Probing Small-x Nuclear Gluonic Structure Via Vector Meson Photoproduction at CMS

叶早晨 (华南师范大学) 中国科学院大学 2025年4月30日

- CMS, <u>PRL 131, 262301 (2023)</u>
- CMS, arXiv:2503.08903 (submitted to PRL)
- CMS, arXiv:2504.05193 (submitted to PRL)

In collaboration with X. Huang, J. Lin, S. Yang and W. Li

Understand Fundamental Structure of Matter

Smash them!!!

Smash them!!!

Smash them!!!

Smash them!!!

Understand Nucleon Structure

H1 and ZEUS

Understand Nucleon Structure

What is the fate of gluons at extreme densities toward the unitary limit?

Next Generation Facility

Confinement & Gluon Saturation

Spin Crisis

Mass Origin

Ultra-Peripheral Collision (UPC)

- Lorentz contracted EM fields \rightarrow flux of quasi-real photons (Q²< \hbar ²/R²)
- The photon flux $\propto Z^2$
- Photon kinematics: $p_T < \hbar/R_A \sim 30$ MeV ($E_{max} \sim 80$ GeV) at LHC

Ultra-Peripheral Collision (UPC)

- Lorentz contracted EM fields \rightarrow flux of quasi-real photons (Q²< \hbar ²/R²)
- The photon flux $\propto Z^2$
- Photon kinematics: $p_T < \hbar/R_A \sim 30 \text{ MeV}$ ($E_{max} \sim 80 \text{ GeV}$) at LHC

Heavy ion collider is also a Photon-Photon and Photon-Ion collider !!!

Vector meson photoproduction directly probes gluonic structure of nucleus/nucleon

At LO in pQCD, cross section ~ photon flux \otimes [xG(x)]²

Vector meson photoproduction directly probes gluonic structure of nucleus/nucleon

At LO in pQCD, cross section ~ photon flux \otimes [xG(x)]²

Coherent production:

- Photon fluctuated dipole couples coherently to entire nucleus
- Target nucleus remains intact
- VM <p_T> ~ 50 MeV
- Probing the averaged gluon density

Vector meson photoproduction directly probes gluonic structure of nucleus/nucleon

At LO in pQCD, cross section ~ photon flux \otimes [xG(x)]²

Coherent production:

- Photon fluctuated dipole couples coherently to entire nucleus
- Target nucleus remains intact
- VM <p_T> ~ 50 MeV
- Probing the averaged gluon density

Incoherent production:

• Photon fluctuated dipole couples to individual nucleon or sub-nucleon

14

- Target nucleus usually breaks
- VM <p_T> ~ **500 MeV**
- Probing the local gluon density and fluctuations

Vector meson photoproduction directly probes gluonic structure of nucleus/nucleon

At LO in pQCD, cross section ~ photon flux \otimes [xG(x)]²

Coherent production:

- Photon fluctuated dipole couples coherently to entire nucleus
- Target nucleus remains intact
- VM <p_T> ~ 50 MeV
- Probing the averaged gluon density

Incoherent production:

- Photon fluctuated dipole couples to individual nucleon or sub-nucleon
- Target nucleus usually breaks
- VM <p_T> ~ 500 MeV
- Probing the local gluon density and fluctuations

$$\omega = rac{M_{VM}}{2}e^{oxed{\pm y}} \hspace{0.5cm} x \, = \, rac{M_{VM}}{\sqrt{s_{
m NN}}}e^{oxed{\mp y}} \hspace{0.5cm} {
m W}_{\gamma
m p} = 2\sqrt{\omega \cdot {
m E}_{
m beam}}$$

Event Example in Heavy-Ion Collisions

Event Example in UPCs

Vector meson photoproductions in UPCs are very clean events

Coherent J/ Ψ Photoproduction via γ + p (Free Nucleon)

$$\gamma + \mathrm{p} \rightarrow \mathrm{J}/\psi + \mathrm{p}$$

 Data from LHC and HERA follow a common power-law trend, consistent with the expectation from the rapidly increasing gluon density in a proton

No clear indication of gluon saturation, even down to $x\sim10^{-5}$ in a free nucleon!

Advantages of Gluon Saturation Search in Nucleus

Gluons is **enhanced** by a factor of $A^{1/3}$ in **nucleus** compared to what in free nucleon

$$Q_{\rm s}^2 \sim A^{1/3} \left(\frac{1}{x}\right)^{\lambda}$$

Photon resolution power (Q)—→

Gluon saturation can be more easily reached in heavy nuclei

Coherent J/Ψ Photoproduction in A-A UPCs

$\gamma + Pb \rightarrow J/\psi + Pb$

Strong suppression, but the rapidity distribution was a puzzle

Coherent J/Ψ Photoproduction in A-A UPCs

$\gamma + Pb \rightarrow J/\psi + Pb$

CMS: PRL 131, 262301 (2023) LHCb: JHEP 06 146 (2023)

Strong suppression, but the rapidity distribution was a puzzle

Coherent J/Ψ Photoproduction in A-A UPCs

$\gamma + Pb \rightarrow J/\psi + Pb$

Strong suppression, but the rapidity distribution was a puzzle

CMS: PRL 131, 262301 (2023) LHCb: JHEP 06 146 (2023)

$$x \,=\, rac{M_{VM}}{\sqrt{s_{
m NN}}} e^{\!\mp y}$$

low-energy photons dominant

Two-Way Ambiguity in A-A UPC

This ambiguity exists for both coherent and incoherent processes

Two-Way Ambiguity in A-A UPC

This ambiguity exists for both coherent and incoherent processes

Method to Solve Two-Way Ambiguity in A-A UPC

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

Control/select the impact parameter of UPCs via forward emitted neutrons

Neutron emission via EMD with <u>additional photon exchange</u>:

- Soft photons (energy ~10s MeV)
- Independent of interested physics process
- Large cross section ~200 b (single EMD)
- The smaller b → the more neutrons.

Analogous to centrality:

$$\circ$$
 $b_{XnXn} < b_{0nXn} < b_{0n0n}$ in UPC

Method to Solve Two-Way Ambiguity in A-A UPC

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

Control/select the impact parameter of UPCs via forward emitted neutrons

Neutron emission via EMD with additional photon exchange:

- Soft photons (energy ~10s MeV)
- Independent of interested physics process
- Large cross section ~200 b (single EMD)
- The smaller b \rightarrow the more neutrons

$$\sigma_{\gamma A o J/\psi A'(\omega_1)}$$

$$\sigma_{\gamma A o J/\psi A'(w_2)}$$

Larger-*x*

Smaller-*x*

Neutron Tag with Zero Degree Calorimeter

Coherent J/Ψ Cross Section of Per γ+Pb

CMS: PRL 131, 262301 (2023) ALICE: JHEP 10 119 (2023)

Data show:

- Rapid increase at W < 40 GeV</p>
- Turn into a nearly flat (slower rising)
 trend for W > 40 GeV

Strongly saturated cross sections

Coherent J/Ψ Cross Section of Per γ+Pb

CMS: PRL 131, 262301 (2023) ALICE: JHEP 10 119 (2023)

Data show:

- Rapid increase at W < 40 GeV
- Turn into a nearly flat (slower rising)
 trend for W > 40 GeV
- y distribution puzzle is solved by studying the W dependence
- Strong suppression

Strongly saturated cross sections

Coherent J/Ψ Cross Section of Per γ+Pb

CMS: PRL 131, 262301 (2023) ALICE: JHEP 10 119 (2023)

Data show:

- Rapid increase at W < 40 GeV
- Turn into a nearly flat (slower rising)
 trend for W > 40 GeV
- y distribution puzzle is solved by studying the W dependence
- Strong suppression

Strongly saturated cross sections

Black Disk Limit?

 $\hat{\sigma}_{ ext{PQCD}}^{ ext{inel}} \leq \hat{\sigma}_{ ext{black}} = \pi R_{ ext{target}}^2$

Nuclear shadowing?

What's the underlying physics?

How About Incoherent J/Ψ Photoproduction?

Coherent production:

- Photon fluctuated dipole couples coherently to entire nucleus
- Target nucleus remains intact
- VM $< p_T > \sim 50 \text{ MeV}$
- Probing the averaged gluon density

Incoherent production:

- Photon fluctuated dipole couples to individual nucleon or sub-nucleon
- Target nucleus usually breaks
- VM <p_T> ~ 500 MeV
- Probing the local gluon density and fluctuations

Fluctuating Gluons Probed via γ +p

CGC IPsat considering the **fluctuations** of **geometry** (shape and size), **energy density**, **local saturation scale** and **color charge**, successfully describe the HERA data

CGC IPsat is a b-dependent saturation model under the Color-Glass Condensate framework

Fluctuating Gluons and Energy Dependence

How the fluctuating gluons evolute, especially towards small-x limit?

- Would incoh. production vanish if black disk limit is reached?
- Unfortunately, energy-dependent incoh. J/Ψ has never been measured

Solve "Two-Way Ambiguity" via Forward Neutrons

J/Ψ-Xn (Same Direction)

J/Ψ-Xn (Opposite Direction)

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

- Incoh. J/Ψ photoproduction itself has ~85% chance to induce the forward neutrons
 - → Detecting these neutrons will identify target nucleus
 - → Help to solve the "Two-Way Ambiguity"

Example Signals (J/Ψ-Xn Correlations)

High-W

- No correlation between forward neutrons and coh. production
- Strong correlation between forward neutrons and incoh. production

Incoh. J/ Ψ Cross Section Per γ +Pb

CGC: PRD 109 (2024) 7, L071504, PRD 106 (2022) 7, 074019 LTA: V. Guzey et al. PRC 108 (2023) 024904, PRC 99 (2019) 015201

ALICE: EPJC 73 (2013) 2617

- First energy-dependent measurement of incoh. J/Ψ photoproduction
 - Strongly saturated trend again
- Strong suppression compared to Impulse Approximation (IA)
- LTA (nuclear shadowing) describe data at W
 < 60 GeV
- CGC without sub-nucleonic fluctuations better describe data at W > 90 GeV

Cross Section Ratio of Incoh./Coh. J/Ψ

- No clear W dependent (40 < W < 400 GeV)
 - Not support Black Disk Limit is reached
- ALICE data agrees with CMS data, STAR data slightly rises towards lower W
- LTA and CGC with sub-nucleonic fluctuation qualitatively describe data trend

Theoretical uncertainties from VM wave function, nuclear density, nuclear form factor, free nucleon PDFs, photon flux, and J/Ψ formation probability are largely canceled.

Cleanest test for theoretical assumptions on nuclear effects

Nuclear Suppression Factor

$$ext{S}^{ ext{J/}\psi} = rac{\sigma^{exp}_{\gamma Pb o ext{J/}\psi Pb'}}{\sigma^{IA}_{\gamma Pb o ext{J/}\psi Pb'}}$$
 No nuclear effects

- Both Coh and Incoh J/Ψ show stronger suppression towards lower x, and eventually flattens out
- Incoh. is more suppressed than Coh. J/Ψ
- Incoh. J/ Ψ get closer to Coh. J/ Ψ for $x < 10^{-4}$
- No models can describe the data

$$S_{\text{coh}}^{J/\psi}(x,\mu^2) = (R_g)^2$$

Enter Lower Q² Region with Lighter VM

Results from J/ ψ highlights unresolved aspects of the underlying physics

Amplify the nonlinear QCD effects by lowering **Q**²

Measure Coh. ϕ

Enter Lower Q² Region with Lighter VM

Results from J/ ψ highlights unresolved aspects of the underlying physics

Experimental challenging: $M_{\phi} \sim 2 \cdot M_K \Rightarrow$ very low p_T Kaons

Strong suppression of Coh. ϕ is observed (a factor of 5)

- Strong suppression of Coh. ϕ is observed (a factor of 5)
- Gluon saturation models:
 - Overpredicted data by a factor of 2.6-3

- Strong suppression of Coh. ϕ is observed (a factor of 5)
- Gluon saturation models:
 - Overpredicted data by a factor of 2.6-3
 - Non-pQCD correction reduce ~40%, but still a factor of 2 higher

- Strong suppression of Coh. ϕ is observed (a factor of 5)
- Gluon saturation models:
 - Overpredicted data by a factor of 2.6-3
 - Non-pQCD correction reduce ~40%, but still a factor of 2 higher
- Nuclear shadowing models:
 - Generally better agree with data
 - VMD + Gribov Glauber (GG) over predict data
 - VMD + Classical Glauber (CG) best describe data
 - STARLIGHT and RP-CG

Summary

- First energy-dependent Coh. and Incoh. J/Ψ are measured by CMS
 - 40 < W < 400 GeV, probing broad x interval: **10**⁻² **10**⁻⁵
- Both Coh. and Incoh. J/Ψ cross sections are strongly saturated at high energy
- Ratio of Incoh/Coh J/Ψ stay constant ~0.3-0.5 for 40 < W < 400 GeV
 - Sub-nucleonic fluctuations are needed; Not support that BDL is reached
- **Nuclear suppression factor** of J/ Ψ photoproduction in γ +Pb interaction:
 - \circ Stronger towards lower x, eventually flattens out
 - o Incoh. J/Ψ is **more suppressed** than Coh. J/Ψ
- Coh. ϕ photoproduction off heavy nuclei is observed by CMS:
 - Nuclear suppression factor ~5
 - Gluon saturation models overpredict data by a factor of 2-3
 - Nuclear shadowing models (VMD+CG) best agree with data
- Significant theoretical improvements are needed towards uncovering the underlying physics mechanisms at small \boldsymbol{x}

Future Opportunities

Various VMs in different nucleus-nucleus UPCs with neutron taggings:

- Coherent and Incoherent photoproductions
- Control of dipole sizes and hard scales.
- Test on the A dependences
- Variation of saturation scales

x v	$S.Q^2$	vs.	Q_S^2
-----	---------	-----	---------

PbPb $L_{int} = 13 \text{ nb}^{-1}$								
	σ	All	Central 1	Central 2	Forward 1	Forward 2		
Meson		Total	Total	Total	Total 1	Total		
$\rho \to \pi^+\pi^-$	5.2b	68 B	5.5 B	21B	4.9 B	13 B		
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B		
$\phi \to \text{K}^+\text{K}^-$	0.22b	2.9 B	82 M	490 M	15 M	330 M		
$\mathrm{J}/\psi ightarrow \mu^+\mu^-$	1.0 mb	14 M	1.1 M	5.7 M	600 K	1.6 M		
$\psi(2S) \to \mu^+ \mu^-$	$30 \mu \mathrm{b}$	400 K	35 K	180 K	19 K	47 K		
$Y(1S) \to \mu^+ \mu^-$	$2.0~\mu \mathrm{b}$	26 K	2.8 K	14 K	880	2.0 K		

CERN Yellow Report, arXiv:1812.06772

Thanks You!

Backup Slides

Exlusive Upsilon(1S) via γ +p Interactions

Fluctuating Gluons Probed via Incoherent γ+Au/Pb

CGC: PRD 109 (2024) 7, L071504 ALICE: PRL 132, 162302 (2024) STAR: PRC 110 014911 (2024) **t distribution from STAR:** well described by LTA, but in between two scenarios of CGC with and without sub-nucleonic fluctuations

t distribution from ALCIE: slope is well describe by CGC with sub-nucleonic fluctuations however, missed by a common scaling factor

Photon Flux: Point-like vs. Realistic

CPC 277 (2022) 108388

Figure 4: (Color online) Photon fluxes coming from a nucleus $N_{\gamma A}$ in the point-like source approximation and the realistic description as functions of impact parameter b_{γ} calculated at different photon energies: 100 MeV (a), 100 GeV (b).

QED Dimuon with Neutron Tagging at CMS

First direct evidence of b-dependent initial photon p_T , set strong base line for observe QGP EM effects in heavy ion collisions

Total InCoh. J/Ψ Photoproduction Cross Section

OnXn events: Data at (-y) are 5-6
 times of data at (+y) → Strong incoh.
 J/Ψ – Xn correlation

Relative fractions at (+y) and (-y) in 0n0n are asummed to be same as what measured in 0nXn events

Compact Muon Solenoid Detector

Muon Reconstruction

Tracker and muon detectors used to reconstruct/identify muons.

CMS Tracker Run2-Run3

- Active area: 200 m²,15148 modules
- 10 layers in barrel region
- 9 + 3 disks in inner disks and endcaps
- Orange: single sided module
- Blue: double sided module
- Analog readout

Future Opportunities

- Muon systems with $|\eta| < 2.8$
- Trigger and DAQ rate: ~10x

Exciting opportunities ahead by:

Higher luminosities.

2.0 2.2 _ 2.4 2.6

- A variety of ion species.
- Upgrades enabled by new technologies!

April 30, 2025