

Wangmei Zha

University of Science and Technology of China

Coherent photons as "partons" in heavy-ion collisions

Coherent limitation: $Q^2 \ll 1/R^2 \Rightarrow$ quasi-real!

Photon four momentum: $q^u = (\omega, \vec{q}_T, \omega/v)$ $Q^{2} = \frac{\omega^{2}}{\gamma^{2}} + q_{T}^{2}$ $\omega \le \omega_{max} \sim \frac{\gamma}{R}$

• View photons as "partons" being present with fast moving ions!

Physics Today **70**, 10, 40 (2017)

The extent of photons swarming about the ions:

The radius of nuclear matter $R_{\text{Nuc}} \sim 6.3 \text{ fm (Au)}$ $R_{photons} >> R_{Nuc}$

Take the photoproduction of dielectron (Au+Au 200 GeV)in ultra-peripheral collisions (UPCs) as example: $\langle R_{producton} \rangle \sim 60 \text{fm}$

Photon interactions in A+A

- This large flux of quasi-real photons makes a hadron collider also a photon collider!
 - ✓ Photon-nucleus interactions: Vector meson
 - ✓ Photon-photon interactions: dileptons ...
- Conventionally believed to be only exist in ultra-peripheral collisions (UPC) to keep "coherent"!

Vector meson photon-production

- Vector meson production:
 - ✓ chargeless 'Pomeron exchange'
 - ✓ Light meson production is usually treated via vector meson dominance model:
 - ρ , direct $\pi^+\pi^-$, ω
 - ✓ Heavy quarkonia production could be treated with pQCD :
 J/ψ, ψ', Y(1S), Y(2S), Y(3S)...

STAR, PRC 96, (2017) 054904

Vector meson photon-production

- Vector meson production:
 - ✓ chargeless 'Pomeron exchange'
 - ✓ Light meson production is usually treated via vector meson dominance model:

 ρ , direct $\pi^+\pi^-$, ω

✓ Heavy quarkonia production could be treated with pQCD:
J/ψ, ψ', Y(1S), Y(2S), Y(3S)...

STAR, PRC **96**, (2017) 054904

When the nucleus break, coherent photoproduction can still occur!

Vector meson photon-production

• Vector meson production:

- ✓ chargeless 'Pomeron exchange'
- ✓ Light meson production is usually treated via vector meson dominance model: ρ, direct π⁺π⁻, ω....
- ✓ Heavy quarkonia production could be treated with pQCD: J/ψ , ψ ', Y(1S), Y(2S), Y(3S)...
- Sensitive to the gluon distribution:

$$\frac{d\sigma(\gamma A \to VA)}{dt}\bigg|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 \left[xG_A(x, Q^2) \right]$$

$$x = \frac{M_V e^{\pm y}}{\sqrt{s}} \quad Q^2 = M_V^2 / 4$$

EPPS16: EPJC 77 (2017) 163

nCTEQ15:PRD 93 (2016) 085037

Nuclear shadowing from J/ψ measurements in UPCs

Various precise measurements!
Powerful to constrain nPDF

The results: impulse approximation

- The impulse approximation significantly overestimates the data => Significant shadowing effect
- The difference becomes smaller towards forward rapidity => Less shadowing effect towards high x

Nuclear shadowing from J/ψ measurements in UPCs

- The UPC measurements dramatically reduce the uncertainty band of EPPS16 and nCTEQ15 PDF sets.
- Significant shadowing effect has been observed in both PDF sets at small x.

The projection for future EIC facility

X. Li et al. NIMA 1048 (2023) 167956

L_{int}=50 fb⁻¹ ep; 50/197 fb⁻¹ eAu

The beginning of the story in HHIC

- Significant enhancement of J/ ψ yield observed in p_T interval 0 0.3 GeV/c for peripheral collisions (50 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!

Origin from coherent photon-nucleus interactions?

What does STAR say for the excess?

STAR: PRL **123** (2019) 132302

- Significant enhancement of J/ ψ yield observed at p_T interval 0 0.2 GeV/c for peripheral collisions (40 80 %)!
- No significant difference between Au+Au and U+U collisions.

The excess yield and dN/dt distribution

- Low $p_T J/\psi$ from hadronic production is expected to increase dramatically with N_{part} .
- No significant centrality dependence of the excess yield!

- Similar structure to that in UPC case!
- Indication of interference!
 - ✓ Interference shape from calculation PRC **97** (2018) 044910
- Similar slope parameter!
 - ✓ Slope from STARLIGHT prediction in UPC case 196 (GeV/c)⁻²
 - ✓ Slope w/o the first point: $177 \pm 23 (\text{GeV/c})^{-2} \chi^2 / NDF$ = 1.7/2

A novel probe for QGP?

- Hot medium effects:
 - ✓ Color Screening
 "Smoking gun" signature
 for QGP PLB 178 (1986) 416
 - ✓ Regeneration
 -Recombination of charm quarks
- Cold Nuclear Matter effects:
 - ✓ PDF modification in nucleus
 - ✓ Initial state energy loss
 - **√**...

A cleaner probe of color screening?

The key question: baseline?

Comparison with baseline from model calculation

- ✓ Well described by the coherent photoproduction mechanism for peripheral collisions
- ✓ Hint of disruption from the medium
 - -The observation effect
 - -The QGP swallowing

Comparison with baseline from model calculation

Chinese Phys. C (2022) **46** 074103

The destructive interference

The internal photon radiation

$$J/\psi(p_0) \to e^-(p_1) + e^+(p_2) + \gamma(k)$$

Consistent with current picture

Medium effect?

✓ Hidden in the error, if exist

The collision species dependence

Balance of form factor and impact parameter

How about the ρ photoproduction?

- Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range!
- The excess can be described by the coherent photon-photon process!

The observation of Breit-Wheeler process

MCD

Data : 0.261 ± 0.004 (stat.) \pm 0.013 (sys.) \pm 0.034 (scale) mb

STARLight gEPA QED 0.22 mb 0.26 mb

Consistent with theoretical calculations with $\pm 1\sigma$ level!

1934 Breit & Wheeler: "Collision of two Light Quanta"

Physical Review 46 (1934): 1087

The observation of Breit-Wheeler process

A sensitive probe: pair p_T broadening

- The equivalent photon approximation could not describe the pair p_T distribution
- Possible medium effects --- magnetic field trapped in the QGP?

A sensitive probe: pair p_T broadening

ATLAS, PRL 121 (2018) 212 301

$$\alpha \equiv 1 - \frac{|\phi^+ - \phi^-|}{\pi}$$

- The broadening increases towards central collisions
- Possible medium effects --- QED multiple scattering?

S.R. Klein etal., PRL122 (2019) 132301

EPA approach

The photon k_T spectrum for fixed k: The final-state p_T is the vector sum of the two photon.

$$\frac{dN}{dk_{\perp}} = \frac{2Z^2 \alpha F^2 (k_{\perp}^2 + k^2/\gamma^2) k_{\perp}^3}{\pi [k_{\perp}^2 + k^2/\gamma^2]^2}$$

No impact parameter dependence!

Fail to reproduce the pair p_T !

gEPA approach

$$\sigma = 16 \frac{Z^4 e^4}{(4\pi)^2} \int d^2 b \int \frac{d\omega_1}{\omega_1} \int \frac{d\omega_2}{\omega_2} \int \frac{d^2 k_{1\perp}}{(2\pi)^2} \int \frac{d^2 k_{2\perp}}{(2\pi)^2} \int \frac{d^2 q_{\perp}}{(2\pi)^2} e^{-i\mathbf{b}\cdot\mathbf{q}_{\perp}}$$

PRC 47 (1993) 2308

$$\times \mathcal{F}_{1}(\mathbf{k}_{1\perp}, \omega_{1}) \,\mathcal{F}_{2}(\mathbf{k}_{2\perp}, \omega_{2}) \,\mathcal{F}_{1}^{*}(\mathbf{k}_{1\perp} - \mathbf{q}_{\perp}, \omega_{1}) \,\mathcal{F}_{2}^{*}(\mathbf{k}_{2\perp} + \mathbf{q}_{\perp}, \omega_{2}) \\
\times \{ (\mathbf{k}_{1\perp} \cdot \mathbf{k}_{2\perp}) \, ((\mathbf{k}_{1\perp} - \mathbf{q}_{\perp}) \cdot (\mathbf{k}_{2\perp} + \mathbf{q}_{\perp})) \,\sigma_{s}(\omega_{1}, \omega_{2}) \\
+ (\mathbf{k}_{1\perp} \times \mathbf{k}_{2\perp}) \cdot ((\mathbf{k}_{1\perp} - \mathbf{q}_{\perp}) \times (\mathbf{k}_{2\perp} + \mathbf{q}_{\perp})) \,\sigma_{ps}(\omega_{1}, \omega_{2}) \} \quad .$$

Phys. Rev. D 104 (2021) 056011

Impact parameter

dependence!

- Fail to reproduce data at very low p_T!
- Strange dip structure!

$$\begin{split} \sum_{s} |M|^2 &= (Z\alpha)^4 \frac{4}{\beta^2} \int d^2 \Delta q_1 d^2 q_1 \ [N_0 N_1 N_3 N_4]^{-1} \exp(i\Delta \vec{q}_1 \cdot \vec{b}) \quad \text{QED approach} \\ &\times \text{Tr} \bigg\{ (\not\!p_- + m) \left[N_{2D}^{-1} \not\!w^{(1)} (\not\!p_- - \not\!q_1 + m) \not\!w^{(2)} + N_{2X}^{-1} \not\!w^{(2)} (\not\!q_1 - \not\!p_+ + m) \not\!w^{(1)} \right] \\ &\times (\not\!p_+ - m) \left[N_{5D}^{-1} \not\!w^{(2)} (\not\!p_- - \not\!q_1' + m) \not\!w^{(1)} + N_{5X}^{-1} \not\!w^{(1)} (\not\!q_1' - \not\!p_+ + m) \not\!w^{(2)} \right] \bigg\} \end{split}$$

PRA 51 (1995) 1874

 Reasonably describe the p_T spectrum.

W. Zha etal, PLB 800 (2020) 135089

Successfully reproduce the centrality dependence of acoplanarity!

The impact parameter dependence of baseline

Strong dependence on impact parameter and pair mass!

"Centrality" engineering in UPCs

- The neutron multiplicity from multi-coulomb dissociation (MCD)
- Significant difference for pair p_T broadening in different centralities of UPCs!

Initial broadening for different centralities in UPCs

- The average impact parameters vary significantly!
- Strong dependence on the centralities!

The efforts from experimental side

- The EPA approach even failed in UPCs!
- Significant difference between peripheral collisions and UPCs!

The efforts from experimental side

Significant difference in different centralities of UPCs!

The efforts from experimental side

Sizable gap between measurement and QED calculation!

The higher-order tail: Sudakov effect

S.R. Klein etal., PRL122 (2019) 132301

- Negligible effect of soft photon radiation for low p_T at RHIC!
- Produce a long tail at relative high p_T !

The QED method with Sudakov effect

- The Sudakov effect is sizable at LHC!
- Describe the data very well for different centralities in UPCs!

Can we see the medium effect?

The projection for RHIC run 2023-2025

The Schwinger Mechanism and higher order effect

The production rate of Schwinger Mechanism at a given constant electric field E:

C. Itzykson, J.B. Zuber

Quantum Electrodynamics of Strong Fields $E_c = 1.3 \times 10^{16} \text{ V/cm}$

$$\frac{d^4 n_{e^+e^-}}{d^3 x dt} \sim \frac{c}{4\pi^3 \lambda_c^4} \exp(-\pi \frac{E_c}{E}) \quad \text{At RHIC } b = 15 \text{ fm:} \\ E_{Max} = 5.3 \times 10^{16} \, V/cm$$

The non-perturbative nature of the production mechanism.

-Related to the " $Z\alpha > 1$ " problem.

$$\Delta t \approx \hbar/2mc^2 \approx 5 \times 10^3 \text{fm/c}$$

$$\Delta t_{Laser} >> \Delta t >> \Delta t_{HIC}$$

$$\downarrow \qquad \qquad \downarrow$$
Non-perturbative Perturbative

$$\Delta t_{HIC} \approx \frac{R_A}{\gamma}$$
 0.06 fm/c at RHIC

At RHIC and LHC $Z\alpha \sim 0.6$

Still Perturbative, but with sizable higher-order effect!

Link the crossover from perturbative to non-perturbative region!

The higher-order effect puzzle

JHEP 08 (2021) 083

Consistent with Higher Order results

Favor the Leading Order predictions

The observation of the linear polarization

	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	
π	
	C. Li, J. Zhou, Yj. Zhou, P
	γ γ from
	3 \$,

The photons are linearly polarized!

C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)

The dimuon channel

- ✓ Observation of dimuon excess from photoproduction
- ✓ Consistent with impact parameter dependence picture

- ✓ Evidence of the 4th-order azimuthal angular modulation
- ✓ First indication of the 2nd-order azimuthal angular modulation

$$<\cos 2\Delta\phi> \propto m^2/p_{\perp}^2$$

Linear polarization and interference

PRD 103 (2021), 033007

Linearly polarized photons

Decay along the impact parameter

$$\frac{d^2N}{d\cos\theta d\phi} = \frac{3}{8\pi}\sin^2\theta [1 + \cos 2(\phi - \Phi)]$$

The double slits interference in polarization space

STAR, Sci. Adv. 9 (2023) eabq3903

Significant difference between Au and U

[1] J. High Ener. Phys. **2020**, 64 (2020). [2] Phys. Rev. D **103**,033007 (2021)

Prediction for U? Second peak?

Sensitive to the nuclear geometry / gluon distribution

The double slits interference in polarization space

Example of EPR paradox

Figure from Zhangbu

The life time $\rho : \sim 1 \text{ fm/c}$

b ~20fm

[1] J. High Ener. Phys. **2020**, 64 (2020). [2] Phys. Rev. D **103**,033007 (2021)

Prediction for U? Second peak?

Sensitive to the nuclear geometry / gluon distribution

The case for J/ψ

Prediction

$$\frac{d^2N}{d\cos\theta d\phi} = \frac{3}{16\pi} (1 + \cos^2\theta) \left[1 - \frac{\sin^2\theta}{1 + \cos^2\theta} \cos 2(\phi - \Phi) \right]$$

- ✓ Opposite sign
- ✓ Also sizable

Experimental result

Still in progress

Align the reaction plane

X. Wu et al., PRR 4 (2022) L042048

✓ Determined by collision geometry

- ✓ Natural resistance to non-flow correlation
- ✓ No event-event fluctuation -Good-Walker paradigm

Could directly link the final flow to initial geometry!

Summary

- Significant excess of dilepton and quarkonium production in hadronic heavy-ion collisions
 - --- Existence of coherent photoproduction in non-UPCs
 - --- The impact parameter dependence
 - --- Higher order effect
- The linear polarization of the process in heavy-ion collisions
 - --- Angular modulation
 - --- Reaction plane determination
- Novel probe for QGP?
 - --- Precise knowledge on the baseline
 - --- Precise measurement in the future

Outlook

Two photon physics QED, meson spectroscopy Facility: LEP, CEPC...

One photon physics
Probing the PDF
Facility: HERA, EIC,
EICC...

Link the Past,
Present and Future!

Test the medium Facility: SPS, RHC,

LHC, FAIR...

Measurements of coherent photon products in HHIC!