Probing Hot Mediums at SPS, RHIC and LHC by Quarkonia

Pengfei Zhuang (Tsinghua University, Beijing)

Collaboration with Kai Zhou and Nu Xu

Quarkonium 2013, IHEP Beijing, April 22 – 26, 2013

A Hard Probe of QGP

Matsui and Satz, 1987:

charmonia as a probe of QGP formation in heavy ion collisions.

dissociation temperature from non-relativistic potential model :

state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

relativistic correction (Guo, Shi, Zhuang, 2013):

 $\approx 10\%$ sequential suppression:

Nuclear Modification Factor R_{AA}

 R_{AA} < 1 at SPS, RHIC and LHC and the trend is similar. momentum distribution should be more sensitive to the nature of the medium !

Cold and Hot Nuclear Matter Effects

Both Cold & Hot Nuclear Matter Effects on Quarkonium Production !

Competition between Dissociation and Production

important regeneration at RHIC and LHC: in QGP

$$c + \overline{c} \rightarrow J/\psi + g$$

in hadron gas

$$D + \bar{D} \rightarrow J/\psi +$$
 mesons

PBM and Stachel, 2000 Thews, Schroedter, Rafelski, 2001 Grandchamp, Rapp, Brown, 2004 Gorenstein, Kostyuk, Stoecker, Greiner, 2001 Greco, Ko, Rapp, 2004,

SPS: dominant initial production *RHIC: both initial production and regeneration are important LHC: dominant regeneration*

A Full Transport Approach

medium evolution

$$\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\mu}n^{\mu} = 0 + equation of state$$

hot nuclear matter effects on quarkonium production

$$\begin{split} \partial f_{\Psi} / \partial \tau + \mathbf{v}_{\Psi} \cdot \nabla f_{\Psi} &= -\alpha_{\Psi} f_{\Psi} + \beta_{\Psi}. \qquad \textbf{a: dissociation } \boldsymbol{\beta}: \textbf{regeneration} \\ \alpha_{\Psi}(\mathbf{p}_{t}, \mathbf{x}_{t}, \tau | \mathbf{b}) &= \frac{1}{2E_{\Psi}} \int \frac{d^{3}\mathbf{p}_{g}}{(2\pi)^{3}2E_{g}} W_{g\Psi}^{c\bar{c}}(s) f_{g}(\mathbf{p}_{g}, \mathbf{x}_{t}, \tau) \Theta \left(T(\mathbf{x}_{t}, \tau | \mathbf{b}) - T_{c}\right), \\ \beta_{\Psi}(\mathbf{p}_{t}, \mathbf{x}_{t}, \tau | \mathbf{b}) &= \frac{1}{2E_{\Psi}} \int \frac{d^{3}\mathbf{p}_{g}}{(2\pi)^{3}2E_{g}} \frac{d^{3}\mathbf{p}_{c}}{(2\pi)^{3}2E_{c}} \frac{d^{3}\mathbf{p}_{\bar{c}}}{(2\pi)^{3}2E_{\bar{c}}} W_{c\bar{c}}^{g\Psi}(s) f_{c}(\mathbf{p}_{c}, \mathbf{x}_{t}, \tau | \mathbf{b}) f_{\bar{c}}(\mathbf{p}_{\bar{c}}, \mathbf{x}_{t}, \tau | \mathbf{b}) \\ &\times (2\pi)^{4} \delta^{(4)}(p + p_{g} - p_{c} - p_{\bar{c}}) \Theta \left(T\left(\mathbf{x}_{t}, \tau | \mathbf{b}\right) - T_{c}\right), \end{split}$$

$$\begin{aligned} f_{\Psi}(\mathbf{p}_{t},\mathbf{x}_{t},\tau|\mathbf{b}) &= f_{\Psi}(\mathbf{p}_{t},\mathbf{x}_{t}-\mathbf{v}_{\Psi}(\tau-\tau_{0}),\tau_{0}|\mathbf{b})e^{-\int_{\tau_{0}}^{\tau}d\tau'\alpha_{\Psi}(\mathbf{p}_{t},\mathbf{x}_{t}-\mathbf{v}_{\Psi}(\tau-\tau'),\tau'|\mathbf{b})} \\ &+ \int_{\tau_{0}}^{\tau}d\tau'\beta_{\Psi}(\mathbf{p}_{t},\mathbf{x}_{t}-\mathbf{v}_{\Psi}(\tau-\tau'),\tau'|\mathbf{b})e^{-\int_{\tau'}^{\tau}d\tau''\alpha_{\Psi}(\mathbf{p}_{t},\mathbf{x}_{t}-\mathbf{v}_{\Psi}(\tau-\tau''),\tau''|\mathbf{b})} \end{aligned}$$

both initial production and regeneration suffer from dissociation !

• cold nuclear matter effects on the initial quarkonium distribution and the charm quark distribution

Dissociation and Regeneration Rate

$$J/\psi(\Upsilon) + g \rightarrow Q + \overline{Q}$$

• gluon dissociation cross section calculated by OPE (Bhanot, Peskin, 1999):

$$\sigma(p_{\psi}, p_{g})$$

at finite temperature, we use the classical relation

$$\sigma(p_{\psi}, p_{g}, T) = \frac{\langle r^{2} \rangle(T)}{\langle r^{2} \rangle(0)} \sigma(p_{\psi}, p_{g})$$

(*T*) is calculated through the Schroedinger equation

regeneration rate is determined by the detailed balance

Pt Dependence of the Two Production Mechanisms

Initial production through hard process controls high pt, regeneration in hot medium is important at low pt.

Initial and regeneration fractions for J/Ψ in central Pb+Pb collibsions at LHC energy

Prediction on Centrality Distribution at LHC

from talk by J.Wiechula at Hard Probe 2012

the band is due to the uncertainty in charm quark production cross section

Prediction on Pt Distribution at LHC

from talk by R.Arnaldi at QM2012

Prediction on Elliptic flow at LHC

A New Nuclear Modification Factor

 $r_{AA} > 1$ at SPS by Cronin effect

 $r_{AA} \approx 1$ at RHIC by competition between initial production and regeneration

 $r_{AA} < 1$ at LHC by dominant regeneration

for prompt J/ψs at 5.5 TeV in mid rapidity

Experimantal Data from ALICE

Double Ratio and B Decay Contribution

15

Conclusions

1) Transverse momentum distribution is more sensitive to the nature of the medium.

2)
$$r_{AA} = \frac{\left\langle p_t^2 \right\rangle_{AA}}{\left\langle p_t^2 \right\rangle_{pp}} = \begin{cases} >1 & \text{SPS} \\ \approx 1 & \text{RHIC} \quad is a more sensitive probe of} \\ <1 & \text{LHC} \quad \text{QGP.} \end{cases}$$

3) Charm quarks are likely thermalized in the medium.

<u>Input</u>

medium evolution

RHIC:
$$\tau_0 = 0.6 \text{ fm}, \ \sigma_{pp} = 41 \text{ mb}, \ T_0 = 344 \text{ MeV}$$

LHC: $\tau_0 = 0.6 \text{ fm}, \ \sigma_{pp} = 62 \text{ mb},$
 $T_0 = 430 \text{ and } 484 \text{ MeV} \text{ for forward and mid rapidity}$

• initial production

RHIC:
$$\sigma_{abs} = 0$$
, $a_{gN} = 0.1 \text{ GeV}^2 / fm$,
 $\sigma_{pp}^{J/\psi} = 0.42 \text{ and } 0.74 \ \mu \text{b}$ for forward and mid rapidity
LHC: $\sigma_{abs} = 0$, $a_{gN} = 0.15 \text{ GeV}^2 / fm$,
 $\sigma_{pp}^{J/\psi} = 2.33 \text{ and } 3.5 \ \mu \text{b}$ for forward and mid rapidity
RHIC: $\sigma_{pp}^{c\overline{c}} = 0.04$ and $0.12mb$ for forward and mid rapidity
LHC: $\sigma_{pp}^{c\overline{c}} = 0.28 \text{ and } 0.6 \text{ mb for forward and mid rapidity}$

LHC: $\sigma_{pp}^{c\bar{c}} = 0.38$ and 0.6 *mb* for forward and mid rapidity V=U for T_d <u>
Υ</u>, a Cleaner Probe at RHIC

J/ψ :

the production and suppression mechanisms are complicated: there are primordial production and nuclear absorption in the initial state and regeneration and dissociation during the evolution of the hot medium.

Υ:

- 1) the regeneration can be safely neglected;
- 2) there is almost no feed-down for Υ ;
- 3) weaker CNM effect

Υ at RHIC: $R_{AA}(p_t)$

Liu, Chen, Xu, Zhuang: arXiv:1009.2585,PLB2011

central Au+Au at √s=200 GeV

Tat RHIC:
$$\langle p_t^2 \rangle (N_p)$$

relation between Y at RHIC and J/ψ at SPS: on Y regeneration at RHIC and no J/ψ regeneration at SPS

 $T_D^{\Upsilon(1s)} = 4T_c > T_{RHIC} \text{ no } \Upsilon(1s) \text{ suppression at RHIC}$

 $T_D^{J/\psi} = 2T_c > T_{SPS}$ no J/ ψ suppression at SPS

both are controlled by the Cronin effect !

$$\Delta \langle p_t^2 \rangle = \langle p_t^2 \rangle_{AA} - \langle p_t^2 \rangle_{pp} = a_{gN}L$$

$$\Delta \langle p_t^2 \rangle_{\Upsilon}^{RHIC} = \frac{a_{gN}^{RHIC} R_{Au}}{a_{gN}^{SPS} R_{Pb}} \Delta \langle p_t^2 \rangle_{J/\psi}^{SPS} = 2.4\Delta \langle p_t^2 \rangle_{J/\psi}^{SPS}$$

Au+Au at √s=200 GeV

Liu, Chen, Xu, Zhuang: arXiv:1009.2585,PLB2011

Υ at RHIC: $R_{AA}(N_p)$

Y.Liu, B.Chen, N.Xu, PZ, PLB2011

• from the comparison with data, V is close to U.

 Υ at LHC: $R_{AA}(N_p)$

Υ at LHC: $R_{AA}(p_t)$

high pt is controlled by initial production !

Measuring RHIC Temperature by Excited *Y* **States**

initial temperature dependence of R_{AA}

suppression of excited Υ states is sensitive to the fireball temperature ! $_{24}^{24}$

Charmonium in pp Collisions

observation: $J/\psi, \psi' \rightarrow \mu^+ \mu^-$,

$$\frac{\sigma^{pp \to \psi' X} \cdot B(\psi' \to \mu^+ \mu^-)}{\sigma^{pp \to J/\psi X} \cdot B(J/\psi \to \mu^+ \mu^-)} \square 1.5\%$$

difficult to observe ψ '!

 Ψ ' and χ_c decay into J/ ψ :

$$P(\chi_c \to J/\psi + \gamma) \Box 30\%$$
$$P(\psi' \to J/\psi + 2\pi) \Box 10\%$$
direct production $\Box 60\%$

mechanisms for quarkonium production in pp: it is difficult to describe quarkonium formation due to confinement problem

1) color evaporation model:

2) color-singlet model:

3) color-octet model:

$$gg \to \text{colored} \left[c\overline{c}\right] \xrightarrow{\text{color evaporation}} J/\psi$$
$$gg \to \left[c\overline{c}\right]_{J/\psi} + g$$
$$\sum_{n} \left(gg \to \left[c\overline{c}\right]_{n} + X\right)$$

n: quantum numbers of color, angular momentum and spin

Cold Effect: Nuclear Absorption

Nuclear Modification Factor:

$$R_{AA} = \frac{\sigma_{AA}^{J/\psi}}{N_c \sigma_{pp}^{J/\psi}} = \begin{cases} 1, & \text{no medium effect} \\ <1, & J/\psi \text{ supression} \\ >1, & J/\psi \text{ enhancement} \end{cases}$$

Matsui and Satz, 1986:

J/ψ suppression as a probe of QGP in AA collisions

However,

1) suppression is observed in pA collisions where QGP is not expected !

2) J/ ψ and ψ ' have the same suppression !

Cold Effect: Cronin Effect

Cronin effect:

gluon multi scattering with nucleons before they fuse into a cc pair.

27

Cold Effect: Shadowing Effect

parton distribution function (PDF) in a nucleus is different from a simple superposition (Glauber model) of the PDF in a free nucleon.

