW2BW3)} * \left[f_{0_m^+} * P_{0_m^+(interf-BW1BW2BW3)}(m_X, D_{0^-}) + (1 - f_{0_m^+}) * P_{0^-(interf-BW1BW2BW3)}(m_X, D_{0^-}) \right] \\ f_{0_m^+} : \text{fraction of } 0_m^+ \text{ signal component}$

Concept of Analysis: Production

- We do not know the production mechanism
 - empirical model to reproduce p_T^X and p_z^X in data

- tune **Pythia** to match p_T^X in sideband and signal region
- fine-tune re-weighting p_T^X
- residual p_T^X and p_z^X consistency tests coverage in systematics
- essential to model detector acceptance

Concept of Analysis: Production

- We do not know the production mechanism
 - empirical model to reproduce p_T^X and p_Z^X in data
- Monte Carlo tools:

JHUGen

to model spin correlations

(A) parton $(gg/q\bar{q})$ collisions polarization J_z beam axis

arXiv:2109.13363

MELA

matrix elements

- re-weight J=1,2 to unpolarized
- re-weight J_z or $J_{z'}$ for systematics

Angular Analysis

- Observations: $-1^+ & 1^-$ identical in 1D, differ in 3D
 - 0⁺ & 1⁺ cannot be distinguished from general 2⁺
 - unique to 2^+ (or $J \ge 2$): A_{+-} , A_{-+} , "mixture" of 0^+ & 1^+
 - $-0^{-} \& 2_{m}^{-}$ identical

$-1^- \& 2_h^-$ identical

- unique to 2⁻: "mixture"
- $\text{ for } J \ge 3$ $J^P \Leftrightarrow 2^P$
- polarized $J \ge 1$ unique Φ_1, θ^* not used here...

arXiv:1001.3396

```
+ |A_{++}|^2 (1 + 2A_{f_1} \cos \theta_1 + \cos^2 \theta_1) (1 + 2A_{f_2} \cos \theta_2 + \cos^2 \theta_2)
                      + |A_{--}|^2 (1 - 2A_{f_1} \cos \theta_1 + \cos^2 \theta_1) (1 - 2A_{f_2} \cos \theta_2 + \cos^2 \theta_2)
                                                                                                                                                      spin = 0 \& \ge 1
                      +4|A_{00}||A_{++}|(A_{f_1}+\cos\theta_1)\sin\theta_1(A_{f_2}+\cos\theta_2)\sin\theta_2\cos(\Phi+\phi_{++})
                      +4|A_{00}||A_{--}|(A_{f_1}-\cos\theta_1)\sin\theta_1(A_{f_2}-\cos\theta_2)\sin\theta_2\cos(\Phi-\phi_{--})
     +F_{1,1}^{J}(\theta^*) \times \left[2|\mathbf{A}_{+0}|^2(1+2A_{f_1}\cos\theta_1+\cos^2\theta_1)\sin^2\theta_2+2|\mathbf{A}_{0-}|^2\sin^2\theta_1(1-2A_{f_2}\cos\theta_2+\cos^2\theta_2)\right]
                        +2|A_{-0}|^2(1-2A_{f_1}\cos\theta_1+\cos^2\theta_1)\sin^2\theta_2+2|A_{0+}|^2\sin^2\theta_1(1+2A_{f_2}\cos\theta_2+\cos^2\theta_2)
                        +4|A_{+0}||A_{0-}|(A_{f_1}+\cos\theta_1)\sin\theta_1(A_{f_2}-\cos\theta_2)\sin\theta_2\cos(\Phi+\phi_{+0}-\phi_{0-})
                       +4|A_{0+}||A_{-0}|(A_{f_1}-\cos\theta_1)\sin\theta_1(A_{f_2}+\cos\theta_2)\sin\theta_2\cos(\Phi+\phi_{0+}-\phi_{-0})|
                                                                                                                                                                 \mathsf{spin} \geq 1
    +F_{1,-1}^{J}(\theta^{*}) \times \left|4|A_{+0}||A_{0+}|(A_{f_{1}}+\cos\theta_{1})\sin\theta_{1}(A_{f_{2}}+\cos\theta_{2})\sin\theta_{2}\cos(2\Psi-\phi_{+0}+\phi_{0+})\right|
                          +4|A_{0-}||A_{-0}|(A_{f_1}-\cos\theta_1)\sin\theta_1(A_{f_2}-\cos\theta_2)\sin\theta_2\cos(2\Psi-\phi_{0-}+\phi_{-0})
+4|A_{+0}||A_{-0}|\sin^2\theta_1\sin^2\theta_2\cos(2\Psi-\Phi-\phi_{+0}+\phi_{-0})+4|A_{0-}||A_{0+}|\sin^2\theta_1\sin^2\theta_2\cos(2\Psi+\Phi-\phi_{0-}+\phi_{0+})
     +F_{2,2}^{J}(\theta^*) \times \left| |A_{+-}|^2 (1 + 2A_{f_1}\cos\theta_1 + \cos^2\theta_1)(1 - 2A_{f_2}\cos\theta_2 + \cos^2\theta_2) \right|
                       + |A_{-+}|^2 (1 - 2A_{f_1}\cos\theta_1 + \cos^2\theta_1)(1 + 2A_{f_2}\cos\theta_2 + \cos^2\theta_2)
                                                                                                                                                                 \mathsf{spin} \geq 2
     +F_{2,-2}^{J}(\theta^*) \times \left[2|A_{+-}||A_{-+}|\sin^2\theta_1\sin^2\theta_2\cos(4\Psi-\phi_{+-}+\phi_{-+})\right] + \text{other 26 interference terms for spin}
        where \Psi=\Phi_1+\Phi/2 and F^J_{ij}(\theta^*)=\sum_{m=0,\pm 1,\pm 2} {\color{red}f_m\over f_m}\, d^J_{im}(\theta^*) d^J_{jm}(\theta^*)
```

 $F_{0,0}^{J}(\theta^*) \times \left| 4 \left| \frac{A_{00}}{a_{00}} \right|^2 \sin^2 \theta_1 \sin^2 \theta_2 + 2 \left| \frac{A_{++}}{a_{-+}} \right| \left| \frac{A_{--}}{a_{00}} \right| \sin^2 \theta_2 \cos(2\Phi - \phi_{--} + \phi_{++}) \right|$

Polarization in Production

- Helicity amplitudes appear in production. For parton collision:
 - spin-0: unpolarized in any case, e.g. $gg \rightarrow X$
 - spin-1: $q\bar{q} \rightarrow X$ produce $J_z = \pm 1$ (not 0!)
 - spin-2: $gg \to X$ produce $J_z=0,\pm 2$, minimal coupling: $J_z=\pm 2$ $q\bar{q}\to X$ produce $J_z=\pm 1$
- ullet Similar ideas in fragmentation of g or Q
 - re-weight MELA to any model: unpolarized, polarized z' or z

Backup

Lorentz-Invariant Amplitude

Expect three X resonances to have the same tensor structure:

27

Production Angles

(4) production angles consistent with unpolarized resonances

Production Angles

(4) production angles consistent with unpolarized resonances

background-subtracted

with respect to the boost axis does not prove unpolarized

Discriminant Distributions

Hypothesis test

• Data are consistent with a 2^{++} model, inconsistent with others

Summary of Results

Full	set of ı	esu	ılts, con	npare	ed to $\frac{2}{n}$	⊦ n	$-J^{PC}=2^{++}$
P = -1			Observ p-value	red Z-score	Expec p-value	ted Z-score	most likely
/_	$0^{-} \text{ vs } 2_{m}^{+}$	0 ⁻ 2 ⁺ _m	$2.7 \times 10^{-13} \\ 4.2 \times 10^{-1}$	7.2 0.2	$6.5 \times 10^{-14} \\ 0.50$	7.4 0.0	-J > 2 possible but highly unlikely
1	$0_m^+ ext{ vs } 2_m^+$	$\begin{array}{c} 0_m^+ \\ 2_m^+ \end{array}$	4.3×10^{-5} 7.2×10^{-2}	3.9 1.5	5.6×10^{-9} 0.50	5.7 0.0	require $L \geq 2$
1	0_{mix}^+ vs 2_m^+	$0^+_{ m mix} \ 2^+_m$	$1.4 \times 10^{-2} \\ 1.7 \times 10^{-1}$	2.2 1.0	8.4×10^{-4} 0.50	3.1 0.0	$-J \neq 0$ at > 95 % CL
4	$0_h^+ ext{ vs } 2_m^+$	$0_h^+ \ 2_m^+$	3.1×10^{-9} 9.0×10^{-1}	5.8 - 1.3	$8.5 \times 10^{-5} \\ 0.50$	3.8 0.0	- confidence level: $P(a > a + 1^{p} + bkg)$
1	$1^{-} \text{ vs } 2_{m}^{+}$	1 ⁻ 2 ⁺ _m	8.0×10^{-8} 3.8×10^{-1}	5.2 0.3	6.4×10^{-9} 0.50	5.7 0.0	$CL_{s} = \frac{P(q \ge q_{obs} J_{j}^{P} + bkg)}{P(q \ge q_{obs} J_{i}^{P} + bkg)}$
1	$1^+ \text{ vs } 2_m^+$	1 ⁺ 2 ⁺ _m	4.7×10^{-3} 5.2×10^{-2}	2.6 1.6	$2.7 \times 10^{-5} \\ 0.50$	4.0 0.0	$-J \neq 1$ at $> 99\%$ CL
× (.	$2_m^- \operatorname{vs} 2_m^+$	2_{m}^{-} 2_{m}^{+}	4.1×10^{-12} 2.8×10^{-1}	6.8 0.6	3.9×10^{-14} 0.50	7.5 0.0	
	2^{mix} vs 2^+_m	2_{mix}^{-} 2_{m}^{+}	6.5×10^{-4} 3.1×10^{-1}	3.2 0.5	$1.5 \times 10^{-4} \\ 0.50$	3.6 0.0	$P \neq -1$ very certain (exclude J^{-+} including $J \geq 3$)
1_	$2_h^- \text{ vs } 2_m^+$	$2_h^- \ 2_m^+$	$2.2 \times 10^{-8} \\ 4.3 \times 10^{-1}$	5.5 0.2	6.3×10^{-9} 0.50	5.7 0.0	

• Recall: 2^{++} can have a mixture of 2^{+}_{m} and look-alike of $0^{+}, 1^{+}$