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Loop functions and Wilson loops

Wilson line

U(C ) = P exp
[
ig

∫
C(x ,y)

dzµAµ(z)
]

Wilson loop

W (t, r) =

〈
T̃rP exp

[
ig �
∫

Γ
dxµAµ(x)

]〉
=
〈
T̃rU(S1)U(Q̄)U(S2)U(Q)

〉
(notation: T̃rA = 1

Nc
TrA)

with path
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Loop functions

L(Γ1, Γ2, . . . ) =
〈
T̃r [U(Γ1)] T̃r [U(Γ2)] · · ·

〉
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Motivation

vacuum Wilson loop related to static quark-antiquark potential

at finite T Polyakov loop related to static quark free energy

correlator of two Polyakov loops related to static Q Q free energy

loop functions are important tool for definition of finite T potential

operators of interest:

Polyakov loop correlator

Pc =
〈
T̃r
[
U(Q̄)

]
T̃r
[
U(Q)

]〉 Cyclic Wilson loop

Wc = T̃r
〈
U(S)U(Q̄)U†(S)U(Q)

〉
quark lines extend from imaginary time 0 to β = 1/T (periodic)
strings are inverse: same position, opposite direction

cyclic Wilson loop found to have unusual divergence structure1

1[Burnier, Y. and Laine, M. and Vepsäläinen, M. 2010]
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Divergences 2

Where do divergences come from?
Compare:

Covariant gauge gluon propagator in configuration space

Dab
µν(x , y) =

δab

4π2(x − y)2

[
1 + ξ

2
δµν + (1− ξ)

(x − y)µ(x − y)ν
(x − y)2

]
→ UV divergences arise, when vertices get close

internal vertices (not on the contour) lead to usual UV divergences
(self energy, vertex corrections, etc.)

vertices on contour (line vertices) lead to additional UV divergences
(e.g. cusp divergences)

2[Dotsenko, V. S. and Vergeles, S. N. 1980],
[Brandt, R. A. and Neri, F. and Sato, M. 1981]
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Divergences

Superficial degree of divergence for line vertices

at smooth point: ω = 1− Nex

at singular point: ω = −Nex

Nex : number of external lines (leading to vertices at a finite distance)

smooth point: contour Γ is differentiable

singular point: Γ is not differentiable

3 types of divergences

loop mass: all vertices contracted at a smooth point

line vertex: contraction at a smooth point with one external line

cusp/intersection: all vertices contracted at a singular point

(1st is linear, 2nd and 3rd are logarithmic)
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Divergences

linear divergences:

exponentiate and factor out
exponent is proportional to contour length Λ
automatically removed in DR

line vertex divergences:

correspond to line vertex corrections
are removed through charge renormalization

line vertex renormalization constant ZgA =
Z1

Z3
and counterterm ZgA − 1 (in Feynman gauge)

+ + = finite
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Divergences

cusp divergences:
exponentiate and factor out
removed through multiplicative constant
renormalization constant depends only on cusp angle

γ γ γ

Cusp divergence at O(αs)3:
CFαs

2πε

(
1 + (π − γ) cot γ

)
rectangular Wilson loop has 4 cusps with γ = π

2 so

Zc = exp

[
−2CFαs

πε̄
+ . . .

]
3[Korchemsky, G. P. and Radyushkin, A. V. 1987]
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Divergences

intersection divergences:

cannot be removed through a single multiplicative constant
set of associated loops mix under renormalization

same contour, but different path ordering at intersection
disconnected loops are traced separately
renormalization matrix depends only on intersection angles

general case:
1 renormalization constant / matrix for every cusp / intersection
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Divergence of the cyclic Wilson loop

periodic boundary conditions: τ = 0 and τ = β are identified

cusps turn into intersections:

only intersections at string endpoints relevant
(angles 0 and π not divergent)

alternate path orderings lead to Polyakov loop correlator (finite)

renormalization matrices at the 2 intersections must be identical

Renormalization formula (compact)(
W

(R)
c

Pc

)
=

(
Z (1− Z )
0 1

)(
Wc

Pc

)
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Renormalized Result

Renormalized Cyclic Wilson loop at O(α2
s )

lnW (R)
c =

CFαs

rT

{
1 +

αs

4π

[(
31
9
CA − 20

9
TFnf

)
+
(

11
3
CA − 4

3
TFnf

) (
lnµ2r 2 + 2γE

)]
+

+
CAαs

π

[
�
�S
S

1

ε̄
+ 1 + 2γE − ln 4 + lnµ2r 2 +

∞∑
n=1

2(−1)nζ(2n)

n(4n2 − 1)
(rT )2n

]}
+

+
4πCFαs

T

∫
k

e ir·k − 1

(k2)2

(
−Π

(T )
00 (0, k)

)
+ CFCAα

2
s +O

(
α3
s

)

for more details see JHEP 03 (2013) 069 [arXiv:1212.4413]

renormalization group improved result

treatment of divergences for each diagram up to O(α3
s )

discussion for large distance r
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Linear Divergences

can be neglected in DR

proportional to the length of the Wilson line

show up as 1/a terms in lattice calculations

with general UV cutoff Λ:

P
(R)
c = exp

[
−K 2Λ

T

]
Pc

what happens to the linear divergences from the strings?

+ + = 0
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Alternate form of Wc − Pc

use the identity

U†(C )T aU(C ) = Uab
A (C )T b = T bU† ba

A (C )

with UA a Wilson line in the adjoint representation; (T c
A)ab = −if abc

split up a Polyakov line into components:

P(r) = P exp

[
ig

∫ β

0
dτ A0(τ, r)

]
= P1(r)1Nc + Pa

8 (r)T a

with P1 = Tr[P]/Nc and Pa
8 = Tr[PT a]/TF

with that we can rewrite

Pc =
〈
P1(r)P†

1(0)
〉

Wc − Pc =
TF

NC

〈
Pa

8 (r)Uab
A (S)P† b

8 (0)
〉
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Full renormalized expressions

with these expressions we can see the behaviour of linear divergences

arise from gluonic diagrams in a colour singlet configuration,
i.e. proportional to δij (fundamental) or δab (adjoint)

linear divergence from adjoint string factors out and exponentiates,
analogously to fundamental Wilson lines

coefficient of linear divergence may depend on the representation

the full expressions for the renormalized loop functions are

P
(R)
c = exp

[
−KF

2Λ

T

]〈
P1(r)P†

1(0)
〉

W
(R)
c − P

(R)
c = exp

[
−KF

2Λ

T
− KAΛr

]
Zint

TF

NC

〈
Pa

8 (r)Uab
A (S)P† b

8 (0)
〉
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Conclusions

in the vacuum the Wilson loop gives the static potential

cusp divergences can be removed by a multiplicative constant

at finite T Polyakov loop correlator gives static quark free energy

cyclic Wilson loop has intersection instead of cusp divergences

it mixes with the Polyakov loop correlator under renormalization

Wc − Pc gives a multiplicatively renormalizable quantity

comparison to lattice is under way
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Thank you for your attention!
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Perturbative expansion and divergences

in the following perturbation theory and DR will be used throughout

calculations can be simplified using exponentiation theorem4

〈U(Γ)〉 =
∞∑
n=0

(ig)n
∑
γn

C (γn)γn = exp

 ∞∑
n=2

(ig)n
∑

γn∈2PI
C̃ (γn)γn


string operators are inverse to each other
→ many cancellations of diagrams (“cyclicity cancellation”)

exponentiation and cancellations reduce number of relevant diagrams

in addition, in Coulomb gauge many diagrams vanish

4[Gatheral, J. G. M. 1983, Frenkel, J. and Taylor, J. C. 1984]
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Contributions by diagram

+ + =
αsCF

rT

2 diagrams on the right vanish in any gauge

+ +

=
α2
sCF

4πrT

[(
31

9
CA −

20

9
TFnf

)
+

(
11

3
CA −

4

3
TFnf

)(
lnµ2r 2 + 2γE

)]
+

+
4παsCF

T

∫
k

e−ir·k − 1

(k2)2

(
−Π

(T )
00 (0, k)

)
2 diagrams on the right only contribute to thermal part
IR divergences in thermal parts cancel
no analytic expression for thermal part, but UV finite
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Contributions by diagram

, , , = 0

diagrams vanish in Coulomb and Feynman gauge because of 3-gluon
vertex

, , , , = 0

in Coulomb gauge all diagrams vanish
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Contributions by diagram

+ = α2
sCFCA

(only source of divergence in Coulomb gauge)

=
α2
sCFCA

πrT

[
1

ε
+ 1 + 2γE + ln 4π2 + 2 lnµ2r 2 +

∞∑
n=1

2(−1)nζ(2n)

n(4n2 − 1)
(rT )2n

]
series expansion for thermal part only valid for rT ≤ 1
divergence depends on physical parameters r , T
→ cannot be removed by a multiplicative constant

Matthias Berwein (TU München) Cyclic Wilson Loop Renormalization 23.04.2013 20 / 16



Renormalization at O(α2
s )

renormalization matrix for cyclic Wilson loop depends on only a single
constant Z

expand Z in orders of αs : Z = 1 + Z1αs + Z2α
2
s + . . .

Polyakov loop correlator Pc = 1 +O(α2
s )

⇒ only new contribution comes from Z1 times the tree level cyclic
Wilson loop diagram

+ Z1αs× = finite

defines value of Z1 = −CA

πε̄
in MS-scheme
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Trivial cancellations at O(α3
s )

Z1αs× Z1αs× −Z1αs×

the divergences of the two diagrams on the left cancel in completely
the same way as for the O(α2

s ) diagrams without the selfenergy

the two diagrams on the right are exactly equal, so they cancel.

Compare: ZWc + (1− Z )Pc = Pc + Z (Wc − Pc)

in the difference Wc − Pc all diagrams equal for Wc and Pc drop out,
so when multiplying with Z one only has to consider diagrams where
the colour factors differ between Wc and Pc

Matthias Berwein (TU München) Cyclic Wilson Loop Renormalization 23.04.2013 22 / 16



Cancellations at O(α3
s )

Z1αs×

left and middle diagram have the same colour factors

so their integration regions can be combined

divergent subdiagram factors out just like at O(α2
s )

colour-connected coefficients also fit

−CFC
2
Aα

3
s

2πε̄
= −Z1αs

(
−1

2
CFCAα

2
s

)
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Cancellations at O(α3
s )

All of these divergences together must be canceled by Z2α
2
s times the tree

level diagram and thus determine the value of Z2.

×Z1αs
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Cancellations at O(α3
s )

+

Z1αs ×
1

2

2

×+

− Z1αs×

The sum of the Wc diagrams gives

(
C 2
F −

1

2
CFCA

)
α2
s

2r2T 2

CAαs

πε

This is exactly canceled by the contribution from Pc !
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