

Search for high-mass resonances in $H/Z(bb)+\gamma$ final state with Run 2 data

LHC理论与实验联合研讨会--新粒子寻找 Sep. 13th, 2025

> <u>Dawei Fu</u> on behalf of PKU multiboson group

Motivation & introduction

- → Many BSM models are constrained by the di-boson resonance search
- → Published diboson resonance search in full Run 2:
 - \star X $\rightarrow \gamma \gamma$, VV, HH, VH, W γ except for the Z γ and H γ
- \rightarrow History of $Z\gamma$ and $H\gamma$ resonance search in CMS
 - X (spin-1) \rightarrow H $\gamma \rightarrow bb\gamma$, EXO-17-019, [13], with only 2016 data;
 - X (spin-0) \rightarrow Z $\gamma \rightarrow qq\gamma$, EXO-16-020, with 2015 data (PAS-only);
 - X (spin-0) \rightarrow Z $\gamma \rightarrow \ell\ell$, $qq\gamma$, EXO-17-005, with 2016 data;
 - X (spin-0) \rightarrow Z $\gamma \rightarrow \ell\ell\gamma$, EXO-16-019, with 2015–2016 and Run 1 data;
- → Strategy preview
 - Focus on H/Z(bb) channel for the large BRs and the same final state
 - With the advanced ML jet tagger to enhance sensitivity
 - Standard di-boson bump hunt

Signal topologies

- → Z'(spin-1) → $H(bb)+\gamma$:
 - Benchmark model from <u>Dobrescu et al. (2017)</u>.
 - Assumption: flavor universal vector coupling of Z' to quarks
 - Produced via fermion loop

- → S(spin-0) \rightarrow Z(bb)+ γ :
 - Search for Higgs-like scalar with SM-like couplings
 - Predicted in many models
 - Technicolor
 - little Higgs models
 - extended Higgs sectors
 - extra spatial dimensions

three widths $(\Gamma/m=0.014\,\%\,,\,5.6\,\%\,,\,10\%)$

Fat jet tagging

- → State-of-the-art ML jet tagger
 - Architeture: based on Particle Transformer (Qu et al., 2022)

- → Implementation in CMS: GloParT (v1: PAS-JME-25-001)
 - V2 is used in this analysis: Xbb tagger = Hbb vs. QCD for both H and Z jets

Triggers & datasets

→ Triggers:

- 2016: HLT_Photon165_HE10 | HLT_Photon175
- 2017 & 2018: HLT_Photon200
- \rightarrow Data: integrated lumi. = 138 fb⁻¹
 - 2016 & 2017: SinglePhoton
 - 2018: EGamma
 - HLT efficiency: SingleMuon

→ Signal MC

- Resonance mass points: from 700 to 3500 GeV with 15 points
- \Rightarrow Spin-1 $Z' \rightarrow H\gamma$: generated from the benchmark model and $\Gamma/m = 0.014 \%$
- $ightharpoonup
 m Spin-0~S
 ightharpoonup Z\gamma$: generated via pythia8 and $\Gamma/m = 0.014~\%$, 5.6~% , 10~%

→ Background MC

- \Leftrightarrow Prompt photon: QCD+ γ , Z+ γ , W+ γ , TT+ γ
- Non-prompt photon: QCD, Z, W, TT, Single Top

Objects & preselection

→ Photons

- Loose cut-based ID
- Electron veto (CSEV)

- → AK8 jets
 - PUPPI, tight Jet ID & tightLeptVeto
 - GloParT v2 tagging
 - Soft-drop mass for preselection
 - Regressed mass for SR binning
- → AK4 jets b———
 - CHS
 - DeepJet b tag @ medium WP
 - Exclusive b-veto: top rejection

→ Preselection

 \rightarrow

$$p_T^{\gamma} > 225 \text{ GeV}$$

$$|\eta_{\gamma}| \in [0, 1.4442) \cup (1, 556, 2.5)$$

$$N_{\gamma} = 1$$

 \rightarrow

*
$$p_T^j > 250 \text{ GeV}, |\eta_j| < 2.4$$

$$m_{SD}^{j} > 30 \text{ GeV}, N_{j} \ge 1$$

- H/Z candidate: leading Xbb score
- $\Delta R(\gamma, H/Z) > 1.1$

 \rightarrow

❖
$$\Delta$$
R(b, H/Z) > 1.2

$$N_b^{\text{exc.}} = 0$$

Kinematics at preselection & SR/CR definition

→ Agreement check on Data/MC at preselection

→ The definition of SR/CR and the acceptance x efficiency of SR

Fitting strategy

- ightharpoonup Unbinned parametric fitting on $m_{i\nu}$ ranging from 650 to 4000 GeV
- → Signal modeling
 - Fitted to MC in SR
 - Discrete mass points: from 700 to 3500 GeV with 15 points
 - Parametric funtion: double-sided crystal ball function
 - Singal interpolation on function parameters
 - Systematic uncertainties mainly on signal
- → Background modeling
 - Fitted to data in SR
 - Validated with data in CR
 - Discrete profiling with 6 candidate functions
 - The only systematic uncertainty: the function choice as the floating parameter

$$f\left(m; m_0, \sigma, \alpha_L, n_L, \alpha_R, n_R\right) = \begin{cases} A_L \cdot \left(B_L - \frac{m - m_0}{\sigma_L}\right)^{-nL}, & \text{for } \frac{m - m_0}{\sigma_L} < -\alpha_L \\ \exp\left(-\frac{1}{2} \cdot \left[\frac{m - m_0}{\sigma_L}\right]^2\right), & \text{for } \frac{m - m_0}{\sigma_L} \leq 0 \\ \exp\left(-\frac{1}{2} \cdot \left[\frac{m - m_0}{\sigma_R}\right]^2\right), & \text{for } \frac{m - m_0}{\sigma_R} \leq \alpha_R \\ A_R \cdot \left(B_R + \frac{m - m_0}{\sigma_R}\right)^{-nR}, & \text{otherwise,} \end{cases}$$

$$A_i = \left(\frac{n_i}{|\alpha_i|}\right)^{ni} \cdot \exp\left(-\frac{|\alpha_i|^2}{2}\right), \ B_i = \frac{n_i}{|\alpha_i|} - |\alpha_i|.$$

dijet2:
$$p_0 m^{p_1 + p_2 \log(m)}$$
;

dijet3:
$$p_0 m^{p_1 + p_2 \log(m) + p_3 \log^2(m)}$$
;
expow1: $p_0 m^{p_1}$;
expow2: $p_0 m^{p_1} e^{p_2 m}$;

expow1:
$$p_0 m^{p_1}$$
;

expow2:
$$p_0 m^{p_1} e^{p_2 m}$$
;

invpow2:
$$p_0(1+p_1m)^{p_2}$$
;

invpow2:
$$p_0(1+p_1m)^{p_2}$$
;
invpow3: $p_0(1+p_1m)^{p_2+p_3m}$.

Signal modeling: $Z' \rightarrow H\gamma$

→ Signal width $\Gamma/m = 0.01 \%$

Signal modeling: $S \rightarrow Z\gamma$

→ Signal width $\Gamma/m = 0.014 \%$

Dawei Fu

10

Signal modeling: $S \rightarrow Z\gamma$

→ Signal width $\Gamma/m = 5.6\%$

Signal modeling: $S \rightarrow Z\gamma$

→ Signal width $\Gamma/m = 10\%$

Background modeling: validation in CR

Background modeling: SR

→ Signals with the largest significances are shown

Systematic uncertainties

Uncertainty source	B or S	Effect on	Magnitude	Number of NPs & correlations
Background function choice	В	Shape	-	1 per SR, uncorr. across SRs
Photon ID SFs	S	Rate	4.4%	1, correlated across all SRs
Trigger selection SFs	S	Rate	1%	1, correlated across all SRs
Integrated luminosity	S	Rate	1.6%	1, correlated across all SRs
PU reweighting	S	Rate	1%	1, correlated across all SRs
PDFs	S	Rate	0.3-5.0%	1, correlated across all SRs *
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	$\mathcal S$	Rate	0.2–1.2%	1, correlated across all SRs *
Xbb tagger SF systematic	S	Rate	3–7%	2, uncorr. across SRs *
Xbb tagger SF statistical	S	Rate	<4%	6, uncorr. across years and SRs *
JES	S	Shape	0.7-4.0% on peak center	1, per data-taking year *
JER	S	Shape	0.5-4.0% on peak width	1, correlated across SRs *
PES	$\mathcal S$	Shape	0.3-0.7% on peak center	1, correlated across SRs
PER	S	Shape	0.3–0.8% on peak width	1, correlated across SRs

Results & interpretation

ightharpoonup Upper limits at 95% CL on $\sigma \cdot \mathrm{BR}$ under Asymptotic statistical method

→ Local significance

Observed significance

Expected significance

Summary & prospect

- \rightarrow Perfromed the search for diboson resonance $X \rightarrow H/Z\gamma$ with Run-2 data
 - Both the spin-1 (model-dependent) and spin-0 (model-independent) resonances are considered
 - With the same final states of $\gamma + j(bb)$
 - Adopted the same tagger for both H(bb) and Z(bb); outperformed the previous ones and greatly increase the sensitivity
 - Discrete profiling as a flexible background modeling and tractable for systematics
 - \diamond Set the most stringent limits up to date on $\sigma \cdot BR$ for both channels

→ Prospect on the resonance search

- Towards Run 3 and HL-LHC
 - Higher energy will broaden the upper bound of the search scope
 - High luminosity will enhance the sensitivity in the statistics-dominated (high-purity) regions

Towards AI era

- ► The successful jet tagger → the powerful event tagger?
- Achieve SOTA at the known channels + generalized to the unknown channels?