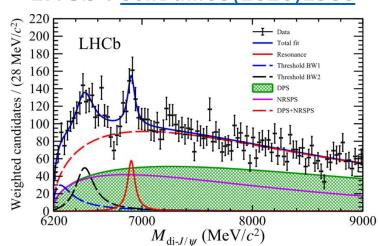
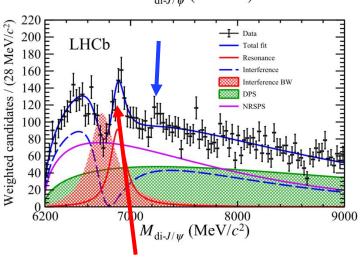
BPH-22-004

Observation of X(6900) and evidence of X(7100) in the $J/\psi\psi(2S) \rightarrow \mu^+\mu^-\mu^+\mu^-$ mass spectrum

陈亮亮 南京师范大学

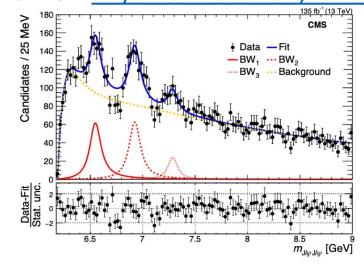
LHC理论与实验联合研讨会--新粒子寻找,13.09.2025

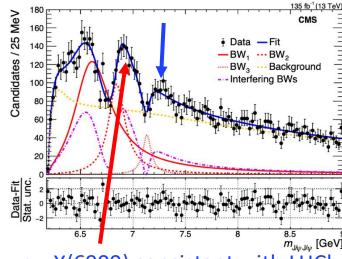



Outline

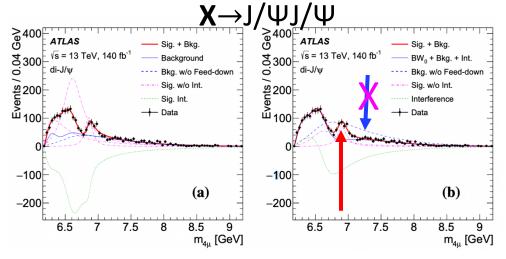
- Motivation
- Datasets
- Event selection
- Fit models and results
- Summary

Motivation: $X \rightarrow J/\Psi J/\Psi$


LHCb: Sci.Bull.65(2020)1983

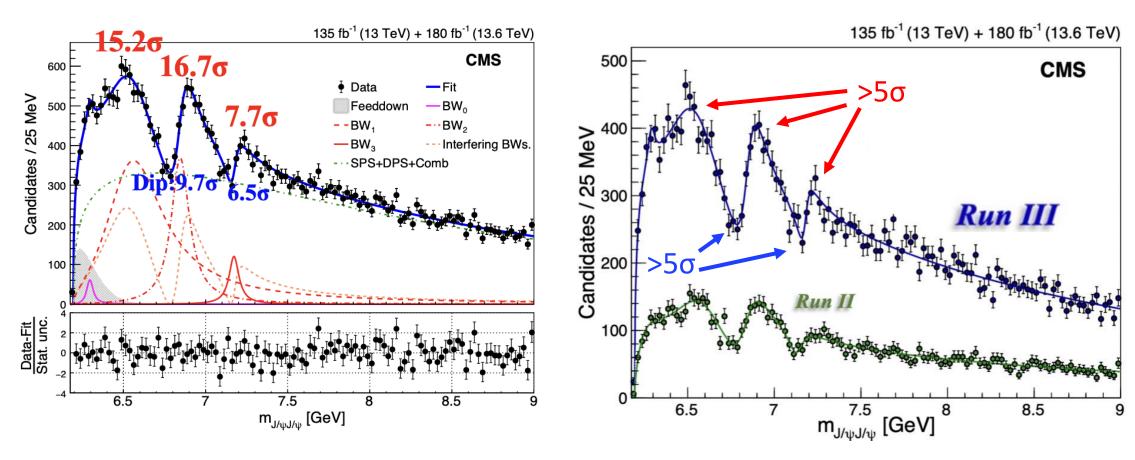


- Observed structure at 6.9 GeV, $> 5\sigma$
- M ~ 6900 MeV, Γ ~ 100 MeV


CMS: Phys. Rev. Lett. 132, 111901

- X(6900) consistent with LHCb
- New state X(6600) with 6.5σ
- Evidence of X(7100) with 4.1σ

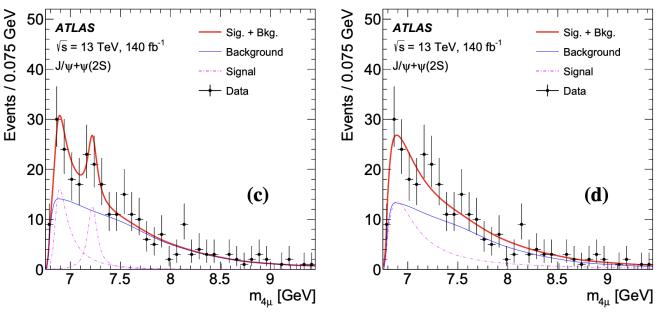
ATLAS: Phys. Rev. Lett. 131, 151902



X(6900) consistent with LHCb

- > X(6900) observed by 3 experiment
- > CMS adds X(6600) & X(7100)
 - > X(6600) below J/ΨΨ(2S) threshold
 - X(6900)/X(7100) above threshold
- Debate: Tetraquark? Dynamical?
- Further studies vital: other channels?

Motivation: $X \rightarrow J/\Psi\Psi(2S)$


CMS: BPH-24-003

- CMS established candidates for all-charm tetra-quark family
- \triangleright Each peak and each dip is well over 5σ in complete dataset
- This defines our model: two peaks with interference

Motivation: $X \rightarrow J/\Psi\Psi(2S)$

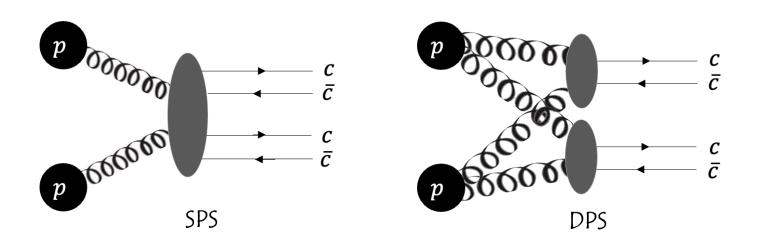
ATLAS: Phys. Rev. Lett. 131, 151902

- If seen in $J/\psi/J/\psi$, probably in $\psi(2S)J/\psi$?
- Possibility of non-resonant "threshold effects"?
- X(6900) is just above threshold
- ATLAS has published spectrum
- They do see excess
 - LEFT: Assumed X(6900) with $J/\psi/J/\psi$ values (4.7 σ) & find weak X(7100) signal (3 σ local)
 - ATLAS compatible with CMS no-interf fit
 - RIGHT: One BW fit -- very fat!
 NOT very consistent with X(6900) (4.3σ)
- Is excess X(6900)? ATLAS doesn't actually claim it!
- Can we see it? Can CMS clarify??

Datasets

- Charmonium dataset
- 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs (13 TeV)
 - 2017B excluded due to improper trigger
- 180 fb⁻¹ CMS data taken 2022, 2023 and 2024 LHC runs (13.6 TeV)
 - Using J/ψJ/ψ selection as first step
 - Preliminary event selections:
 - Fire trigger
 - Standard soft muon ID
 - pT(μ) ≥2.0 GeV
 - $|\eta (\mu)| \le 2.4$
 - \blacksquare 4 μ total charge = 0
 - $Vtx(4\mu) \ge 0.5\%$
 - $Vtx(\mu+\mu-) \ge 0.5\%$ (HLT)
 - \blacksquare m(μ+μ-) within 3σ (EBE) of J/ψ or ψ (2S),scale factor 1.16
 - \blacksquare m(μ+μ-) constraited to J/ψ or ψ (2S) mass
 - Resolve pairing confusion using mass chisq

315 fb⁻¹

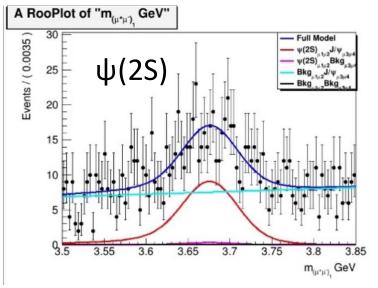

MC simulation

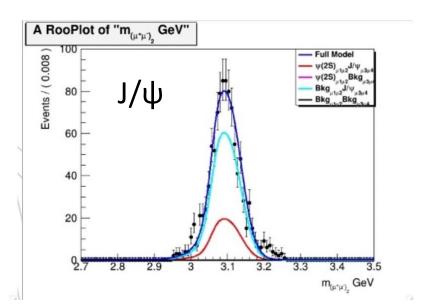
Background

- Single Parton Scattering (NRSPS) to $J/\psi\psi(2S)$ sample by Pythia8
- Double Parton Scattering (DPS) to $J/\psi\psi(2S)$ sample by Pythia8

Signal

- $gg \to X \to J/\psi\psi(2S)$ by JHUGen Default
- $gg \to X \to J/\psi\psi(2S)$ by Higgs model in Pythia Systematic




Event selection

4 components for 2D fit:

J/ψ+ψ(2S): product of 2 Crystal-Ball functions for each resonance J/ψ+μ⁺μ⁻: product of 2 Crystal-Ball functions and 1st order polynomial ψ(2S)+μ⁺μ⁻: product of 2 Crystal-Ball functions and 1st order polynomial Nonresonant: $\mu^+\mu^-\mu^+\mu^-$: product of 2x 1st order polynomial

Optimization procedure

Optimization procedure

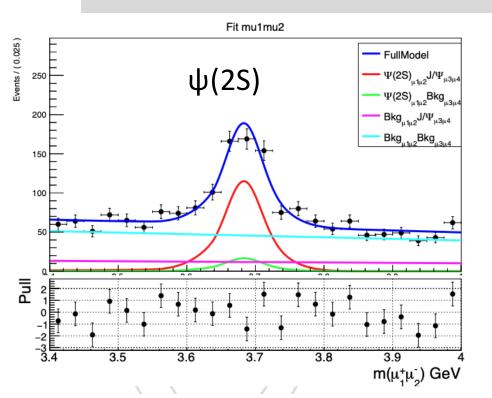
Optimize X(6900) signal (JHUgen) (though model dependent)

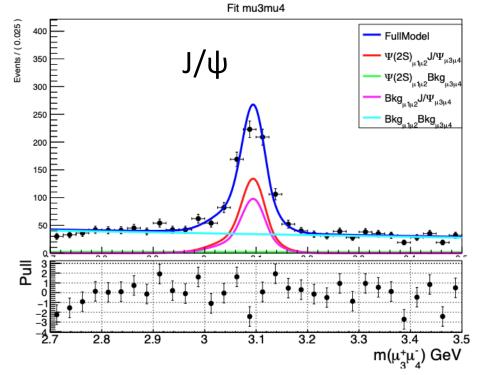
- Defined signal mass window (6.7 ~ 7.1 GeV)
- Use $f = S/(463/13 + 4\sqrt{B} + 5\sqrt{25 + 8\sqrt{B} + 4B})$ as FOM
- S from X(6900) MC
- B from data
- Not need to do normalization

Variables	Previous cuts	Optimized cuts					
$p_T(\psi(2S))$	-	> 13.5 GeV					
$p_T(J/\psi)$	-	> 11 GeV					
$p_T(\mu)$ from $\psi(2S)$	> 2 GeV	> 2.5 GeV					
Muon ID of $\psi(2S)$	2 soft μ	2 loose μ					
$\psi(2S)$ mass window	-	$< 2.5\sigma$					
J/ψ mass window	-	$< 2.5\sigma$					

Procedure:

- Optimize one variable at a time
- Cycle through all variables
- From "optimal point" iterate new optimization cycle
- Iterate until stable
- To avoid over-optimizing on fluctuations:


 try to round final optimum to 0.5 GeV increments


Event selection

- Same cuts for Run2 and Run3 data except triggers
- Single muon from J/ψ :
 - Soft muon ID
 - $p_{T(muon from J/\psi)} > 3.5 \text{ GeV}$
- Single muon from $\psi(2S)$:
 - Loose muon ID
 - $p_{T(muon from \psi(2S))} > 2.5 \text{ GeV}$
- Single J/ψ :
 - $M(J/\psi)$ within 2.5σ
 - $M(J/\psi)$ constraint to J/ψ mass
 - $p_T(J/\psi) > 11 \text{ GeV}$
- Single $\psi(2S)$:
 - $M(\psi(2S))$ within 2.5σ
 - $M(\psi(2S))$ constraint to $\psi(2S)$ mass
 - $p_T(\psi(2S)) > 13.5 \text{ GeV}$

- Four muons:
 - $prob_{vtx}(4\mu) > 0.5\%$
 - 4μ charge should be zero
 - Single muon from J/ψ : $p_{T(muon from J/\psi)} > 3.5 \text{ GeV}$
 - Single muon from $\psi(2S)$: $p_{T(muon from \psi(2S))} > 2.5 \text{ GeV}$
 - Pass η requirement: $|\eta^{\mu}| \leq 2.4$.
- Multiple candidate treatment:
 - Select best ('min. χ_m^2 ') combination from one $\mu_1^+\mu_2^-\mu_3^+\mu_4^-$ candidate if both $(\mu_1^+\mu_2^-,\mu_3^+\mu_4^-)$ and $(\mu_3^+\mu_2^-,\mu_1^+\mu_4^-)$ combinations pass final $\psi(2S)J/\psi$ selections based on: $\chi_m^2 = \left[\frac{m(\mu^+\mu^-)_1 m_{\psi(2S)}}{\sigma_{m(\mu^+\mu^-)}}\right]^2 + \left[\frac{m(\mu^+\mu^-)_2 m_{J/\psi}}{\sigma_{m(\mu^+\mu^-)}}\right]^2$.
 - Keep all combinations if an event has multiple $\psi(2S)J/\psi$ candidates which are composed of more than four distinct muons, i.e. the candidates have one or more non-overlapping muons. There is no multiple candidate after final selection
- Exclude events with wrong combination making J/ψ -pair $<2\sigma$ of PDG.

Two dimensional fit for J/ΨΨ(2S) yield

Run2 + Run3

	Run2 + Run3 data					
$N(\psi(2S)J/\psi)$	386 ± 26	S	386 ± 26 (vs 109±14 in Run2)			
$N(\psi(2S)Bkg_2)$	56 ± 24					
$N(Bkg_1J/\psi)$	282 ± 28	В	1427 ± 57 (vs 208 ± 22 in Run2)			
$N(Bkg_1Bkg_2)$	1089 ± 43		(.5 2 5 5 <u>2</u> 2 2 11 1 (11 2)			

S: 3.5x of Run2

[m(J2s)<15 GeV]

B: 6.9x of Run2

Slight difference if in signal mass window

Fit Strategy and Result

• Same signal function as $J/\psi J/\psi$ analysis (Relativistic Breit-Wigner)

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)},$$

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{m_0}{m} \left(B'_L(q, q_0, d)\right)^2,$$

✓ Non-interference model:

$$Pdf(m) = \sum_{i} N_{X_{j}} \cdot |BW(m, M_{j}, \Gamma_{j})|^{2} \otimes R(M_{j}) \cdot \epsilon(M_{j})$$

$$+ N_{SPS} \cdot f_{SPS}(m) + N_{DPS} \cdot f_{DPS}(m) + N_{Combinatorial} \cdot f_{Combinatorial}(m)$$

✓ Interference model:

$$Pdf(m) = N_{X-\text{interf}} \cdot \left| \sum_{k} \left(r_k \cdot \exp(i\phi_k) \cdot BW(m, M_k, \Gamma_k) \right) \right|^2 \otimes R(M_j) \cdot \epsilon(M_j) + N_{SPS} \cdot f_{SPS}(m) + N_{DPS} \cdot \overline{f_{DPS}}(m) + \overline{N_{Combinatorial}} \cdot f_{Combinatorial}(m),$$

- $R(M_j) \& \epsilon(M_j)$: resolution & efficiency at M_j
- f_{SPS} , f_{DPS} , $f_{combinatorial}$: shapes of SPS, DPS and combinatorial background
- BW: relativistic Breit-Wigner
- r_k , ϕ_k : coupling magnitude and relative phase of interfering Breit-Wigner
- Resolution and efficiency included in the default model

Significance calculation

Constrain mass & width of both peaks within 1σ of J/ψJ/ψ values

Model I: X(6900) & X(7100) with interference (NLL = -2056.83):

Contents: X(6900) + X(7100) Interf. + Background

Floating Params (7): Number of NRSPS, number of DPS, number of combinatorial bkg, number of X(6900)X(7100),

amplitude of X(7100), phi angle of X(7100), p2 of NRSPS

Constrained Params (4, regarded as fixed): Mass of X(6900) & X(7100), width of X(6900) & X(7100)

Model II: X(6900) only (NLL = -2045.87):

Contents: X(6900) + Background

Floating Params (5): Number of NRSPS, number of DPS, number of combinatorial bkg, number of X(6900), p2 of NRSPS

Constrained Params (2, regarded as fixed): Mass of X(6900), width of X(6900)

Model III: X(7100) only (NLL = -2021.63):

Contents: X(7100) + Background

Floating Params (5): Number of NRSPS, number of DPS, number of combinatorial bkg, number of X(7100), p2 of NRSPS

Constrained Params (2, regarded as fixed): Mass of X(7100), width of X(7100)

➤ Model I vs III

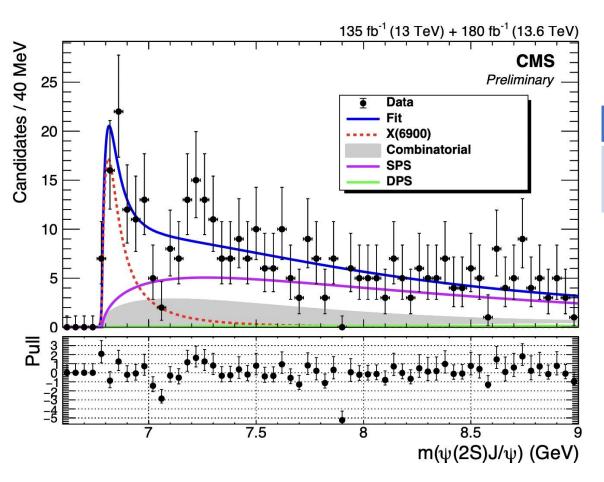
Degrees of freedom = 2

 $> \chi^2 = 2 * \Delta NLL$

 \triangleright Significance of X(6900) = 8.1 σ

➤ Model I vs II

Degrees of freedom = 2

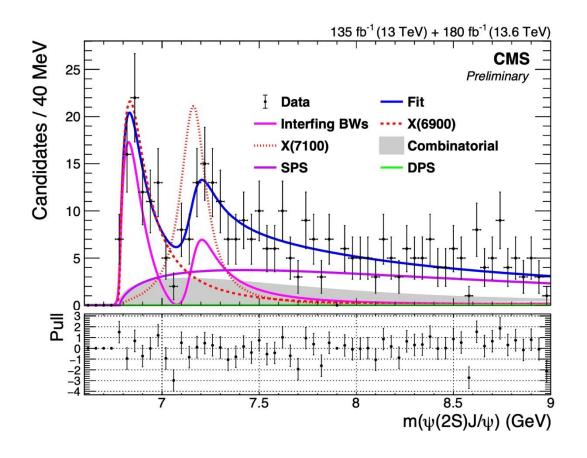

 $> \chi^2 = 2 * \Delta NLL$

 \triangleright Significance of X(7100) = 4.3 σ

• Can use $J/\psi\psi(2S)$ to make independent mass & width measurements?

Independent Measurement

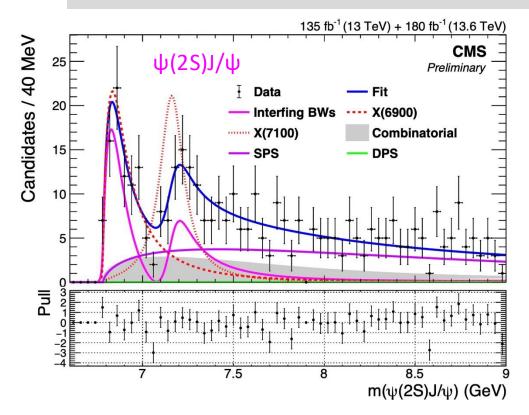
• An independent measurement: 1BW - X(6900)

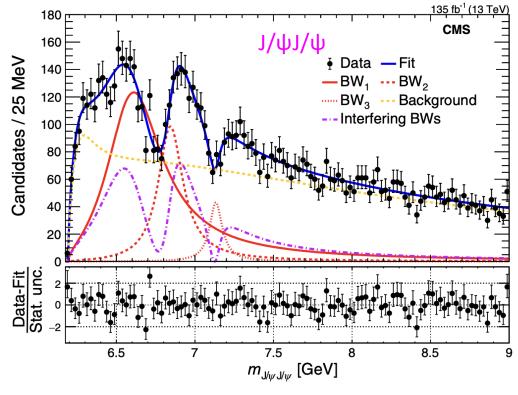


Parameter	Value
Mass of X(6900) (MeV) Width of X(6900) (MeV)	6836 ⁺¹⁹ ₋₁₅ 151 ⁺¹²² ₋₅₂

- NLL = -2040
- X(6900)
 - + NRSPS + DPS + Comb.
- Fit range: 6.6 -- 15 GeV

Independent Measurement


An independent measurement: 2BW (Interference) - X(6900)&X(7100)



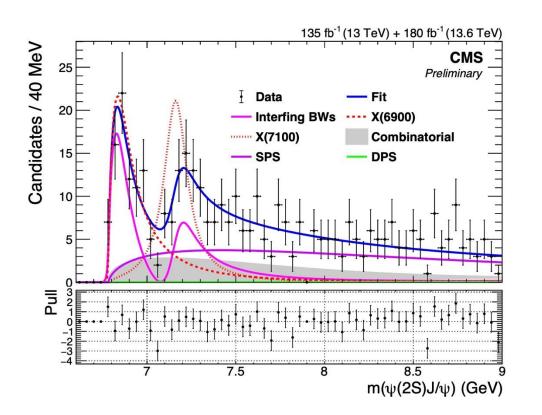
Parameter	Value
Mass of X6900 (MeV) Mass of X7100 (MeV) Width of X6900 (MeV) Width of X7100 (MeV)	6876_{-29}^{+46} 7169_{-52}^{+26} 253_{-101}^{+285} 154_{-82}^{+112}

- NLL = -2045.55
- Interfering X(6900) & X(7100)
 + NRSPS + DPS + Comb.
- Fit range : 6.6 -- 15 GeV

Comparison to J/ψJ/ψ analysis

Fit \	Sample	Interf.		X(6600)	X(6900)	X(7100)
f_{i23}	J/ψψ(2S)	BW ₂ , BW ₃	<i>m</i> :		6876 +46 +110 -29 -110	$7169 ^{+26}_{-52} ^{+74}_{-70}$
			Γ :		$253 \ ^{+290}_{-100} \ ^{+120}_{-120}$	$154 \ ^{+110}_{-82} \ ^{+140}_{-160}$
$f_{JJ}[1]$	$J/\psi J/\psi$	BW_1 , BW_2 , BW_3	m:	$6638 {}^{+43}_{-38-31} {}^{+16}_{-1}$	6847 +44 +48 -28 -20	$7134 {}^{+48}_{-25} {}^{+41}_{-15}$
(Run 2)			Γ :	$440 \ ^{+230}_{-200} \ ^{+110}_{-240}$	$191 {}^{+66}_{-49} {}^{+25}_{-17}$	$97 {}^{+40}_{-29} {}^{+29}_{-26}$
$f_{JJ}[2]$	$J/\psi J/\psi$	BW_1 , BW_2 , BW_3	m:	$6593~^{+15}_{-14}\pm25$	$6847 {}^{+10}_{-10} \pm 15$	$7173^{\ +9}_{\ -10}\pm 13$
(Run 2+Run 3)			Γ :	$446~^{+66}_{-54}\pm87$	$135^{+16}_{-14}\pm14$	73 $^{+18}_{-15}$ \pm 10

- Mass of both peaks consistent
- Width of both peaks consistent


Systematic uncertainties

- Do systematic for interference model with X(6900) & X(7100)
- Variations are below
 - ☐ Signal Shape
 - Default: BW function with L=0
 - Alternative:
 - L=1/2, d=2/3/4
 - Flatte
 - ☐ SPS shape
 - $func_{default}(SPS) \rightarrow func_{default}(DPS)$
 - ☐ DPS shape
 - $func_{default}(DPS) \rightarrow func_{default}(SPS)$
 - ☐ Combinatorial backgroud shape
 - Nine-tile -> sPlot

- Mass resolution
- Take extremes of mass resolution dependence
- **☐** Efficiency
- Increase/Decrease the weight of Run3 efficiency
- ☐ Add X(6600) tail
- X(6600) mass/width/coef fixed to J/ψJ/ψ fit values
- ☐ Fitter bias
- Toy MC

Results listed in PAS

• Significance of X(6900) / X(7100) : 8.1σ / 4.3σ

Fit \	Sample	Interf.	X(6600)		X(6900)	X(7100)
f_{i23}	J/ψψ(2S)	BW ₂ , BW ₃	<i>m</i> :	_	6876 +46 +110 -29 -110	$7169 {}^{+26}_{-52} {}^{+74}_{-70}$
			Γ :	_	$253 {}^{+290}_{-100} {}^{+120}_{-120}$	$154 {}^{+110}_{-82} {}^{+140}_{-160}$
$f_{JJ}[1]$	J/ψJ/ψ	BW_1 , BW_2 , BW_3	<i>m</i> :	$6638 {}^{+43}_{-38-31} {}^{+16}_{-1}$	$6847 {}^{+44}_{-28} {}^{+48}_{-20}$	$7134 {}^{+48}_{-25} {}^{+41}_{-15}$
(Run 2)			Γ :	$440\ ^{+230}_{-200}\ ^{+110}_{-240}$	$191 \ ^{+66}_{-49} \ ^{+25}_{-17}$	$97 {}^{+40}_{-29} {}^{+29}_{-26}$
$f_{JJ}[2]$	$J/\psi J/\psi$	BW_1 , BW_2 , BW_3	m:	$6593~^{+15}_{-14}\pm25$	$6847~^{+10}_{-10}\pm15$	$7173^{\ +9}_{\ -10}\pm 13$
(Run 2+Run 3)			Γ :	$446~^{+66}_{-54}\pm87$	$135~^{+16}_{-14}\pm14$	$73^{+18}_{-15}\pm 10$

Dominant sources	$M_{X(6900)}$	$\Gamma_{X(6900)}$	$M_{X(7100)}$	$\Gamma_{X(7100)}$
Signal shape	±29	±79	± 22	±131
NRSPS shape	± 14	± 54	± 14	± 29
Combinatorial background shape	±15	± 51	± 15	± 20
Mass resolution	±5	± 7	± 5	± 9
Efficiency	±7	± 27	± 7	± 10
Add X(6600) peak	± 104	± 14	± 61	± 31
Fitter bias	+9 -11	$^{+43}_{-37}$	$^{+29}_{-14}$	$^{0}_{-80}$
Total	+110	+120	+74	+140
iotai	-110	-120	-70	-160

➤ Alternatives with no significant changes are not listed in the table, such as DPS shape

Summary

• An excess observed in $\psi(2S)J/\psi$ channel [Significance: BW2 (8.1 σ), BW3 (4.3 σ)]

• Consistent with interfering X(6900) and X(7100) as observed in $J/\psi J/\psi$ analysis

Thank you!

Back up