

Search for the production of an excited bottom quark decaying to tW in proton-proton collisions at

$$\sqrt{s} = 13.6$$
TeV

Baorui Hou, Huaqiao Zhang

Institute of High Energy Physics Sep 13, 2025

houbr@ihep.ac.cn

OutLine

- Introduction
- Run2 Results Overview
- Run3 New
- Run3 Results
- Summary

Introduction

• In LHC, b* can be produced in g+b by strong interaction:

$$\mathscr{L} = \frac{g_s}{2\Lambda} G_{\mu,\nu} \bar{b} \sigma^{\mu,\nu} (\kappa_L^b P_L + \kappa_R^b P_R) b^* + h.c$$

And decays via tW by the weak interaction:

$$\mathcal{L} = \frac{g_2}{\sqrt{2}} W_{\mu}^{\dagger} \bar{t} \gamma^{\mu} (g_L P_L + g_R P_R) b^* + h.c$$

• tW channel dominates when $M_{b^{st}}$ > 400GeV. 3 final states:

All hadronic^[1]

Leptonic top + Hadronic W^[2]

Run2 Results Overview

- Existing Run2 results:
- b* search in full hadronic final state at 13 TeV in CMS, B2G-19-003.
- b* search in lepton + jet channel at 13TeV in CMS, B2G-20-010.
- b* search in tW channel at 13TeV in CMS, B2G-21-005.
- B2G-19-003 and B2G-20-010 had been combined in Run2.

Mass limits [TeV]						
	Median expected		Observed			
Chirality	l+jets	all-hadronic	combination			
LH	2.95	2.95	3.09	2.95		
RH	3.02	3.02	3.17	3.03		
VL	3.22	3.28	3.43	3.22		

• B2G-21-005:

Limit (TeV)	LH	RH	VL
Observed	2.3	2.7	3.1
Expected	2.3	2.4	2.9

Run3 Overview

•We choose leptonic top + hadronic W as our final state.

Final state:

high pt Top: lepton, neutrino and b jet + Boosted W jet.

•Advantage of this final state:

Only one lepton: easy to trigger, efficiency is known

Leptonic Top and hadronic W: we can obtain invariant mass of b*(only 1 neutrino)

- •Run3 update: preselections(b tag and W tag method, See back up), using machine learning(planned).
- •Run3 status:
- ★ MC signal samples(b*->tW @13.6 TeV, 1.2TeV-4.2TeV) have been produced successfully.
- → Data/MC in preselection region and TTCR looks fine.
- > Set expected limit with 13.6 TeV b* signal.
- Working on applying corrections and systematics.

Run3 Analysis Strategy

- ▶SR definition: ✓
 - Cut optimization performed in preselection region to improve limit sensitivity.
 - ▶Additional MET and AK8 jet pT selections are used to defined two SRs:
 - hdchosen by compromise between the expected sensitivity and M_{tW} distribution statistical precision.
- $\triangleright t\bar{t}$ template take from MC, the uncertainties will be constrained by simultaneous fit to $t\bar{t}$ CR and SRs.
- ▶QCD background will be predicted from data driven(ABCD method): both shape and normalization. ✓
- ▶The other backgrounds are predicted from MC directly. ✓
- ▶Using ML to enhance the separation between signal and background(Planned). NEW
- ▶Fit high/low mass SR, QCD CRs and TTCR simultaneously(Future).
- ▶Use asymptotic CLs method to set limit. (combine tool) ✓

Run3 Early Results

- Search b* on M_{tW} distribution. Combine High/Low mass SRs and Ele/Mu channels.
- Use asymptotic CLs method to set limit (combine tool).

• The expected mass exclusion limits on a b* decaying to tW are 2.9 TeV (LH), 3.0 TeV (RH), 3.3 TeV (Vector -like).

Summary

- Search for b* decaying to tW in leptonic top channel using Run3 data.
 - Analyzing 2022PostEE data now.
 - Working on applying corrections and systematics.
 - Set expected limit with 13.6TeV b* signal.
- An optimistic Timeline:
 - End of September: We hope all the necessary corrections will be in place.
 - End of October: We aim to have all the systematics fully implemented and all data included
 - Mid December: Draft version of the AN may be ready for review.
 - Next January: We aim to give an engaging and informative CADI talk.
 - April of 2026: We hope to get pre-approval.
 - We hope to get approval before 2026.10.

Back up: Run3 Preselections

- Muon Trigger:
 HLT_Mu50 || HLT_CascadeMu100 || HLT_HighPtTkMu100
- Electron Trigger: HLT_Ele115_CaloIdVT_GsfTrkIdT || HLT_Ele30_WPTight_Gsf
 || HLT_Photon200

•Exactly one lepton:

- ©2D cut: $\Delta R(ak4jet, lepton) > 0.4$ or $p_T^{rel} > 15GeV$
- Muon ID: Tight ID
- Electron ID: Electron_mvaNolso_WP90 NEW Ele ID

•At least one b-tagged AK4 jet:

NEW btag method

- Medium WP of the robustParticleTransformer b Tagging
- Jet VetoMaps applied

Exactly one W-tagged AK8 jet:

 \odot pT > 200 GeV, $\left|\eta\right|$ < 2.4

NEW W tag method

- Medium WP of the paticleNet W tagger
- $\Delta R(AK4jet, AK8jet) > 0.8$

Reconstruction

Top: b-jet + lepton + neutrino(MET)

W: FatJet

• For $p_z(\nu)$:

Assume leptonic W is onshell, $p_z(\nu)$ can be obtained by solving quadratic equation:

- 0 real solution: $p_z(\nu)$ = real part of the solution
- 2 real solution: $p_z(\nu)$ = solution closest to $p_z(lepton)$
- For multiple b-jets candidates: The reconstructed top mass is closest to 172.5GeV is chosen.

QCD estimation(ABCD method)

- ▶Splitting phase space by 2 uncorrelated observables:
 - ▶Muon: pN Wtagger and 2D cut (not optimal for electron channel due to electron have isolation in trigger).
 - ightharpoonup Electron: pN Wtagger and N_{bjet} ;
- SR can be evaluated as: $N_B = (N_A/N_C) * N_D . N_i = Data nonQCDMC(i = A, C, D)$.
- **▶QCD** shape: Do ABCD method for each MtW bin.

Back up

- b* -> tW XS comparison.
- XS values from MadGraph5.

