Attempt extracting $\pi\pi$ s-wave scattering lengths from cusp effect in heavy quarkonium dipion transitions

Xiao-Hai Liu

Institute of Theoretical Physics, Peking University

In collaboration with F.K. Guo & E. Epelbaum For Workshop on Heavy Quarkonium, April 2013

Outline

- Brief review of $\pi\pi$ scattering
- Experimental methods of measuring ππ scattering lengths
- Investigating cusp effect in heavy quarkonium dipion transition according to non-relativistic effective theory (NREFT)
- Explore the availability of experiment
- Summary

$\pi\pi$ scattering

Pions play a special role in strong interactions.

At low energy, the strength of $\pi\pi$ interaction is described by the scattering length

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} + \mathcal{O}(m_q^2) \qquad a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} + \mathcal{O}(m_q^2)$$

Weinberg, PRL17,616(1966)

Vanish in the chiral limit ChPT combined with Roy equations, to two loops

G. Colangelo et al, PLB488,261(2000), NPB603,125(2001)

$$a_0^0 = 0.220 \pm 0.005, \ a_0^2 = -0.0444 \pm 0.0010$$

 $a_0^0 - a_0^2 = 0.265 \pm 0.004$

Experimental methods

 $\succ K_{e4}$ decay, $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$

sensitive to the $\pi\pi$ phase shifts which are related

with the scattering lengths

Rosselet et al, Geneva-Saclay, PRD15,574(1977); BNL-E865,PRL87, 221801(2011);NA48/2, EPJC54,411(2008)

>Lifetime of pionium($\pi^+\pi^-$ bound state)

 $\Gamma_{\pi\pi} \propto (a_0 - a_2)^2$

Uretsky & Palfrey, PR121,1798(1961); DIRAC collab. PLB619,50(2005)

Cusp effects, K \rightarrow 3π, η \rightarrow 3π, η' \rightarrow η ππ

Budini & Fonda, 1961; Cabibbo, 2004; NA48/2, 2006; Gasser, Kubis & Rusetsky, 2011; Kubis & Schneider, 2009;

Cusp effect

Resulted from charge-exchange rescattering $\pi^+\pi^- \rightarrow \pi^0\pi^0$ and the pion mass difference $_{x \ 10^{\ 2}}$

Budini & Fonda, 1961; Cabibbo, 2004;

Branching ratio

 $K^+ \to \pi^+ \pi^- \pi^+ ((5.59 \pm 0.04)\%)$

much larger than

 $K^+ \to \pi^0 \pi^0 \pi^+ ((1.761 \pm 0.022)\%)$

Cusp effect in $\psi' \rightarrow J/\psi \pi^0 \pi^0 \& Y(3S) \rightarrow Y(2S) \pi^0 \pi^0$

✓ Branching ratios

$$Br(\psi' \to J/\psi\pi^{0}\pi^{0}) \sim (17.73 \pm 0.34) \%$$

$$Br(\psi' \to J/\psi\pi^{+}\pi^{-})/Br(\psi' \to J/\psi\pi^{0}\pi^{0}) \approx 2$$

$$Br(\Upsilon(3S) \to \Upsilon(2S)\pi^{0}\pi^{0}) \sim (1.85 \pm 0.14)\%$$

$$Br(\Upsilon(3S) \to \Upsilon(2S)\pi^{+}\pi^{-}) \sim (2.45 \pm 0.23)\%$$

$$Br(\eta' \to \eta\pi^{+}\pi^{-})/Br(\eta' \to \eta\pi^{0}\pi^{0}) \sim 2$$

$$Br(\eta \to \pi^{+}\pi^{-}\pi^{0})/Br(\eta \to 3\pi^{0}) \sim 0.7$$

$$Br(K_{L} \to \pi^{+}\pi^{-}\pi^{0})/Br(K_{L} \to 3\pi^{0}) \sim 0.64$$

✓ Huge data sample of heavy quarkonium

BESIII, Belle, BarBar, CLEOc, LHCb

✓ Interaction between pion and heavy quarkonium is highly OZI suppressed, which may simplifies the problem compared with other processes

NREFT method

- The process is similar to $\eta' \rightarrow \eta \pi \pi$
- Near the energy region of $\pi\pi$ threshold, follow the NREFT method adapted in
- [Kubis&Schneider,EPJC62,511(2009)] and references therein
- **Power counting scheme:**
- Introduce a formal small parameter ε , in the initial state rest frame, \checkmark three momenta $|\vec{p}_i| \sim O(\epsilon)$
- \checkmark The mass M ~ O(1)
- ✓ Kinetic energy $T_i = p_i^0 M \sim O(\epsilon^2)$
- **\checkmark** Combined with another small parameter $a_{\pi\pi}$

NREFT method

Effective Lagrangian

$$\mathcal{L} = \mathcal{L}_{\psi} + \mathcal{L}_{\pi\pi},$$

Up to $\mathcal{O}(\epsilon^2)$

$$\mathcal{L}_{\psi} = \frac{1}{2} \sum_{n=0}^{1} G_n \left(\psi'_i^{\dagger} (W_{J/\psi} - M_{J/\psi})^n J_i \Phi_0 \Phi_0 + h.c. \right) + \sum_{n=0}^{1} H_n \left(\psi'_i^{\dagger} (W_{J/\psi} - M_{J/\psi})^n J_i \Phi_+ \Phi_- + h.c. \right) + \cdots,$$
$$W_{J/\psi} = \sqrt{M_{J/\psi}^2 - \Delta}$$
Laplacian

NREFT method

$$\begin{aligned} \mathcal{L}_{\pi\pi} &= 2 \sum_{k=0,\pm} \Phi_k^{\dagger} W_k (i\partial_t - W_k) \Phi_k \\ &+ C_x (\Phi_0^{\dagger} \Phi_0^{\dagger} \Phi_+ \Phi_- + h.c.) + \frac{1}{4} C_{00} (\Phi_0^{\dagger} \Phi_0^{\dagger} \Phi_0 \Phi_0 + h.c.) \\ &+ D_x \left[(\Phi_0^{\dagger})_{\mu} (\Phi_0^{\dagger})^{\mu} \Phi_+ \Phi_- + \Phi_0^{\dagger} \Phi_0^{\dagger} (\Phi_+^{\dagger})_{\mu} (\Phi_-^{\dagger})^{\mu} + h.c. \right] \\ &+ \frac{1}{4} D_{00} \left[(\Phi_0^{\dagger})_{\mu} (\Phi_0^{\dagger})^{\mu} \Phi_0 \Phi_0 + \Phi_0^{\dagger} \Phi_0^{\dagger} (\Phi_0^{\dagger})_{\mu} (\Phi_0^{\dagger})^{\mu} + h.c. \right] + \cdots \end{aligned}$$

$$\begin{split} (\Phi_k)_{\mu} &= (\mathcal{P}_k)_{\mu} \Phi_k, \ (\mathcal{P}_k)_{\mu} = (W_k, -i\nabla) \\ (\Phi_k^{\dagger})_{\mu} &= (\mathcal{P}_k^{\dagger})_{\mu} \Phi_k^{\dagger}, \ (\mathcal{P}_k^{\dagger})_{\mu} = (W_k, i\nabla) \\ W_k &= \sqrt{M_k^2 - \Delta} \end{split}$$

Couplings

Effective range expansion

$$\begin{split} T^{I}(s,t) &= 32\pi \sum_{l=0}^{\infty} (2l+1)t_{l}^{I}(s)P_{l}(z) \\ \text{Re} \ t_{l}^{I}(s) &= q_{ab}^{2l} \left[a_{l}^{I} + b_{l}^{I}q_{ab}^{2} + \mathcal{O}(q_{ab}^{4})\right] \end{split}$$

Ananthanarayan et al, Phys.Rep.353, 207(2001)

10

 t_1^{I} is the partial wave amplitude with the angular momentum I and isospin I, via mathching to the amplitude obtained by NREFT 16π

$$C_x = \frac{10\pi}{3} M_{\pi^+}(a_2 - a_0),$$

$$C_{00} = \frac{16\pi}{3} M_{\pi^+}(a_0 + 2a_2),$$

$$D_x = \frac{4\pi}{3} M_{\pi^+}(b_2 - b_0),$$

$$D_{00} = \frac{4\pi}{3} M_{\pi^+}(b_0 + 2b_2),$$

Feynman Diagrams

Transition Amplitude

 $\psi'(P_{\psi'}) \to \pi^0(p_1)\pi^0(p_2)J/\psi(p_3), \qquad s_i = (P_{\psi'} - p_i)^2$

$$T^{tree} = [G_0 + G_1(p_3^0 - M_J)] \vec{\epsilon}_{\psi'} \cdot \vec{\epsilon}_J,$$

$$T^{1-loop} = 2 [C_x + D_x(s_3 - 4M_{\pi^+}^2)] [H_0 + H_1(p_3^0 - M_J)] J_{+-}(s_3)\vec{\epsilon}_{\psi'} \cdot \vec{\epsilon}_J + [C_{00} + D_{00}(s_3 - 4M_{\pi^0}^2)] [G_0 + G_1(p_3^0 - M_J)] J_{00}(s_3)\vec{\epsilon}_{\psi'} \cdot \vec{\epsilon}_J,$$

loop intergral

$$J_{ab}(P^2) = \int \frac{d^D l}{i(2\pi)^D} \frac{1}{2w_a(\vec{l})(w_a(\vec{l}) - l_0)} \frac{1}{2w_a(\vec{P} - \vec{l})(w_a(\vec{P} - \vec{l}) - P_0 + l_0)}$$
$$w(\vec{l}) = \sqrt{M^2 + \vec{l}^2}$$

12

Transition Amplitude

$$J_{+-}(s_3) = \frac{1}{16\pi} \sqrt{\frac{4M_{\pi^+}^2 - s_3}{s_3}}, \text{ when } s_3 \le 4M_{\pi^+}^2,$$

$$J_{+-}(s_3) = \frac{i}{16\pi} \sqrt{\frac{s_3 - 4M_{\pi^+}^2}{s_3}}, \text{ when } s_3 > 4M_{\pi^+}^2,$$

$$J_{00}(s_3) = \frac{i}{16\pi} \sqrt{\frac{s_3 - 4M_{\pi^0}^2}{s_3}}, \sim \mathbf{O(\epsilon)}$$

To one loop, the final result is derived up to $O(a_{\pi\pi}\epsilon^2)$

 $T = \left[G_0 + G_1(p_3^0 - M_J) + 2C_x H_0 J_{+-}(s_3) + C_{00} G_0 J_{00}(s_3)\right] \vec{\epsilon}_{\psi'} \cdot \vec{\epsilon}_J$

Explore the availability of experiment

- \checkmark The kinematical region around $\pi\pi$ threshold is suppressed in
 - $\psi' \rightarrow J/\psi \pi^0 \pi^0$, $Y(3S) \rightarrow Y(2S)\pi^0 \pi^0$ is better
- ✓ To make a MC simulation, it is necessary to determine the values of G_0 and G_1 , or the ratio G_0/G_1
- ✓ Since NREFT will only work in the kinematical region around $\pi\pi$ threshold, the Chiral Unitary Approach (CHUA) is adopted to estimate G₀/G₁, where $\pi\pi$ FSI will be taken into account.

Estimation on G_0/G_1

Fit to the $\pi^0\pi^0$ invariant mass spectrum of $Y(3S) \rightarrow Y(2S)\pi^0\pi^0$

measured by CLEOc [PRD76, 072001] with CHUA

By matching NREFT to CHUA, a rough estimation obtained

$$\frac{G_0}{G_1} = -4.37^{+0.81}_{-0.56} \,\mathrm{MeV}$$
15

Cusp effect at the $\pi^+\pi^-$ threshold in the reaction Y(3S) \rightarrow Y(2S) $\pi^0\pi^0$ calculated in the NREFT framework

16

Monte Carlo simulations

Number of events

Monte Carlo simulations

Results of fitting to various sets of MC data (in units of $M_{\pi^+}^{-1}$)

Bin width	Events	6×10^4	6×10^5	3×10^6	6×10^6
0.1 MeV	χ^2/dof	1.21	1.09	1.16	0.88
	$a_0 - a_2$	0.293 ± 0.036	0.260 ± 0.012	0.2717 ± 0.0048	0.2661 ± 0.0036
0.2 MeV	χ^2/dof	0.72	1.15	1.05	1.12
0.2 IVIC V	$a_0 - a_2$	0.286 ± 0.035	0.251 ± 0.014	0.2722 ± 0.0048	0.2621 ± 0.0038
0.5 MeV	χ^2/dof	0.93	0.54	1.27	1.30
0.5 IVIC V	$a_0 - a_2$	0.262 ± 0.026	0.256 ± 0.012	0.2659 ± 0.0051	0.2693 ± 0.0035
1 MeV	χ^2/dof	1.05	0.78	1.17	0.69
	$a_0 - a_2$	0.221 ± 0.054	0.291 ± 0.010	0.2658 ± 0.0054	0.2661 ± 0.0037
	χ^2/dof	0.59	1.06	1.05	1.37
	$a_0 - a_2$	0.260 ± 0.040	0.262 ± 0.012	0.2592 ± 0.0055	0.2632 ± 0.0037
	Input 0.264		Compared with input value, statistical		
		~10-20%	precision		~1.5-2%

6× 10⁶ events in the range of [270,290]MeV corresopnd to about 2 billion Y(3S) events

> The precision seems to be insensitive to the bin widths!

18

Summary

- ➢ Propose to extract the ππ scattering lengths from heavy quarkonium dipion transitions, especially Y(3S) → Y(2S)π⁰π⁰
- Weak J/ψπ (Yπ) interaction will simplify the model, and larger branching ratio rate will lead to obvious cusp effect
- > NREFT method is taken to calculate the amplitude, which is derived up to $O(a_{\pi\pi}\epsilon^2)$
- > By utilizing MC simulations, we explore the availability of experiment. It seems that the results will be insensitive to the bin widths.

Thanks!