

Search for a top-philic heavy resonance produced in association with two top quarks

CMS China

13nd Sep.

Xiaonan Hou

Reproter: Yingqi Hou

Motivation to search for an heavy neutral resonance

- A heavy neutral resonance, Z', is common in many theories beyond the SM
 - Main production mechanism is through annihilation of qqbar pairs.
 - At the LHC this is mainly couplings to light-quarks
- A Z' has been extensively searched for at CMS and the LHC, setting strong limits on its existence up to several TeV
 - If couplings to light-quarks are suppressed and nature favors a Z' coupling to higher fermion generation (<u>D. Barbosa et al.</u>) at the LHC energies, it is possible for a Z' to manifest through unprecedented mechanisms and phase-space (<u>P.J. Fox et al.</u>)
 - Recent proposals for some new production mechanisms (<u>EXO-22-006</u>, <u>EXO-21-015</u>)
 - O In this analysis we consider the most extreme scenario of a top-philic Z', which leads to a 4th probe of investigation b-Quark Fusion VBF t-quark fusion

Top-philic Z' in a simplified model

From J.H. Kin et al.

- We consider a color singlet vector particle (V1) which couples to top and antitop.
- The relevant interaction is given by the following renormalization Lagrangian.

$$\mathcal{L}_{int} = \bar{t}\gamma_{\mu}(c_{L}P_{L} + c_{R}P_{R})tV_{1}^{\mu} = c_{t}\bar{t}\gamma_{\mu}(cos\theta P_{L} + sin\theta P_{R})tV_{1}^{\mu}$$

$$P_{R/L} = (1 \pm \gamma_{5})/2 \text{ is projection operators}$$

$$c_{t} = \sqrt{(c_{L})^{2} + (c_{R})^{2}} \text{ is coupling of vector singlet with top quarks}$$

$$tan\theta = c_{R}/c_{L} \text{ tangent of the chirality angle}$$

- There are three free parameters:
 - The V1 mass
 - The V1 coupling to top (Ct)
 - \circ The V1 chirality (θ)
- Different production mechanisms dominates based on different chirality values

Refer to paper arXiv:1604.07421

Production modes

• There are two ways to produce a top-philic resonance at the LHC: at tree level and one loop.

Loop level

chirality	Physics case	Experimental effect
0	Pure left-handed interaction	Largest xSec for tWb processes at higher masses
pi/2	Pure right-handed interaction	Smallest xSec for tWb processes
pi/4	No axial component in Z'	No Z'+j from quark-initiated
pi 3/4	Axial coupling	Max xSec for loop-induced (tt and Z'+j) production

- We rely on the <u>Top-philic-Zprime</u> UFO model
- We consider
 - θ = pi/4 and we focus on tree level processes (complementary to <u>HIG-22-013</u>)
 - \circ the ttZ' process, as its production cross-section is independent from θ

Analysis strategy: single-lepton final state

Possible to cover a vast experimental phase space

	O t _{had}	1 † _{had}	2 t _{had}	3 t _{had}	4 † _{had}
0 lep				tjZ' or tWZ'	††Z'
1 lep			tjZ' or tWZ'	ttZ')pr tWZ'	
2 lep		tjZ' or tWZ'	ttZ' or tWZ'		→ Our search!
3 lep	tjZ' or tWZ'	ttZ' or tWZ'			
4 lep	ttZ' or tWZ'				

- In this analysis we cover the single lepton (electron, muon) final state:
 - o mitigate the QCD multijet background and trigger events with a relatively low transverse momentum threshold
- Another team from DESY works on the di-lepton final state

Analysis strategy: samples and datasets

- Single lepton datasets with a luminosity of Full Run2 (138 fb⁻¹)
- Background samples:
 - tt (tt_hadronic, tt_semi-leptonic, tt_di-leptonic)
 - other top bkg (ttt/tttW, tt + V/VV, single-top, tZq, t+V/VV)
 - 0 | |
 - o non top bkg (V/VV/VV/DY jets)
- Signal samples:
 - We have 4 different widths for each mass point: 4%, 10%, 20%, 50%.
 - Z' mass varies as follows:
 - From 500 to 2000 GeV in steps of 250 GeV
 - From 2000 to 3000 GeV in steps of 500 GeV
 - From 3000 to 4000 GeV in a step of 1000 GeV
 - \circ In total we have 40 samples (10 masses x 4 widths)

Analysis strategy: signal selections

- triggers and lepton selection:
 - o 1 tight muon with 0 extra loose leptons
 - 1 tight electron with 0 extra loose leptons

Year	Channel	Trigger
2018	muon	HLT_IsoMu24
2010	muon	HLT_IsoTkMu24
2017	muon	HLT_IsoMu27
2016	muon	HLT_IsoMu24
2010	muon	HLT_IsoTkMu24
2018	electron	HLT_Ele32_WPTight_Gsf
2017	electron	HLT_Ele32_WPTight_Gsf_L1DoubleEG with hltEGL1SingleEGOrFilter
2016	electron	HLT_Ele25_eta2p1_WPTight_Gsf

official corrections applied, <u>link</u>, <u>link</u>, <u>link</u>, <u>link</u>, <u>link</u>

- HT > 700 GeV (HT = the sum of the pT of all AK4 jets)
- MET_pT > 60 GeV with the Noise Filters (official recommendations <u>link</u>, <u>link</u>)
- ≥6 AK4 jets
- ≥ 2 boosted tops (AK8 jet with ParticleNet Medium ID and official corrections link)
- ≥ 1 loose b-jet (DeepJet, official corrections <u>link</u>, <u>link</u>)

Selection similar to <u>4 tops single lepton analysis</u> except that we sought more stringent requirement on the N jets and HT and the presence of two boosted top quarks, because we are specifically interested on a Z' boson with high mass

Signal region distribution

Signal Region plot

Background completely dominated by top events, non top background minor

Background estimation (1)

• Find a region close to the phase space of the search region, but orthogonal to it and with negligible signal

Signal Region	Control Region
Exactly 1 lepton	Exactly 1 lepton
HLT	HLT
Noise filters	Noise filters
$HT > 700 \mathrm{GeV}$	HT > 700GeV
$MET_{p_{\mathrm{T}}} > 60\mathrm{GeV}$	$MET_{p_{\mathrm{T}}} > 60\mathrm{GeV}$
Number of jets≥6	Number of jets≥6
\geq 2 boosted tops && \geq 1 loose b jets.	≥2 boosted tops && <1 loose b jet

• Efficiency comparison for signal samples

Efficiency		SR		CR	
Mass 500 GeV, width 4%		0.15070%		0.02310%	
Mass 3000 6	∂eV, wic	dth 4%	2.48830%		0.22740%

Signal is about a factor of 10 less in the CR

-> SR+CR simultaneous fit

Background estimation (2)

Background composition in SR and CR

BKG samples	tt	other top (ttt, tt+V/VV, single top)	tttt	Non top (V/VV/VVV/DY)
signal region	74.74%	20.72%	3.99%	0.55%
control region	67.86%	30.48%	0.51%	1.15%

Shape distribution comparison

Good consistency is found!

- -> Use rate parameter and scale all the background samples of each year
- -> This normalization scale factor will be applied in the simultaneous fit with SR and CR together.

Background estimation (3)

Post-fit results in CR

Systematic uncertainties

Summary for all the systematics included

systematics	type	2016	2017	2018	process	year correlation
PDF	shape	√	√	√	sig+bkg	correlated
QCDScale_sig	shape	√	√	√	sig	correlated
QCDScale_tttt	shape	√	√	√	tttt	correlated
QCDScale_ttbar	shape	√	√	√	tŧ	correlated
QCDScale_otherTop	shape	V	√	√	otherTopBkg	correlated
QCDScale_VX	shape	√	√	1	nonTopBkg	correlated
Trigger	norm+shape	√	√	V	sig+bkg	partial correlated
lepton	norm+shape	√	√	~	sig+bkg	correlated
pile-up	norm+shape	V	V	✓	sig+bkg	correlated
Prefiring	norm+shape	✓	V	✓	sig+bkg	uncorrelated
Jet resolution	norm+shape	✓	V	V	sig+bkg	uncorrelated
Jet scale	norm+shape	√	1	~	sig+bkg	uncorrelated
b-tag_light_corr	norm+shape	√	1	✓	sig+bkg	correlated
b-tag_bc_corr	norm+shape		V	√	sig+bkg	correlated
b-tag_bc	norm+shape	~	V	√	sig+bkg	uncorrelated
b-tag_light	norm+shape	~	1	√	sig+bkg	uncorrelated
boosted top	norm+shape	1	√	√	sig+bkg	uncorrelated
MET uncluster	norm+shape	√	√	√	sig+bkg	uncorrelated
Lumi_Corr	norm	0.6%	0.9%	2.0%	sig+bkg	correlated
Lumi_UnCorr	norm	1.0%	2.0%	1.5%	sig+bkg	uncorrelated
Lumi_Corre_1718	norm	-	0.6%	0.2%	sig+bkg	correlated

All systematics are derived from official recommendations

Observed upper limits and comparison with ATLAS

Observed upper limits

Observed upper limit on $\sigma(pp \to tt Z')$ as a function to Z' mass for all the width

Summary

- We have presented an analysis for a search of a top-philic Z' produced with and decaying to 2 tops (4 top quarks in total). We use the Run 2 dataset.
- We focus on the single lepton (electron or muon) final state
- First search at CMS (together with the dilepton final state)
- Significant Z'-top quark mass splitting resulting in a boosted top quark
 - use of dedicated machine learning algorithm, crucial for the signal sensitivity
- Highest sensitivity at LHC, improving upon ATLAS's results and expanding the search down to 500 GeV
- We are now PAS-PUB
- Target journal: JHEP

Back up

Analysis strategy: object definition

- Objects definition relies on the official recommendations
 - Muon:
 - |n| < 2.4, Dxy < 0.2, Dz < 0.5

 - Loose: cutbase loose with Iso< 0.25, pT > 15 GeV
 Tight: cutbased tight with Iso < 0.15, pT > 26 GeV (29 GeV for 2017)
 - Official corrections link, link, link
 - Electron:
 - $|\eta| < 2.5, 1.4442 < |\eta| < 1.566$ is removed
 - Loose: MVA WP90Iso ID, pT > 15 GeV
 - Tight: MVA WP80Iso ID, pT > 33 GeV (26 GeV for 2016)
 - official corrections link
 - AK8 jets:
 - pT > 300 GeV, $|\eta| < 2.4$, overlap removal with leptons
 - AK4 jets:
 - $pT \ge 30 \text{ GeV}$, $|\eta| < 2.5$ (2.4 for 2016), overlap removal with leptons and AK8 jets
 - latest JEC and JER included link

Signal region distribution

- Signal Region efficiency table
 - Cumulative efficiency for 2018, results are in percentage

Selection	$ttZ' (m_{Z'} = 500 \text{ GeV}, \Gamma/m = 4\%) \text{ (mu)}$	$ttZ' (m_{Z'} = 3 \text{ TeV}, \Gamma/m = 4\%) \text{ (mu)}$	ttZ' $(m_{Z'} = 500 \ GeV, \Gamma/m = 4\%)$ (e)	$ttZ' (m_{Z'} = 3 \text{ TeV}, \Gamma/m = 4\%) (e)$
Ini evt	100.000±0.000	100.000±0.000	100.000±0.000	100.000±0.000
exactly 1 lepton	15.115±0.036	13.113±0.034	11.271 ± 0.032	10.304±0.030
HLT	13.809±0.035	11.890±0.032	9.751±0.030	8.723±0.028
Noise Filter	13.788±0.034	11.751±0.032	9.733±0.030	8.629±0.028
HT > 700 GeV	9.130±0.029	11.648 ± 0.032	6.570 ± 0.025	8.549±0.028
MET > 60 GeV	6.696±0.025	10.523±0.031	4.792 ± 0.021	7.693±0.027
number of jets ≥ 6	6.385±0.024	9.468±0.029	4.558 ± 0.021	6.909±0.025
\geq 2 boosted tops, \geq 1 b - tagged jets	0.151±0.004	2.488 ± 0.016	0.102 ± 0.003	1.781±0.013

Relative efficiency for 2018, results are in percentage

Selection	$ttZ' (m_{Z'} = 500 \ GeV, \Gamma/m = 4\%) (mu)$	$ttZ'(m_{Z'} = 3 \text{ TeV}, \Gamma/m = 4\%) \text{ (mu)}$	$ttZ' (m_{Z'} = 500 \text{ GeV}, \Gamma/m = 4\%) (e)$	$ttZ'(m_{Z'} = 3 \text{ TeV}, \Gamma/m = 4\%)$ (e)
Ini evt	100.000±0.000	1100.000±0.000	100.000±0.000	100.000±0.000
exactly 1 lepton	15.115±0.036	13.113±0.034	11.271±0.032	10.304±0.030
HLT	91.360±0.072	90.673±0.080	86.512±0.102	84.657±0.112
Noise Filters	99.844±0.011	98.830±0.031	99.818±0.014	98.926±0.035
HT > 700 GeV	66.221±0.127	99.128±0.027	67.497±0.150	99.075±0.033
MET > 60 GeV	73.337±0.146	90.339±0.087	72.944±0.173	89.981±0.103
number of jets ≥ 6	95.358±0.081	89.978±0.093	95.117±0.098	89.808±0.109
\geq 2 boosted tops, \geq 1 b – tagged jets	2.412±0.061	27.891±0.146	2.288±0.070	27.383±0.170

- Single lepton selection includes 4 top branching ratio to 1 lepton
- Cumulative efficiency higher at higher masses because of enhanced efficiency in selecting boosted tops

Background estimation

Data to background simulation modeling in CR:

- Use rate parameter and scale all the background samples of each year
 - This normalization scale factor will be applied in the simultaneous fit with SR and CR together.

Observed limits

Observed limits per year per channel

Impacts

Low mass point of 500 GeV

High mass point of 2 TeV

- QCD scale has a big impact and also observed this situation in ttbar resonance search (<u>link</u>)
- Background normalization plays an important role in our analysis

event categorization

>=2 boosted tops category

>= 1 loose b jets can keep most of the signal samples

cross triggers study (1)

 please provide more detailed cut-flow information on how you estimated trigger improvement from including HT HLT path

The same cross triggers with 4top analysis: (single lepton + HT triggers)

Year	Electron	Muon	
2016	HLT_Ele32_eta2p1_WPTight_Gsf_v*	HLT_IsoMu24_v* HLT_IsoTkMu24_v*	TOP-21-005
2017	HLT_Ele15_IsoVVVL_PFHT450_v* HLT_Ele50_IsoVVVL_PFHT450_v* HLT_Ele15_IsoVVVL_PFHT600_v* HLT_Ele35_WPTight_Gsf_v* HLT_Ele38_WPTight_Gsf_v*	HLT_Mu15_IsoVVVL_PFHT450_v* HLT_Mu50_IsoVVVL_PFHT450_v* HLT_Mu15_IsoVVVL_PFHT600_v* HLT_Mu50_v*	
2018	HLT_Ele15_IsoVVVL_PFHT450_v* HLT_Ele50_IsoVVVL_PFHT450_v* HLT_Ele15_IsoVVVL_PFHT600_v* HLT_Ele15_IsoVVVL_PFHT450_PFMET50_v* HLT_Ele35_WPTight_Gsf_v* HLT_Ele38_WPTight_Gsf_v*	HLT_Mu15_IsoVVVL_PFHT450_v* HLT_Mu50_IsoVVVL_PFHT450_v* HLT_Mu15_IsoVVVL_PFHT600_v* HLT_Mu15_IsoVVVL_PFHT450_PFMET50_v* HLT_Mu50_v* HLT_TkMu50_v*	<u>Detailed contents</u>

also keep the same lepton definition with 4top analysis for this test (mini-isolation)

cross triggers study (2)

• Efficiency comparison (2018 muon channel) (Relative eff.)

official single lepton triggers

Selection	$ttZ' (m_{Z'} = 500 GeV, \Gamma/m = 4\%) (mu)$		
Ini evt	100.00000±0.00000		
exactly 1 lepton	15.11530±0.03582		
HLT	91.35975±0.07227		
Noise Filters	99.84358±0.01063		
HT > 700 GeV	66.22062±0.12737		
MET > 60 GeV	73.33713±0.14634		
number of jets ≥ 6	95.35835±0.08130		
\geq 2 boosted tops, \geq 1 b - tagged jets	2.41187 ± 0.06071		
ST > 200 GeV	100.00000 ± 0.00000		

cross triggers

Selection	TTZprime_M500W4
Ini evt	100.00000±0.00000
exactly 1 lepton	18.58370 ± 0.03890
HLT	93.54111 ± 0.05702
HT > 700	69.21201 ± 0.11072
$MET_{Pt} > 60$	72.29749 ± 0.12902
number of jets >= 6	94.93125 ± 0.07438
>= 2boosted tops, >= 1b - tagged jets	2.50023 ± 0.06183
ST > 200 GeV	100.00000 ± 0.00000

Efficiency not improve so much. Cross triggers don't have official SFs

Category study (1)

Event categorization

1 boosted top category:

13 TeV

num BJets T

CMS Simulation

₽ 0.16

0.14

0.12

0.08

0.06

0.04 0.02

0.1

>= 2 loose b jets, >= 1 medium b jets

>= 3 loose b jets, >= 2 medium b jets, >=

1 tight b jets

>= 2 poosted tops category: ***

>= 1 loose b jets

Category study (2)

Limit results:

O boosted top category

1 boosted top category

>= 2 boosted tops category

>= 2 boosted tops category drives our sensitivity Other 2 categories didn't contribute too much

Fake Top Study (1)

- Cross check for the rate parameter origin
 - -> mismodeling of the fake top tagging efficiency for particleNet algorithm
- Add a new shape uncertainty that scales to the number of fake tops in the event
 - o applied to every process including signal
 - o set a 40% uncertainty for each fake top (slightly higher than a typical uncertainty on fake objects around 20% to 30%)
- Limit results:

Quite similar with our rate-param-based modeling

Thanks to our ARC!

Fake Top Study (2)

Comparison for Full Run2:

Goodness of Fit

Impacts plot for mass 500 GeV

Statistical tests are fine and similar with using rate-para-based modeling

Fake Top Study (3)

• Post-fit results comparison:

Post-fit background shapes and normalizations are compatible between the two methods -> This test validate the used methods

Statistical tests (1)

Nuisance parameter pull tests:

Mass 500 GeV

Mass 3 TeV

Statistical tests (2)

• Templates for some variables which have high impacts:

signal mass 500 GeV

all the background

data + up/down from all the bkg

CR

Statistical tests (3)

• Templates for some variables which have high impacts:

QCD Scale for ttbar

e for ttbar

nominal

QCDScale up

QCDScale down

QCD Scale for other tops

45 — nominal — QCDScale_up — QCDScale_down
35 — 30 — 25 — 10 — 5 — 10 — 5

QCD Scale for signal

Statistical tests (4)

• Goodness of Fit:

Mass 1 TeV

Mass 3 TeV

Statistical tests (5)

Signal injection tests: Mass 500 GeV

r = lower, median, upper limits

Signal efficiency

Selection	TTZprime_M500W4	TTZprime_M500W10	TTZprime_M500W20	TTZprime_M500W50
Ini evt	100.00000±0.00000	100.00000 ± 0.00000	100.00000 ± 0.00000	100.00000 ± 0.00000
1 lepton (with HLT)	13.80982±0.03450	13.78525 ± 0.03447	13.79638 ± 0.03449	13.80672 ± 0.03450
MET requirement	10.06874 ± 0.03009	10.07119 ± 0.03009	10.09001 ± 0.03012	10.16014 ± 0.03021
$number\ of\ jets>=6$	8.82655 ± 0.02837	$8.82040{\pm}0.02836$	8.86322 ± 0.02842	8.94735 ± 0.02854
HT > 700	6.39016 ± 0.02446	6.37353 ± 0.02443	6.48784 ± 0.02463	$6.72286{\pm}0.02504$
>= 1 b jets	6.35336 ± 0.02439	6.33713 ± 0.02436	6.45014 ± 0.02456	6.67936 ± 0.02497
>= 2 boosted tops	0.15140 ± 0.00389	0.16710 ± 0.00408	0.15910 ± 0.00399	0.20990 ± 0.00458

Selection	TTZprime_M3000W4	TTZprime_M3000W10	TTZprime_M3000W20	TTZprime_M3000W50
Ini evt	100.00000 ± 0.00000	100.00000 ± 0.00000	100.00000 ± 0.00000	100.00000 ± 0.00000
1 lepton (with HLT)	11.89008 ± 0.03237	13.03830 ± 0.03369	13.36039 ± 0.03402	13.67123 ± 0.03437
MET requirement	10.60508 ± 0.03079	10.86023 ± 0.03113	10.94509 ± 0.03122	11.05953 ± 0.03138
$number\ of\ jets>=6$	9.51518 ± 0.02934	9.79266 ± 0.02974	9.90279 ± 0.02987	10.02980 ± 0.03005
HT > 700	9.46668 ± 0.02928	9.12970 ± 0.02882	9.10369 ± 0.02877	9.08936 ± 0.02876
>= 1 b jets	9.20018 ± 0.02890	8.96554 ± 0.02858	8.96129 ± 0.02856	8.96063 ± 0.02858
>= 2 boosted tops	2.48680 ± 0.01557	1.47297 ± 0.01205	1.23760 ± 0.01106	1.02983 ± 0.01010

CMS Simulation	2018
electron channel	Width 4% Width 10% Width 20% Width 50%
1.5	
500 1000 1500 2000 2500	3000 m_Z [GeV]

Selection	TTZprime_M500W4	TTZprime_M500W10	TTZprime_M500W20	TTZprime_M500W50
Ini evt	100.00000 ± 0.00000	100.00000 ± 0.00000	100.00000 ± 0.00000	100.00000 ± 0.00000
1 lepton (with HLT)	9.75092 ± 0.02966	9.66479 ± 0.02955	9.66765 ± 0.02955	9.71305 ± 0.02961
MET requirement	7.07257 ± 0.02564	7.01618 ± 0.02554	7.03292 ± 0.02557	7.10672 ± 0.02569
$number\ of\ jets>=6$	6.18689 ± 0.02409	6.13210 ± 0.02399	6.14474 ± 0.02401	6.23834 ± 0.02418
HT > 700	4.55472 ± 0.02085	4.56935 ± 0.02088	4.60378 ± 0.02096	4.78898 ± 0.02135
$>= 1 \ b \ jets$	4.52892 ± 0.02079	4.54225 ± 0.02082	4.57518 ± 0.02089	4.75878 ± 0.02129
>= 2 boosted tops	0.10200 ± 0.00319	0.11470 ± 0.00338	0.11790 ± 0.00343	0.13480 ± 0.00367

Selection	TTZprime_M3000W4	TTZprime_M3000W10	TTZprime_M3000W20	TTZprime_M500W50
Ini evt	100.00000 ± 0.00000	100.00000 ± 0.00000	100.00000 ± 0.00000	100.00000 ± 0.00000
1 lepton (with HLT)	8.72243 ± 0.02822	9.49921 ± 0.02933	9.71420 ± 0.02961	9.83074 ± 0.02979
MET requirement	7.75944 ± 0.02675	7.89744 ± 0.02698	7.94703 ± 0.02705	7.91518 ± 0.02701
$number\ of\ jets>=6$	6.94836 ± 0.02543	7.11187 ± 0.02571	7.17875 ± 0.02581	7.15914 ± 0.02579
HT > 700	6.91026 ± 0.02536	6.67784 ± 0.02498	6.65546 ± 0.02492	6.53204 ± 0.02472
>= 1 b jets	6.70677 ± 0.02501	6.54581 ± 0.02475	6.54106 ± 0.02472	6.43855 ± 0.02456
>= 2 boosted tops	1.78246 ± 0.01323	1.06645 ± 0.01028	0.90668 ± 0.00948	0.71880 ± 0.00845