Endpoint Logarithms in $e^+e^- ightarrow J/\psi + \eta_c$

Hee Sok Chung Korea University

In collaboration with

Geoffrey T. Bodwin (Argonne) and Jungil Lee (Korea U.)

G.T. Bodwin, H. S. Chung, J. Lee, PoS CONFINEMENT X 133 (2013) [arXiv:1301.3937 [hep-ph]] G.T. Bodwin, H. S. Chung, J. Lee, in preparation

MG The 9th International Workshop on Heavy Quarkonium April 22-26, 2013, IHEP, Beijing

Outline

- $e^+e^- \rightarrow J/\psi + \eta_c$ in B factories
- Endpoint double logarithms in $e^+e^- \rightarrow J/\psi + \eta_c$
- Summary

$e^+e^- ightarrow J/\psi + \eta_c$ in B Factories

- Belle (2004) : $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] \times B_{>2} = 25.6 \pm 2.8 \pm 3.4$ fb Belle, PRL89, 142001 (2002) and PRD70, 071102(R) (2004) BABAR (2005) : $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] \times B_{>2} = 17.6 \pm 2.8^{+1.5}_{-2.1}$ fb BABAR, PRD72, 031101(R) (2005)
- At LO in α_s and v, NRQCD severely underestimates the cross section : $\sigma_{\rm LO~NRQCD} = 3.78 \pm 1.26 {\rm fb}$ Braaten and Lee, PRD67, 054007 (2003) $5.5 {\rm fb}$ Liu, He and Chao, PLB557, 45 (2003)
- The relativistic corrections enhance the cross section moderately.
 Bodwin, Lee and Yu, PRD77, 094018 (2008)
 The QCD NLO corrections give a *substantial* enhancement to the cross section.

Zhang, Gao and Chao, PRL96, 092001 (2006) Gong and Wang, PRD77, 054028 (2008)

Double Logarithms in $e^+e^- ightarrow J/\psi + \eta_c$

• A fixed-order calculation is unreliable, because the QCD NLO corrections involve $\alpha_s \log^2(m^2/s)$. (In B factories, $\alpha_s \log^2(m^2/s) \approx 3$)

Jia, Wang and Yang, JHEP10, 105 (2011)

• In this work we investigate the **origin of the double logarithms** at NLO in α_s .

Finding Double Logarithms in $e^+e^- ightarrow J/\psi + \eta_c$

• We work at leading order in the relative velocity of $Q Q\,$ of the charmonia.

 $P_{J/\psi} = 2p, \quad P_{\eta_c} = 2\bar{p}, \quad p^2 = \bar{p}^2 = m^2, \quad Q = P_{J/\psi} + P_{\eta_c}$

- p is collinear to plus, \bar{p} is collinear to minus.
- The logarithms in *m* can be identified as would-be soft and collinear singularities regulated by the quark mass *m*.
- The process $e^+e^- \rightarrow J/\psi + \eta_c$ violates the helicity selection rule, so that we cannot ignore the quark masses in the numerators. Brodsky and Lepage, PRD24, 2848 (1981)

1-Loop Diagrams

- The $Q\bar{Q}$ pair going up forms the J/ψ , the rest forms η_c .
- There are also charge conjugation diagrams.
- Diagrams that do not allow logarithmic power counting are ignored.

Origins of Double Logarithms

- The double logarithms in each diagram come from the Sudakov and endpoint logarithms. $p \nmid p \downarrow$
- Sudakov double logs : the momentum of the gluon is simultaneously soft and collinear.
- Endpoint double logs : gluons carry almost all of the collinear momentum from a spectator line to an active line. The double log occurs when the momentum of the spectator line is simultaneously soft and collinear.

Origins of Double Logarithms

- A change of variables makes the endpoint double log look like a Sudakov double log.
- Sudakov Double Logs

$$S = \int \frac{d^d k}{(2\pi)^d} \frac{1}{(k^2 + i\varepsilon)[(k-p)^2 - m^2 + i\varepsilon][(k+\bar{p})^2 - m^2 + i\varepsilon]}$$

= $\frac{i}{4\pi^2 Q^2} \left[\left(\frac{1}{\epsilon_{\rm IR}} - \log(m^2/\mu^2) \right) \log(m^2/Q^2) + \frac{1}{2} \log^2(m^2/Q^2) + \cdots \right]$

8

Endpoint Double Logs

$$\mathcal{E} = \int \frac{d^{d}\ell}{(2\pi)^{d}} \frac{1}{(\ell^{2} - m^{2} + i\varepsilon)[(\ell + p)^{2} + i\varepsilon][(\ell - \bar{p})^{2} + i\varepsilon]}$$

= $\frac{i}{8\pi^{2}Q^{2}} [\log^{2}(m^{2}/Q^{2}) + \cdots].$

April 23, 2013

Sudakov Double Logarithms

• By applying the soft approximation we can prove that the Sudakov logarithms **cancel** between soft gluon insertions into quark and antiquark lines.

 ${\mathcal S}$ cancel in the sum

Sudakov Double Logarithms

• Therefore the Sudakov double logarithms cancel in the sum of all diagrams.

• The double logarithms in $e^+e^- \rightarrow J/\psi + \eta_c$ originate solely from endpoint double logarithms.

Endpoint Double Logarithms

- Endpoint double logs appear when ℓ is softcollinear.
- Helicity flip in the spectator quark line eliminates a factor of ℓ in the numerator, giving logarithmic power counting for soft-collinear scaling.

$$\mathcal{E} = \int \frac{d^d \ell}{(2\pi)^d} \frac{1}{(\ell^2 - m^2 + i\varepsilon)[(\ell + p)^2 + i\varepsilon][(\ell - \bar{p})^2 + i\varepsilon]}$$

Endpoint Double Logarithms

• The following diagrams potentially contain endpoint logs.

- Soft quark line
- Collinear quark line with momentum containing p, but not $ar{p}$
- Collinear quark line with momentum containing \bar{p} , but not p

Absence of Power Divergences

- The additional collinear lines may give power divergences.
- If l is collinear to +, then all momenta surrounding the upper gluon is collinear to +.
 Then, the numerator vanishes because

Then, the numerator vanishes because we can anticommute away any of the $-\overline{p} \not\models \overline{p}$ momenta so that it is adjacent to another one collinear to the same direction. The numerator must have a factor ℓ^- or ℓ_{\perp} .

 $\ell + 2p$

- Therefore the numerator must have a factor $\ell \cdot p$ or ℓ^2 . $\ell \cdot p$ produces an endpoint double log, and ℓ^2 gives a collinear log, but not a double log.
- The same analysis can be repeated for the remaining diagrams.

Absence of Endpoint Logs without Helicity Flip

• Consider a process satisfying the helicity selection rule, such as $e^+e^- \rightarrow h_c + \eta_c$. In the soft approximation,

 $\int \frac{d^d \ell}{(2\pi)^d} \frac{\ell}{\ell^2 + i\varepsilon} \frac{1}{2\ell \cdot p + i\varepsilon} \frac{1}{-2\ell \cdot \bar{p} + i\varepsilon} \times \text{ collinear fermion lines}$

• The collinear fermion lines give

$$\frac{\ell + a\not p}{2a\ell \cdot p + i\varepsilon}, \quad \frac{\ell + b\not p}{2b\ell \cdot \bar p + i\varepsilon}$$

The $p \neq 0$ or $p \neq 0$ is eliminated by the equations of motion; the collinear fermion lines do not change the power of the loop momentum in the integrand, giving $\sim \int_{\ell} 1/\ell^3$. Therefore **endpoint logs are absent without helicity flip**.

• This even holds when the relative velocity of Q ar Q is retained.

Endpoint Logs with Helicity Flip

• In the helicity-suppressed processes, we have

 $\int \frac{d^d \ell}{(2\pi)^d} \frac{\ell + m}{\ell^2 + i\varepsilon} \frac{1}{2\ell \cdot p + i\varepsilon} \frac{1}{-2\ell \cdot \bar{p} + i\varepsilon} \times \text{ collinear fermion lines}$

• The collinear fermion lines give

 Helicity flip is obtained by either picking up the quark masses or using the equations of motion for the collinear fermion lines. This eliminates a factor of *l* in the numerator.
 Helicity flip gives the correct logarithmic scaling for endpoint double logarithm.

Summary

- We investigated the origin of the double logarithms in $e^+e^- \to J/\psi + \eta_c$.
- Sudakov double logarithms cancel in the sum over all diagrams, while endpoint double logarithms remain.
- The endpoint double logarithms are re-interpreted as a leading region of loop integration in which a spectator fermion line becomes soft-collinear.
- This re-interpretation may simplify the resummation of logarithms in m^2/s .
- The factorization for the helicity-flip process is currently under development.

Supplementary

1-Loop Diagrams

• The following diagrams do not have double logs

+ charge-conjugation diagrams+ diagrams with counterterms

Cancellation of Sudakov Logs

Insertion of soft gluons into collinear-to-minus lines (contribution from collinear-to-plus region). The Sudakov double logs cancel in these combinations.

Cancellation of Sudakov Logs

Insertion of soft gluons into collinear-to-plus lines (contribution from collinear-to-minus region). The Sudakov double logs cancel in these combinations.

Cancellation of Sudakov Logs

Because the lower meson has C = +1, the paired diagrams

are same.

The Sudakov double logarithms cancel in each diagram.