The exotic Y states via ISR at BaBar

Peter Lewis Stanford University | SLAC on behalf of the BaBar Collaboration 26 April 2013 QWG 2013 Beijing

Outline

THE EXOTIC Y STATES

• UPDATE OF THE $\pi^+\pi^-J/\psi$ ISR ANALYSIS AT BABAR Context New $\pi^+\pi^-J/\psi$ results Analysis of $\pi^+\pi^-$ in $\pi^+\pi^-J/\psi$ Summary

- Update of the $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\psi(2S)$ ISR analysis at BaBar

Context New $\pi^+\pi^-\psi(2S)$ results Analysis of $\pi^+\pi^-$ in $\pi^+\pi^-\psi(2S)$

Summary

The exotic Y states

Exotic charmonium-like states above open-charm threshold

- Need no introduction here!
- Focus primarily on the "Y" candidates: J^{PC}= 1⁻⁻

Production technique

- Pseudo-direct production in ISR events
- Look at strong decay modes strongly suppressed for charmonium above threshold [such as $Y\to\pi^+\pi^-\,J/\psi$]
- Previous BaBar analyses using the ISR method discovered the Y(4260) and Y(4325) but were based on partial datasets
- Re-analyze in ISR modes with full BaBar dataset

Update of the π⁺π⁻J/ψ ISR analysis at BaBar

PRD-RC 86, 051102 (2012)

The $\pi^+\pi^- J/\psi$ mode in ISR

Radiative Return technique

- ee collider operating at higher resonances
- ISR events lower CM energy of *ee* collision
- Direct production of J^{PC} = 1⁻⁻ states
- Existing data provide effective "scan" of energies at charmonium levels
- Explicit reconstruction of ISR photon not necessary

ISR production in charmonium region

- Direct production of any J^{PC}= 1⁻⁻ state X
- Plausible X decay modes include $X \to \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \, J/\psi$
- If X is charmonium, this mode is highly suppressed above the open-charm threshold:
 - $e^+e^- \rightarrow \gamma_{\text{ISR}} X$
 - $X \rightarrow \pi^+ \pi^- J/\psi$
 - $J/\psi \rightarrow l^+l^-$
- Exotic state enhancements seen in this mode
- Remains one of the most fruitful analysis modes

BaBar: Y(4260) observation

- PRL 95, 142001 (2005)
- 8σ enhancement with ISR method

$$m_{Y(4260)} = (4259 \pm 8^{+2}_{-6}) MeV / c^2$$

$$\Gamma_{Y(4260)} = (88 \pm 23^{+6}_{-4}) MeV$$

BaBar: Y(4260) observation

- PRL 95, 142001 (2005)
- 8σ enhancement with ISR method

 $m_{Y(4260)} = (4259 \pm 8^{+2}_{-6}) MeV / c^2$ $\Gamma_{Y(4260)} = (88 \pm 23^{+6}_{-4}) MeV$

CLEO: Y(4260) confirmation

- CLEO III: ISR method [pictured]
- PRD 74, 091104(R) (2006)
- CLEO-c: scan/direct production
- PRL 96, 162003 (2006)
- $\pi^0\pi^0$ mode implies 0 isospin

 $m_{Y(4260)} = (4284 \pm 4^{+17}_{-16}) MeV / c^{2}$ $\Gamma_{Y(4260)} = (73 \pm 5^{+39}_{-25}) MeV$

P. Lewis | *QWG 2013* | *26* April 2013

9

New $\pi^+\pi^-J/\psi$ results

$\pi^+\pi^- J/\psi$ invariant mass plot [right]

- Clear Y(4260) peak
- Background [yellow] is interpolated from J/ψ sidebands in m(l⁺l⁻) distribution
- Where is the Y(4008)?

Belle 2007

 $m_{Y(4260)} = (4247 \pm 12^{+17}_{-32}) MeV / c^2$

 $m_{Y(4008)} = (4008 \pm 40^{+114}_{-28}) MeV / c^2$

 $\Gamma_{Y(4260)} = (108 \pm 19 \pm 10) MeV$

 $\Gamma_{Y(4008)} = (226 \pm 44 \pm 87) MeV$

- What is the enhancement at the low end?
- Y(4260) results consistent with Belle

The excess

Could it be from the $\psi(2S)$ peak?

- Below ~3800MeV, the huge peak from $\psi(2S)\to\pi^{*}\pi^{-}\,J/\psi$ dominates; perhaps the excess is stray wing events from this process
- Use [corrected] MC to model contribution to m($\pi^+\pi^-\,J/\psi$) in the Y(4260) window
- [Top] MC/data correspondence in $\psi(2S)$ region, background-subtracted
- [Bottom] MC/data up to 4GeV
- ψ(2S) tail appears to model data in high-E tail correctly, but disagreement in low-E region implies nonresonant contribution
- Extrapolation of BW lineshape to signal region is problematic
- Continuum contribution to cross section seems to be missing

Analysis of $\pi^+\pi^-$ in $\pi^+\pi^-J/\psi$

What is the $\pi^+\pi^-$ mass structure in $Y(4260) \rightarrow \pi^+\pi^- J/\psi$?

- Width indicates strong decay
- Y(4260) has I(J^{PC})=0(1⁻⁻), same as J/ψ ; $\pi^+\pi^-$ system must have 0(0⁺⁺) or 0(2⁺⁺)
- Select Y(4260) peak: 4.15 < m($\pi^+\pi^- J/\psi$) < 4.45 GeV/c²
- Background-subtracted m($\pi^+\pi^-$) distribution shows peak just below f₀(980) [0(0⁺⁺)]
- Odd-looking peak resembles interference effect

Analysis of $\pi^+\pi^-$ in $\pi^+\pi^-J/\psi$

Angular distribution

- Define θ_{π} as the angle between the π^+ and the recoil J/ψ both in the dipion rest frame [below]
- $\cos \theta_{\pi}$ plot fitted with S-wave distribution (blue line)
- Consistent with S-wave hypothesis (χ²/NDF = 12.3/9, probability = 19.7%)
- Consistent with f₀(980)

Analysis of $\pi^+\pi^-$ in $\pi^+\pi^-J/\psi$

Model $\pi^+\pi^-$ mass distribution

- Peak might be caused by interference between a resonant amplitude describing the f₀(980) and π⁺π⁻ continuum
- Take mass dependence of f₀(980) amplitude and phase from previous BaBar analysis
- Add nonresonant polynomial amplitude motivated by a QCD multipole expansion
- In fit, allow relative strength and phase of components to vary
- Resultant fit [BOTTOM] requires some f₀(980) contribution but it is not the dominant source of the peak—qualitatively consistent with BES results

$$\frac{B(Y(4260) \to J/\psi f_0(980), f_0(980) \to \pi^+\pi^-)}{B(Y(4260) \to \pi^+\pi^- J/\psi)} = (17 \pm 13)\%$$

P. Lewis | *QWG 2013* | *26* April 2013

-10

-20

0.4

0.5

0.6

0.7

Summary of $\pi^+\pi^-J/\psi$

Y(4260) mass/width

 $m_{Y(4260)} = (4244 \pm 5 \pm 4) MeV / c^{2}$ $\Gamma_{Y(4260)} = (114^{+16}_{-15} \pm 7) MeV$

No evidence for Y(4008)

Cross-section enhancement at low energies that is not fully explained

Some $f_o(980)$ component in Y(4260) $\rightarrow \pi^+\pi^-\,J/\psi\,$ decays present

arXiv:1211.6271

The $\pi^+\pi^-\psi(2S)$ mode in ISR

ISR production in charmonium region

- Analogous to $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\,J/\psi$ with $X\to\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\,\psi(2S)$
- Plausible access to other exotic states
- Main decay mode:
 - $e^+e^- \rightarrow \gamma_{ISR} \mathbf{X}$
 - $X \rightarrow \pi^+\pi^-\psi(2S)$
 - $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
 - $J/\psi \rightarrow l^+ l^-$
- Additional mode:
 - $e^+e^- \rightarrow \gamma_{ISR} X$
 - $X \rightarrow \pi^+\pi^-\psi(2S)$
 - $\psi(2S) \rightarrow l^+ l^-$

New $\pi^+\pi^-\psi(2S)$ results

$\psi(2S) \to \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\,J/\psi\,[\text{top}]$

- [added Y(2,3S) runs]
- $\hfill Very small background from <math display="inline">\psi(2S)$ sidebands
- Y(4660) confirmed
- Overlapping peaks have identical PC; interference terms do not cancel in mass projection
- Branching fraction measurement depends on interference assumption: constructive and destructive

$\psi(2S) \rightarrow l^+ l^-$ [bottom]

- More data
- Much more background
- [supports Y(4660) but does not improve mass or width measurements]

$Y(4360) \rightarrow \pi^+\pi^-\psi(2S)$

$\pi^+\pi^-$ Invariant mass plot [below]

- Very low statistics—41 events
- 4.0-4.5GeV region of the m($\pi^+\pi^-\psi(2S)$) distribution
- Blue histogram is MC estimation given resonance at 4.36GeV based on phase space
- No conclusive disagreement
- [similar to Belle findings]

P. Lewis | *QWG 2013* | *26* April 2013

$Y(4660) \rightarrow \pi^+\pi^-\psi(2S)$

$\pi^+\pi^-$ Invariant mass plot [below]

- Very low statistics—42 events
- 4.5-4.9GeV region of the m($\pi^+\pi^-\psi(2S)$) distribution
- Blue histogram is MC estimation given resonance at 4.66GeV based on phase space
- Possible f₀(980) contribution

 e^{\cdot}

11*

22

VISR

$\pi^+\pi^-\psi(2S)$ summary

BaBar/Belle

- Y(4360) seen with similar mass/width to Belle confirmation
- Y(4660) confirmed with consistent mass/width
- Invariant mass spectra are very similar [top]
- Combined spectrum [bottom]: 1.2ab⁻¹! Huge datasets required to get substantially better results from ISR method

Belle 2007

BaBar 2012

$m_{Y(4325)} = (4361 \pm 9 \pm 9)MeV/c^{2}$ $\Gamma_{Y(4325)} = (74 \pm 15 \pm 10)MeV$ $m_{Y(4660)} = (4664 \pm 11 \pm 5)MeV/c^{2}$ $\Gamma_{Y(4660)} = (48 \pm 15 \pm 3)MeV$

$$\begin{split} m_{Y(4325)} &= (4340 \pm 16 \pm 9) MeV / c^2 \\ \Gamma_{Y(4325)} &= (94 \pm 32 \pm 13) MeV \\ m_{Y(4660)} &= (4669 \pm 21 \pm 3) MeV / c^2 \\ \Gamma_{Y(4660)} &= (104 \pm 48 \pm 10) MeV \end{split}$$

Y Decays

- Nothing conclusive from Y(4360)
- Y(4660) may have an f₀(980) contribution

