Quarkonium measurements in Pb-Pb collisions at $\sqrt{s_{_{NN}}}$ =2.76 TeV

Ionut-Cristian Arsene for the ALICE Collaboration

- Introduction
- J/ψ measurements
- A first look at ψ'

QWG9, Beijing, 22-26 april 2013

Charmonia in medium

- Charm quark pairs are created early, during the initial hard scatterings
- How is the charmonia affected by the hot and dense medium?
 - Debye screening (T.Matsui, H.Satz 1986)
 - Production at the chemical freeze-out (P.Braun-Munzinger, J.Stachel, 2000)
 - In medium (re)combination (Thews et al.)
- Not so simple to answer, many effects need to be understood
 - Cold nuclear matter effects (nuclear absorbtion, formation time, shadowing)
 - Feed-down from higher charmonium states and beauty

Quantifying medium effects

 Strong hadron suppression seen in Pb-Pb collisions at the LHC even above 50 GeV

Ionut Arsene, EMMI/GSI

QWG 2013, IHEP, Beijing

J/ψ measurements at lower energies

- Strong J/ ψ suppression seen at RHIC and at SPS energies
- Competing effects having different dependence on collision energy

Cold nuclear matter (CNM) effects

 CNM effects strong at RHIC energies → need to be disentangled in order to understand final state effects

Cold nuclear matter (CNM) effects

- Some interpretations suggest supression at mid-rapidity could be explained by CNM alone
- CNM effects are also studied at LHC and results will be available soon

The ALICE setup

The J/ ψ in ALICE

Phase space coverage

- |y|<0.9 (J/ψ→e⁺e⁻)
- 2.5<y<4 (J/ ψ \rightarrow $\mu^{+}\mu^{-}$)
- *p*_T>0 GeV/c

The pp reference

ALICE Collaboration, arXiv:1203.3641 dσ_{J/ψ} /dy (μb) dσ_{J/ψ}/dy (μb) ALICE, |y|<0.9</p> $\mu^+\mu^-$, $\sqrt{s}=7$ TeV (±5.5% luminosity) CDF, |y|<0.6 ALICE pp e⁺e⁻, vs=2.76 TeV (±3% luminosity) μ+μ, vs=2.76 TeV (±3% luminosity) PHENIX, |y|<0.35 5 3 2 open: reflected 0^L <u>-----</u>-2 -2 -1 0 1 -3 2 3 10 √s (TeV) $\sigma_{J/\psi}(|y| < 0.9) = 6.71 \pm 1.24 (stat.) \pm 1.22 (syst.) \mu b$ $\sigma_{J/\psi}(2.5 < y < 4.0) = 3.34 \pm 0.13 (stat.) \pm 0.27 (syst.) \mu b$

L.Bianchi, Monday

Ionut Arsene, EMMI/GSI

QWG 2013, IHEP, Beijing

9

Inclusive J/ ψ R_{AA} vs. centrality

• Higher $R_{_{AA}}$ seen in central collisions by ALICE at both mid- and forward rapidity

Ionut Arsene, EMMI/GSI

QWG 2013, IHEP, Beijing

10

Inclusive J/ ψ R_{AA} vs. particle density

• $R_{_{AA}}$ at the same charged particle density grows with the collision energy

QWG 2013, IHEP, Beijing

J/ψ suppression in models

- Models which consider the (re)combination of charm pairs from the QGP are in qualitative agreement with the data
- Theoretical calculations limited by the unknown integrated cc-bar cross-section

Inclusive J/ ψR_{AA} vs. p_{T}

- Less suppression seen at low $p_{_{\rm T}}$ compared to high $p_{_{\rm T}}$ in central collisions

Inclusive J/ ψR_{AA} vs. p_{T}

• Low $p_{\tau} R_{\rm AA}$ is 3 times higher at LHC than at RHIC

Inclusive J/ ψR_{AA} vs. p_{T}

• Calculations from *Zhao et al.* in agreement with data in central collisions but overestimate the yield at low p_{τ} in peripheral collisions.

$J/\psi p_{T}$ distributions

- The J/ ψp_{τ} spectrum in Pb-Pb at LHC is softer than in pp at all centralities.
- An opposite behaviour is observed at lower energies

Inclusive J/ ψ R_{AA} vs. rapidity

- Suppression becomes stronger with increasing rapidity
- This dependence seems not to be explained by shadowing calculations

Elliptic flow

- Flow measurements at RHIC are compatible with zero
- J/ψ expected to inherit some elliptic flow from the medium via the (re)combination mechanism ?

Open heavy flavour at LHC

- Open charm shows high suppression towards central collisions
- Strong flow measured, as for the charged hadrons
- Charm quarks are thermalized

Elliptic flow of J/ψ at LHC

- Hint of non-zero v_2 in the intermediate p_{τ} region seen in ALICE?
- Transport models with (re)combination in agreement with data.

So what do we observe?

- Higher R_{AA} compared to RHIC, concentrated at low p_{T}
- The p₁ spectrum becomes softer from pp towards central collisions, opposite to low energy results
- The amount of suppression decreases when going from forward towards mid-rapidity
- ALICE data may indicate non-zero elliptic flow
- (Re)combination models agree with the data
- Looking forward for the pPb results !

$\psi(2S)/\psi(1S)$

- ALICE uses the pp reference measured at √s=7 TeV
- CMS had measured pp reference at $\sqrt{s}=2.76$ TeV
- No final conclusion yet due to large uncertainties but a large ψ(2S) enhancement seem to be excluded in central collisions in ALICE data

ALI-PREL-36620

Summary

- The nuclear modification factor for inclusive J/ψ in Pb-Pb collisions
 - *R*_{AA} measured by ALICE is significantly higher than the one measured at RHIC both at mid- and forward-rapidity.
 - The J/ ψp_{T} distributions become softer with increasing centrality. This trend is opposite to what is measured at lower energies
 - The amount of suppression increases when going to forward rapidity
 - Data indicates non-zero elliptic flow as generically expected if the charm quarks thermalize in the plasma
 - The results are qualitatively described in models which include the formation of charmonium in the medium or at the chemical freeze-out.
 - Results from pPb collisions will be available and help disentangling the CNM effects
- The $\psi(2S)/\psi(1S)$ ratio was measured at forward rapidity in ALICE. The large error bars prevent a firm conclusion but a large $\psi(2S)$ enhancement in central collisions is unlikely.
- Results for $\Upsilon(1S)$ will be available within the next weeks

Backup slides

$J/\psi \rightarrow e^+e^-$ reconstruction

- Kinematics
 - |y^{J/ψ}|<0.9, p_T^{J/ψ}>0 GeV/c
 - $|\eta_e| < 0.9, p_T^e > 0.85 \text{ GeV/}c$
- Tracking
 - Primary track requirements using ITS and TPC

- Particle identification
 - TPC+TOF
- Conversion electrons rejection
 - ITS cluster requirements on electron candidates
 - Removal of tracks from reconstructed $\gamma\text{-conversion V}_{_0}$'s

Ionut Arsene, EMMI/GSI

$J/\psi \rightarrow \mu^{+}\mu^{-}$ reconstruction

- Muons are reconstructed using tracking chambers placed behind a thick hadron absorber
- Kinematics:
 - Trigger on $p_{\tau}^{\mu}>1$ GeV/c
 - 2.5< y^{J/ψ}<4
 p_τ^{J/ψ}>0 GeV/c

Inclusive J/ ψ R_{AA} vs. centrality

Inclusive J/ ψR_{AA} vs. centrality in p_{T} bins

• Low $p_{T} J/\psi$ less suppressed in central collisions

Inclusive J/ ψR_{AA} vs. centrality in p_{T} bins

• Transport models (e.g. *Zhao et. al*) suggest that ~50% of the J/ ψ yield at low p_{τ} is produced via (re)combination of charm quarks

Raa vs rapidity in central collisions

Heavy flavour electrons

