# Operation of Belle II drift chamber at B-factory

Nanae Taniguchi (KEK IPNS)
Belle II collaboration

## SuperKEKB · Belle II





 Asymmetry energy, electron (7 GeV) positron (4 GeV) collider at Y(4S) mass

- circumference ~ 3km
- target luminosity = 6x10<sup>35</sup>/cm-2/s-1



## Belle II physics program

 Belle (1999 - 2010): was constructed to substantiate KM model (~1/ab) achieved!!

 Belle II (2018 - ): is designed to find new physics beyond KM model (~50/ab)

beyond KM model (~50/ab) Belle La Contribute in many sectors, Dalitz analy Measurements B, charm, tau, dark, hadron Vtd/Vts from penguins Time Dependent Measurements w physics phases in b->s: B->phi Ks, B->eta' Ks Belle II Data >K pi, pi pi Direct CPV, isospin sum rules Tau Spectral Fund New charmed resonances

### Operation Timeline

- 2018; first collision event
- 2019; physics run started
- 2020; updated luminosity record by KEKB (2x10<sup>34</sup>)
- 2022; 4.7×10<sup>34</sup>
- 2022; 424/fb
  - ~1/2 of Belle-1
- long shutdown (LS-I)
  - new collimator
  - installation of full-layer pixel detector
- 2024; Run 2 start
- 2024; 5.2x10<sup>34</sup> (Belle II OFF)





#### Belle II detector

KL and muon detector resistive plate counter (barrel) scintillator+WLSF+MPPC (endcaps)



challenge! preserve detector performance while luminosity (beam background) increases

Belle II Central Drift Chamber



- Role of charged particle tracker of Belle II
  - momentum measurement
    - magnetic field = 1.5T
  - dEdx measurement for particle identification
  - track trigger
- CDC = Central Drift Chamber
  - wire
    - sense x 14336; Au-W (φ30um)
    - field x 42240; AI (φ126um)
  - gas
    - He:ethane = 50:50



#### low material







Au-W of  $\phi$  30um; x14336

Al of  $\phi$  126um; x 42240

Gas; He:ethane (50:50)

Aluminum endplate

Carbon Fiber Reinforced Plastics (CFRP)

## cell configuration









radius [mm]

- 56 layers in total
  - radius of innermost/outermost = sense wire
     168/1111.4 mm
- 'super layer' structure
  - 5-axial super layers and 4-stereo super layers
    - stereo (+/-)45 ~ 74
  - innermost super layer = small cell (2+6 layers)
- 6 layer/super-layer; it is required by track trigger (CDCTRG)

## signal readout electronics





- The number of signals = 14336
- FPGA-based front-end electronics
  - TDC with 1 nsec resolution for drift time measurement
  - ADC with 32MHz sampling for dEdx (charge) measurement
  - 48ch/board
- upgrade of readout board is ongoing
  - to improve radiation tolerance, cross talk, ..

## signal readout electronics



- readout board is located in detector
  - BWD side. direction of lower energy beam (positron)
- power consumption 15W x 299 ~
   4.5kW
  - water cooling
  - as firmware has been updated to implement additional functions, power consumption has become larger



意気ファンヒーター TEH-50

## gas system



- it is key for stable operation and performance
- keep absolute pressure constant ~1026 mbar to keep gas gain stable
- gas circulating (6-9 lit/min)
  - O2/H2O are removed and monitored in the circulation line
  - O2; electro-negative. capture electron created via ionization → gain degradation

## gas condition

much O2 content due to trouble, O2 contamination became large..



(less O2 content)

effort for removing O2 by O2 filter

## operation in beam

#### B decay event



## Belle II Central Drift Chamber construction and operation

- 2009~2011 design, started machining
- 2012 started wire stringing
- 2014 finished wire stringing
- 2016 installation of CDC into Belle structure
- 2017 commissioning using cosmic ray (w/ and w/o B field)
- 2018 the first collision
  - leak current increasing in outermost layers
- 2019 physics run started
  - started to add water in gas mixture
  - started to see gain degradation due to much water and high background
- 2024 leak current blow-up in innermost layers

## operation history



### chamber current v.s. beam currents



- Beam background still fluctuates largely due to accelerator tuning.
- Strongly dependent on accelerator parameters and collimator settings
- It also affects detector performance and introduces large uncertainties in future prospects.

#### CDC dEdx: rungain trend (e7 → e18)



The main cause of the initial gain drop was the injection of a large amount of water into the gas, due to improper monitoring of the water content.

FIG. 5. dE/dx gain vs. experiment number for proc13 data.

CDC dEdx: rungain trend (e20→ e26)



FIG. 6. dE/dx gain vs. data bucket for prompt calibration data.

Based on the consumption rate of the bubbler water, the water content is estimated to have reached the order of more than 1%.

## gain v.s. chamber current



- In the long shutdown after the 2022 run, we improved the gas system and enhanced monitoring/control of water content. This allowed clearer observation of the correlation between detector performance and background.
- In the spring 2024 data, due to troubles with the oxygen filter, the oxygen level was not sufficiently controlled, which appeared as overall gain variations.

## time dependent gain drop

 SuperKEKB requires frequent top-up injections even during physics runs



#### Leak current of L4-3



#### LER injection background is high



## CDC leak current blow-up Oct. 29, 2024

- leak current of innermost layers in sector-3 increased and was persistent high
  - I layer is divided to 4 sectors
- leak current doesn't exceed the limit (140~160uA) determined by current limiter module to avoid HV trip at beam injection
- usually, duration monitor, running at cdchv server, prevent such persistent current. however, it was off at the beginning of 2024c for tuning.
  - emergency trip signal is sent to the corresponding channel





## gas condition

- When we encountered HV trouble at the end of Oct., both Oxygen and water content were low.
- To mitigate discharge (incl. Malter effect), we increased water content by adding water and stopped to remove Oxygen by switching off O2 filter(trap)
  - remarks; operation voltage for sector-3 in Layer-0,1 and 2 was lower after the trouble
- Oxygen content increase by 20-30ppm/day from air w/o beam, but it start to decrease once CDC leak current is induced by beam



## aging effect due to accumulated charge







#### cosmic run (w/o beam)



- accumulated charge of inner layer has reached ~150mC/cm
- In the beam runs, a gain drop of 10–15% was observed, while in the cosmic-ray data without beam, no significant gain drop was seen
  - No clear difference was observed between the inner(SLO) and outer(SL6) layers.
  - Gain drop in physics runs mainly caused by beam background.
- In the future, since the accumulated charge will exceed 1 C/cm, countermeasures against aging-induced gain drop will be required.

## trial of fresh gas flow rate increase in next beam operation

- it is believed that rate of gas volume exchange is effective to mitigate aging effect and to remove reversible pollution
- Belle II replace one full volume every day by circulation gas, while replace one full volume every month by fresh gas
  - it is slower compared with other experiments
- we plan to increase fresh gas flow rate in the next beam operation in short time
- 10 times higher fresh gas flow rate is possible  $(0.2\rightarrow 2 \text{ lit/min})$ 
  - fresh gas supply line with 2 lit/min is already installed
  - cost is concern
- effective duration of the test still needs to be discussed.

|                      | BaBar DCH                                                              | Belle II CDC                                                           |  |
|----------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Integrated<br>charge | 30 mC/cm in 9 years                                                    | 30 mC/cm for innermost layers in 2022a/b alone i.e. 3.5 months         |  |
| Gas mixture          | He:C <sub>4</sub> H <sub>10</sub> 80:20 with 3500 ppm H <sub>2</sub> O | He:C <sub>2</sub> H <sub>6</sub> 50:50 with ~1300 ppm H <sub>2</sub> O |  |
| Volume               | 5.3 m <sup>3</sup>                                                     | 7.5 m³                                                                 |  |
| Recirculation rate   | 15 l/min, i.e. one full volume every 6 hours                           | 4+2x0.5 l/min, i.e. one full volume every 25 hours                     |  |
| Fresh gas<br>rate    | 2.5 l/min, i.e. one full volume every 36 hours                         | 0.2 l/min, i.e. one full volume every 28 days                          |  |

| total fresh gas flow<br>rate (lit/min) | cylinder duration of ethane (day) | cylinder duration of<br>He (day) | gas volume exchange        |
|----------------------------------------|-----------------------------------|----------------------------------|----------------------------|
| 0.2                                    | 51.7                              | 27.7                             | full volume per<br>I month |
| 2                                      | 5.2                               | 2.8                              | full volume per<br>3 days  |

## aging test and alternative gas

- The accumulated charge is expected to exceed 1 C/cm.
- It is necessary to estimate the gain drop at higher accumulated charge and the resulting degradation of CDC performance.
  - Is the gain drop linear?
- Another study item is whether the aging effect can be mitigated by changing the gas mixture.
  - performance of drift chamber with alternative gas should be studied
  - If the gas mixture is changed, the compatibility of the readout electronics must be verified.
- non-CH gas (e.g. He-CO2-CF4) is a candidate

### summary

- Belle II (2018 ): is designed to find new physics beyond KM model (~50/ab)
- Progress toward the target luminosity is step by step.
- Challenging to preserve detector performance as luminosity (beam background) increases
- In the CDC, the central charged particle tracker of Belle II, increasing background has affected detector performance and operation.
- Studies are being carried out to understand these effects and to test possible countermeasures for future prospects.

## backup

## HV test w/o beam (Oct. 29) just after beam operation



Remarks; On Oct. 30 (maintenance day), we could apply nominal voltage for all sectors and no leak current increasing was observed during ~4 hours HV test.

Same HV test was done during owl shift on Nov. 7 and no trouble for ~8 hours at nominal voltage

## HV test w/o beam (Oct. 29) just after beam operation



## modification of CDC gas system to add O2 for 2025c

- in early 2024c run, we observed chamber current blow-up in the innermost layers
- we turned off the corresponding sectors, and added water and stopped removing Oxygen to prevent further trouble in other layers
- Oxygen can only be removed using a filter; there is no system to add or increase O2 content.
- effect of Oxygen in gas mixture
  - pros ; Oxygen help to suppress glowing CH-polymer
    - CH2 + O2 => CO2, C2, H2O, H2
  - cons : contribute on aging by forming SiO2. Silicon is included in gas seal.
- we plan to modify gas system to add O2
  - it is similar to a system to inject Hydrogen
  - discussion is ongoing based on a drawing provided by the company
  - KEK mechanical expert is checking the drawing
- it will be installed in Sept.- Oct., before 2025c

## Oxygen consumption at beam on

- we have observed Oxygen content in CDC gas mixture decreased when CDC on and beam on
  - 'radicals' may be created from C2H6, O2 and H2O via gas avalanche
  - CH2 + O2 => CO2, CO, H2O, H2
    - It could explain why CO2 content is larger than Ar in gas analysis result though CO2
       ~0.3% and Ar ~1% in Air
  - H2 + O2 => H2O (H2 are also consumed)
    - It may be a reason why O2 filter doesn't work when beam ON
    - Pt catalyst need to store some amount of H2 on the surface

### cosmic data w/o beam in 2024c



- clear super-layer dependence is not seen
- change of SL0 and SL6 is consistent within 2-3%
- accumulated charge is different by factor ~3





## cosmic data w/o beam in 2024c





## cosmic data w/o beam in 2019-2024





- started to add water since 2019 Jan.
  - H2O ~2,000ppm (assume sensor was proper yet)
  - O2 content is unknown, but probably low < 500ppm</li>
- in 2021c, decreased target of water content
- much water until 2022b
- in the end of 2024c
  - H2O ~3,000ppm
  - O2 ~100ppm

### cosmic data w/o beam in 2019-2024



