

Quarkonium production at LHCb

ZHANG Yanxi On behalf of the LHCb collaboration

Quarkonium 2013

The 9th International Workshop on Heavy Quarkonium

April 22-26, 2013, IHEP, Beijing

- Motivation
- Detector and operation
- Selected quarkonium results
 - ✓ J/ ψ ,Y(nS) production at $\sqrt{s} = 8$ TeV
 - $\checkmark \chi_b$ states
 - \checkmark Exclusive J/ ψ and ψ (25)
 - $\checkmark \chi_c$ production
- Conclusions and outlook

Motivation

- Quarkonia production provides powerful test of perturbative and non-perturbative aspects of QCD
- Production mechanism in hadron colliders still uncertain
 - ✓ NRQCD mechanism including color singlet (CS) and color octet (CO) contributions describes the p_T dependent cross section of J/ψ as measured by Tevatron, but not the polarization
 - ✓ Color evaporation model (CEM), k_T factorization etc. cannot describe the cross section and polarization data simultaneously either
- Results from LHC experiments will be helpful to understand the issue

LHCb spectrometer

LHCb Operation

- J/ ψ and $\Upsilon(nS)$ production in 2012 data
 - ✓ pp collisions with $\sqrt{s} = 8$ TeV
- Signal reconstructed in $\mu^+\mu^-$ channel
 - ✓ $p_{\rm T}(\mu^{\pm}) > 0.7 (1.0)$ GeV/c for J/ψ (Y)
 - ✓ Prob(vertex χ^2 /ndof) > 0.5 %
- Inclusive double differential cross section: $\frac{d^{2}\sigma}{dydp_{T}}(pp \rightarrow VX) = \frac{N(V \rightarrow \mu^{+}\mu^{-})}{L \times \varepsilon \times Br(V \rightarrow \mu^{+}\mu^{-}) \times \Delta y \times \Delta p_{T}}$ V: J/ ψ or Y(nS) L: integrated luminosity N: number of events determined by fitting invariant mass distribution
 - 2.6m J/ ψ , 60 k Y(nS) in total

 $M(\mu^{-}\mu^{+})$ [MeV/ c^{2}]

Prompt J/ψ and J/ψ from *b*-hadron decays • discriminated by pseudo decay time t_z :

$$t_{z} = \frac{\left(z_{J/\psi} - z_{\rm PV}\right) \times M_{J/\psi}}{p_{z} \left(J/\psi\right)}$$

- Empirical function for backgrounds based on mass sidebands
- \checkmark δ-function for prompt
- \checkmark Exponential function of J/ ψ from b
- ✓ Resolution included for each component

LHCb

Prompt J/ ψ differential cross section as a function of p_{T} integrated over y range [2.0,4.5]

LHCb J/ ψ from b, $p_{\tau} \le 14 \text{ GeV}/c$

LHCb Preliminary

FONLL, $p_{\tau} \le 14 \text{ GeV}/c$

4

cross section of J/ψ from *b* hadron decay

FONLL: JHEP 05 (1998) 007, JHEP 1210 (2012) 137

у

Large uncertainties on Br($\Upsilon(nS) \rightarrow \mu^+ \mu^-$)

Presents cross section times branching fraction

 $\Upsilon(1S)$ differential cross section as a function of p_T integrated over y range [2.0,4.5]

- Mass difference fitted with gaussian for signal + empirical function for background.
 - ✓ N (x_b (1P)) = 201±55, ΔM=447±4 MeV/c², σ=19±4 MeV/c²
 - ✓ Three x_{bJ} (1P) cannot be resolved
- Fraction of Y(1S) from $x_{bJ}(1P)$ decay: $(20.7 \pm 5.7 \pm 2.1^{+2.7}_{-5.4})\%$

 ΔM fitted with 3 Gaussian functions for signal peaks + empirical background $x_b(3P)$: 196± 19 events, 12 standard deviations

 xb(3P) mass agrees with ATLAS (PRL 108 (2012) 152001) and CDF (PRD 86 (2012) 031103)

 2013/4/22

 ZHANG Y. Tsinghua University

 13

Exclusive ψ production

LHCB-PAPER-2012-044 (arXiv:1301.7084v1)

- Photo-production through double gluon exchange process: $\gamma p \rightarrow \psi p$
- ψ reconstructed in $\mu^+\mu^-$ channel with 36 pb⁻¹ 2011 data
 - \checkmark no other tracks and photons in detector

 $\sigma(X_{c2})/\sigma(X_{c1})$ ratio

LHCb: PLB 714 (2012) 215-223 CONF-2011-062

by calorimeter

- Cross section ratio χ_{c2}/χ_{c1} sensitive to production mechanisms
 - \checkmark spin counting yields 5/3
 - ✓ CDF (PRL 98, 232001 (2007)): ~0.7
- LHCb measures the X_c production ratio in channel $\chi_{cJ} \rightarrow J/\psi(\mu^+\mu^-)\gamma$
 - \checkmark Three kinds of photons reconstructed
 - \succ non-converted photons
 - photons converted after magnet
 - photons converted before magnet by tracking for e⁺e⁻ 2011 370pb⁻¹
 - \checkmark Prompt χ_{cJ} selected with pseudo decay time
 - > t_z <0.1 ps, χ_{cJ} from b < 0.1%
 - $\checkmark \chi_{cJ}$ analyzed in bins of $J/\psi p_T$
 - $\checkmark\,$ Same selections for χ_{c2} and $\chi_{c1}\colon$ systematic uncertainties cancel significantly

2010 36pb⁻¹

Yields determined by fitting the invariant mass differences CONF-2011-062

 $\sigma(X_{c2})/\sigma(X_{c1})$ ratio

ChiCGen predictions lie consistently below data, probably can be explained by not inclusion of higher order corrections and/or CO terms in the calculation. In high $J/\psi p_T$ range, measurements agree with NLO NRQCD prediction.

 $\sigma(X_c \rightarrow J/\psi\gamma)/\sigma(J/\psi)$ ratio

LHCb: PLB 718 (2012) 431-440

 χ_{cJ} reconstructed with only calorimeter photons

 \checkmark selections similar as in $\sigma(X_{c2})/\sigma(X_{c1})$ ratio analysis

Ratio increasing with $J/\psi p_T$, trend different from CDF result. Results agree with NLO NRQCD prediction.

Conclusion

- Quarkonium production has provided ideal place to test QCD
 - \checkmark Cross section and polarization both important in the test
 - \checkmark High order corrections crucial in some phase space region
- LHCb has many important production results in quarkonim physics
 - $\checkmark~J/\psi,\Upsilon(nS)$ production cross section measurement
 - \checkmark Cross section ratio measurement
 - ✓ Observation of new quarkonium states
- Many more results in preparation
 - ✓ Polarizations of J/ψ , $\psi(2S)$, $\Upsilon(nS)$, χ_c , etc
 - ✓ Multi heavy quark(onium) production
 - ✓ Quarkonium in the A-p, p-A collisions in LHCb
 - ✓ Search for new states

Thanks for listening