Determining the minimal mass of a proto-neutron star with chirally constrained nuclear equations of state

Selina Kunkel, Stephan Wystub, Jürgen Schaffner-Bielich

Physical Review C 111, 035807 (2025)

2025.08.28 马雪峰

Research Background & Motivation

Observational Challenge: Discovery of several low-mass compact objects

PSR J0453+1559 (1.17 M_{\odot}) HESS J1731-347 (0.77 M_{\odot})

Theoretical Tension: Below the predicted lower mass limit for neutron stars from modern supernova simulations (~1.2).

Could these objects be Proto-Neutron Stars (PNS) formed by core-collapse supernova?

Research Goal: Determine the **minimal mass** of a PNS using nuclear Equations of State (EOS) constrained by **chiral effective field theory**

Evolutionary Stages & Physical Parameters

Study of two characteristic evolutionary stages:

1. Neutrino-Trapped Phase (t ~ 0.1 s)

Physical State: $Y_L = 0.4$, s = 1

Characteristics: Neutrinos are trapped, lepton-rich environment

2. Neutrino-Free Phase (t ~ 10 s)

Physical State: $Y_v = 0$, s = 2

Characteristics: Neutrinos have diffused out, star is cooling.

Thermodynamic Contribution of Neutrinos

When neutrinos are trapped, they are treated as an ultra-relativistic Fermi gas

$$p = \frac{g}{3}T^{4} \left[\frac{7\pi^{2}}{120} + \frac{1}{4} \left(\frac{\mu}{T} \right)^{2} + \frac{1}{8\pi^{2}} \left(\frac{\mu}{T} \right)^{4} \right],$$

$$n = \frac{g}{6}T^{3} \left[\frac{\mu}{T} + \frac{1}{\pi^{2}} \left(\frac{\mu}{T} \right)^{3} \right],$$

$$\frac{S}{V} = gT^{3} \left[\frac{7\pi^{2}}{90} + \frac{1}{6} \left(\frac{\mu}{T} \right)^{2} \right],$$

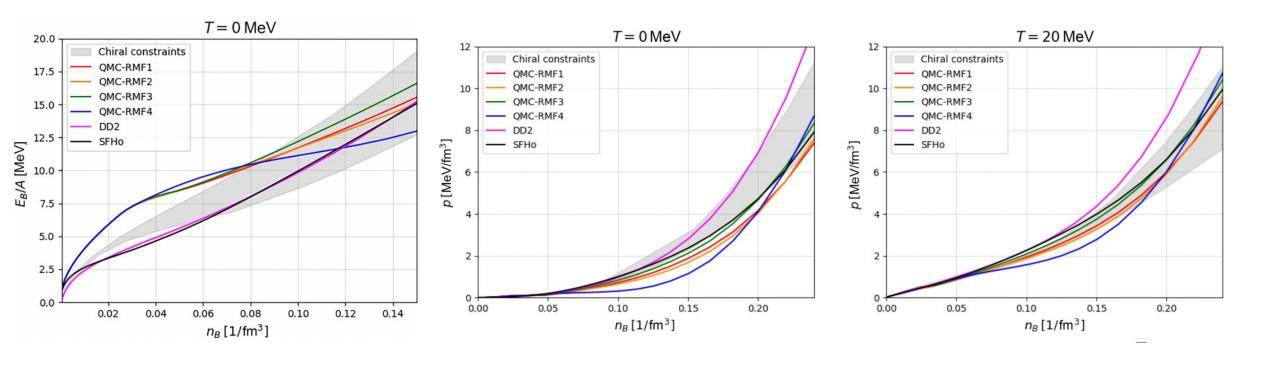
Lepton fraction conservation is enforced: $Y_L = Y_e + Y_{v_e} = const$

Nuclear EOS: Core and Crust Treatment

All employed EOS are constrained by χEFT for pure neutron matter and use specialized descriptions for different density regimes:

Homogeneous Core Description:

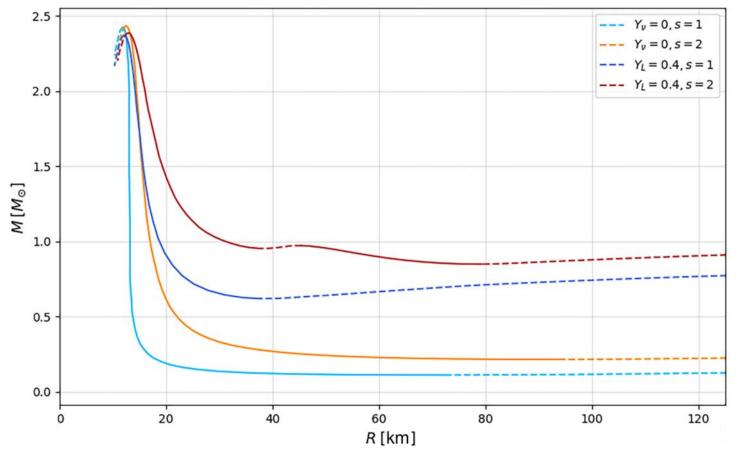
Described by Relativistic Mean-Field (RMF) models.


Models used: DD2, SFHo, QMC-RMF1-4.

Inhomogeneous Crust Description:

QMC-RMF series: Use the **HS(IUF)** EOS for consistency in this region.

DD2, SFHo: Employ **specific parameterizations and calculations** for the low-density regime (nuclear lattice, non-uniform matter).

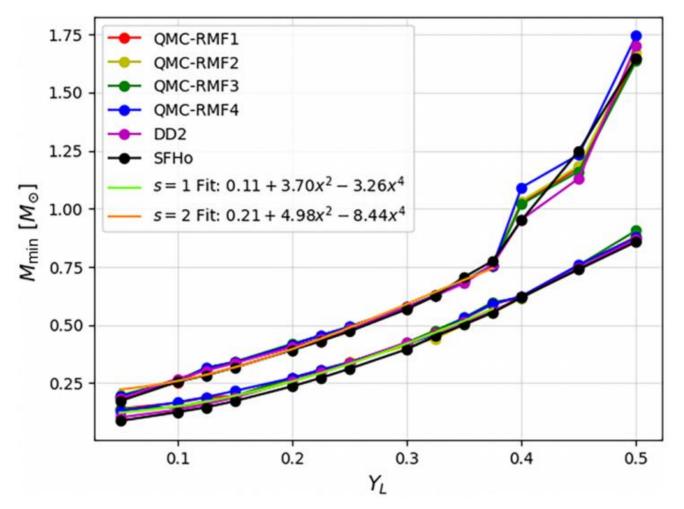

EOS Validation against χEFT Constraints

All selected EOS reasonably satisfy **xEFT** constraints in the relevant density range

($\sim 0.5 n_0$ - $1.0 n_0$), providing a reliable foundation for the calculation.

Core Result - Minimal Mass & Radius

Dominant Neutrino Effect: Additional pressure significantly increases the **minimal mass.**


$$\circ~Y_L=0.4, s=1$$
: $M_{
m min}\sim 0.62\,{
m M}_\odot$, $R\sim 38\,{
m km}$

$$V_{\nu}=0, s=2$$
: $M_{
m min}\sim 0.22\,{
m M}_{\odot}$, $R\sim 90\,{
m km}$

Thermal effects (increasing *s*) also increase mass, but to a lesser extent.

Mass-radius curves for a neutrino-free and neutrino-trapped proto-neutron star, each for a constant entropy per baryon of s=1 and s=2 for DD2

Universal Relation - M_{min} vs. Y_L

Minimal mass dependence on the lepton fraction for different ratios of the entropy per baryon s. s=1 vs. s=2

Universal Scaling: The minimal mass increases monotonically with Y_L , following **a model-independent relation.**

$$M_{\min}(Y_L) = a + bY_L^2 + cY_L^4$$

Fitting Parameters (Units: M⊙):

$s\left(k_B/\mathrm{baryon}\right)$	a	b	c
1	0.11	3.70	-3.26
2	0.21	4.98	-8.44

Summary & Outlook

Robust minimal mass estimates for PNS:

- \circ Neutrino-trapped phase: $M_{
 m min} \sim 0.62\,{
 m M}_{\odot}$
- \circ Neutrino-free phase: $M_{
 m min} \sim 0.22\,{
 m M}_{\odot}$

Key Discovery: A universal relation between M_{min} and Y_L

Results are based on EOS constrained by first-principles χEFT calculations.