Hot and cold Recent Quarkonia studies in PHENIX

Richard Hollis University of California, Riverside

PHENIX Collaboration

Quarkonium 2013

The 9th International Workshop on Heavy Quarkonium

April 22-26, 2013, IHEP, Beijing

Outline

Landscape of PHENIX Results

Studies of the initial state

Systematic studies of AB collisions

Summary

• Aim:

- Understand relative production of heavy-quarks in AA compared to pp collisions
 - How are heavy-quarks quenched in the QGP?

Tools:

- p+p collisions
- d+Au collisions
- A+A collisions
- A+B collisions
- Energy Scan (39-200 GeV)

- Heavy-ion collisions are very complicated:
 - What we believe we start with: $\mathbf{p+p}$ collisions → binary (N_{ml}) scaled to $\mathbf{Au+Au}$

- Heavy-ion collisions are very complicated:
 - What we believe we start with: $\mathbf{p+p}$ collisions → binary (N_{coll}) scaled to $\mathbf{Au+Au}$
 - Lower production rate measured: due to in-medium energy loss

- Heavy-ion collisions are very complicated:
 - What we believe we start with: $\mathbf{p+p}$ collisions → binary (N_{m}) scaled to $\mathbf{Au+Au}$
 - Lower production rate measured: due to in-medium energy loss
 - Underlying cold-nuclear matter effects:
 - is p+p the correct starting point?

Au+Au

Cold Nuclear Matter

- Before one can understand A+A collisions, we must know what we start with: explore the realm of cold nuclear matter to understand the initial state
- Probe the state of the initial collision
 - Production dominated by gluon fusion
 - Modified by
 - (c-cbar) Break-up
 - Cronin
 - Shadowing
 - Anti-shadowing

PHENIX Detector

- Wide angular coverage for quarkonia
 - Central arms
 - Electron measurements
 - $|\eta| < 0.35$
 - $-\Delta\phi\sim\pi$
 - Forward muon arms
 - Muon measurements
 - $-1.2 < |\eta| < 2.2$
 - $\Delta \phi \sim 2\pi$

- Hard collisions in the nucleus
 - J/ψ in pp collisions
 - J/ψ in dAu collisions
 - Binary scaled
- Forward/backward asymmetry
 - Larger "suppression" at forward rapidity

- Hard collisions in the nucleus
 - $R_{dAu}(J/\psi)$
- Forward/backward asymmetry
 - Larger "suppression" at forward rapidity

Model:

- EPS09 with break-up cross-section
- Linear thickness dependence on shadowing
- Provides a good description of the minimum bias data

- Hard collisions in the nucleus
 - $R_{dAu}(J/\psi)$
- Forward/backward asymmetry
 - Larger "suppression" at forward rapidity

Model:

- EPS09 with break-up cross-section
- Linear thickness dependence on shadowing
- Provides a good description of the backward/midrapidity centrality dependence
- Over-predicts forward suppression in peripheral collisions

 Relative production of midrapidity J/ψ and ψ' in p+p, and d+Au collisions

• **Relative suppression** of loosely bound ψ'

- Relative production of midrapidity J/ψ and ψ' in p+p, and d+Au collisions
 - Relative suppression of loosely bound ψ^{\prime}
- Strong centrality dependence
 - Unmodified production ratio $\psi'/(J/\psi)$ in peripheral collisions
 - Strong suppression of ψ' in most central collisions

- Relative production of midrapidity J/ψ and ψ' in p+p, and d+Au collisions
 - **Relative suppression** of loosely bound ψ'
- Strong centrality dependence
 - Unmodified production ratio $\psi'/(J/\psi)$ in peripheral collisions
 - Strong suppression of ψ' in most central collisions

Upsilon

- Measurement of $\Upsilon(1S+2S+3S) \rightarrow \mu\mu$
 - pp
 - Minimum bias d+Au
- Higher mass: higher average x (in Au nucleus) compared to J/ψ .

Upsilon

- No significant suppression of forward Υ
 - larger backward suppression
- In reasonable agreement with NLO model expectations

- No significant constraint on the break-up cross-section
 - owing to statistical uncertainty

Initial state summary

- d+Au collisions impose significant modification of J/ψ and ψ'
 - Compared to p+p collisions
- Baseline for A+A collisions already modified before the creation of the hot-dense QGP matter
- Fresh look at A+A collisions
 - Energy Scan
 - Species Scan

Studies: Energy Scan

- Similar energy dependence
 - Energy-dependent role of CNM in AA collisions needs further investigation
- Cold nuclear matter effects at lower collision energies
 - Larger break-up cross-section
 - Sample higher x
- QGP effects
 - Energy loss
 - Regeneration

CuAu Collisions -Exploiting the flexibility of RHIC

- Completely swallowed Cu-nucleus in central collisions
 - Cu-going corona vanishes

- Naturally odd harmonics
 - Possibility to investigate a "true v3"
- Large "corona" on Auside
 - Investigation of it's size
 - "v₁-like" azimuthal dependence

April 23rd 2013

Energy density asymmetry

J/ψ measurement: forward rapidity

- Measure J/ψ
 - Forward, y>0, (Cu(d)-going)
 - Low-x parton in Au-nucleus
 - Backward, y<0, (Au-going)
 - Low-x parton in Cu-nucleus

di-μ Invariant mass [GeV/c²]

di-µ Counts

- Comparison between particle yields in AA to pp (scaled by the expected number of collisions)
- CuCu and AuAu
 - CNM and finalstate effects
 - Suppression observed
 - Independent of collision system

- Comparison between particle yields in AA to pp (scaled by the expected number of collisions)
- CuCu and AuAu
 - CNM and finalstate effects
 - Suppression observed
 - Independent of collision system

- CuAu collisions
 - Same suppression as AuAu/CuCu measured in the Augoing direction

- Comparison between particle yields in AA to pp (scaled by the expected number of collisions)
- CuCu and AuAu
 - CNM and finalstate effects
 - Suppression observed
 - Independent of collision system

- CuAu collisions
 - Same suppression as AuAu/CuCu measured in the Au-going direction
 - More suppressed in the Cu-going direction
 - J/ ψ not significantly more suppressed in completely swallowed-Cu (top 5%) events

April 23rd 2013 24

- CNM effects
 (estimated from same model as earlier)
 - Can partially explain forward / backward difference
 - Final state effects must account for additional suppression
- Similar CNM observations in AuAu collisions

- Model:
 - 4mb break-up cross-section
 - Best describes dAu data
 - Center line → best EPS09 fit
 - Band limits → outer limit of EPS09 nPDFs
 - Linear thickness dependence on shadowing
 - No centrality dependence

Relative suppression

- Ratios of yields at fixed centrality
- Relative suppression observed forward/backward
- Centralityindependent

Presents a challenge to theories trying to describe the data

Relative suppression

- Ratios of yields at fixed centrality
- Relative suppression observed forward/backward
- Centralityindependent

Presents a challenge to theories trying to describe the data

Summary

- AA collisions are a complex admixture of cold nuclear matter and hot nuclear matter effects
 - Understanding CNM effects are crucial
- Studied the effect of cold nuclear matter in d+Au collisions
 - Rapidity and centrality dependent production
 - Particle species dependence
- Cu+Au collisions yield new insights into J/ψ production
 - Stronger suppression at forward rapidities

CuAu Collisions – Exploiting the flexibility of RHIC

- Why interesting?
 - Naturally odd harmonics
 - Possibility to investigate a "true v3"
 - Large "corona" on Au-side
 - Giving rise to more detailed investigation of it's size
 - "v₁-like" azimuthal dependence
 - Completely swallowed Cunucleus in central collisions
 - Cu-going corona vanishes

CuAu Collisions – Exploiting the flexibility of RHIC

- Why interesting?
 - Naturally odd harmonics
 - Possibility to investigate a "true v3"
 - Large "corona" on Au-side
 - Giving rise to more detailed investigation of it's size
 - "v₁-like" azimuthal dependence
 - Completely swallowed Cunucleus in central collisions
 - Cu-going corona vanishes

Spectator nucleons

Glauber model CuAu, b=0fm

V n

Spectators
ONLY

b=7.5fm

- Measure particle production relative to Auspectator plane
 - Representative of the true reaction-plane
- In data → use the showermax in the ZDCs (neutron reaction-plane)
 - Hadrons at mid-rapidity exhibit large v₂ and v₁
 (not observed in AuAu)
 - Not consistent with a large v₃.

