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The QQbar singlet static potential and the QQbar
singlet static energy are fundamental quantities

calculated in perturbation theory and the lattice since
the beginning of QCD

A proper definition of these quantities is given In
nonrelativistic effective field theories
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. ltrasoft contribution
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s contributes from 3 loops

* The u dependence cancels between the two terms in the right-hand side:
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& . . . .
The static energy 1s a physmal quantity and does not
depend on the ultrasoft cutoff




Static singlet potenftial at NA4LO
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Static singlet potenftial at NA4LO
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The logarithmic contribution at N3LO may be extracted from the one-loop
calculation of the ultrasoft contribution;

the single logarithmic contribution at N*LO may be extracted from the two-loop
calculation of the ultrasoft contribution.




Singlet static energy at NA3LL in comparison to
lattice data (red points Necco sommer 2002)
Obtain the static energy: 1) subtract the renormalon 2)

resum the logs in the energy scales ratio
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Singlet static energy at NA3LL in comparison to
lattice data (red points Necco sommer 2002)
Obtain the static energy: 1) subtract the renormalon 2)

resum the logs in the energy scales ratio
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¢ The lattice data are perfectly described from perturtbation
theory up to more than 0.2 fm

o Allows precise exiraction of fundamental parameters of QCD
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A richer color and geometrical structure

e Color degrees of freedom
IR3IR3I=18p84 10

e Two Independent relative
distances

rh =Xy — Xz, > = Xy — X3, 3 = Xo — Xa,

p=1r, /\:%(r2+r3).

e We define L the sum of the distances
of the three quarks from the Torricelli point,
which has minimum distance from the quarks.




A richer dynamical structure




A richer dynamical structure

(QQQ() static energies on the lattice
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e Ground state and first gluonic excitation.
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e In the short range, Coulomb-like behavior.
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e In the long range, linearly raising potential
and three-body interaction depending
on one length L.
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the transition region spectacularly leads from a two body Coulomb
iInferaction to a three body one, depending on one length only
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e Consider 174 K AééD
e Construct pNRQCD for QQQ by infegrating out the hard scale m

and the soft scaler_g
e The (weakly coupled) EFT for ()()() baryons contains:

¢, gluons, (QQQ)1 = 5, (QQQ)s = (0*,...,0%),
(QQQ)s = (051,...,0%%)and (QQQ):1o = (A', ..., A10).

In our choice, O° and O# are respectively symmetric and antisymmetric for
exchanges of the quarks located in x; and xs.
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Since octets mix already at LO, it is useful to define: O¢ = (

nf
1
o The EFT Lagrangian reads £ = —ZFEVF““” + > Gy iPgy 4+ 6L + ...
=il
dots stand for h.o. terms in the multipole expansion.
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order in (-, multipole) expansion
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calculated in the matching

A S potentials (Wilson coefficients) to be
Ve V5 V5
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Matching the QQQ potential

: U v
Ve(r) = lim ety i nhtil

fthe potential is a sum of two-and three-body

V() => Va(rg) + Va(r)

q=1

the three body part is the part that vanishes when putting
one of the quarks at infinite distance from the other two

At leading order:




QQQ lattice potentials in different color representations

Vaaa(R) — |
average —@—
singlet ——

decupllet ——

0.4 0.5 0.6

o Hubner Karsch Kaczmarek Vogt PRD 77 (2008) 074504

e At short distances, one recovers the zero temperature potentials.

e Singlet, octet and decuplet potentials in an equilateral configuration:
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QQQ potential at NLO

Zfo aMS (rg) { | ap75(Tq) (260v+a1)}
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same colour factor as the a1 = 5 Ca— o Trny
E&rome

at NLO QQbar and QQQ potential only differ
for the overall colour representation but the
effective coupling of the potential is the same

v (1/Irq]) = as(1/Ir) |1+ = (28078 + a1)|

N.B. J. Ghiglier1, A. Vairo 2010



QQQ singlet static potential at NNLO
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QQQ singlet static potential at NNLO
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Relevant diagrams
in Coulomb gauge:
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QQAQ singlet static energy at order O(a; In a;)
QQQ singlet static potential at order O(a; In )
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it 1s sufhicient to calculate the leadin}divergence in the

ultrasoft correction: a one loop calculation in the EFT




O(o In o)
O(ag In p)
E*(ri,ro,r3) = V3(ry, 1o, T3; ) + dfs(r1, o, T35 1),

it 1s suthcient to calculate the leading divergence 1n the
ultrasoft correction: a one loop calculation in the EFT

e — 9(T)e~ V'L (singlet propagator),
O(T)e Vsls . (symmetric octet propagator),
9(T)e—Vals . (antisymmetric octet propagator),

= —iV 3 q0qp (octet mixing potential),

T ey S
_Zgz\/?pEa

singlet couples differently to
symmetric or antisymmetric octets

= —zg\/_)\ E“.



QQQ singlet static potential at order O(a; In )

The biggest difference with respect to
QQbar 1s that the singlet couples to two
distinct octet fields and that octet fields mix

the mixing of the octet fields 1s of the same order of the
octet energies : 1t must be considered to all order when
computing physical octet to octet propagators

the resummation of the octet mixing potential
gives rise to three different sets of resummed
octet propagators




Resummed octet propagators

(1) a resummed octet propagator, G%, that describes the propagation from a symmetric

initial state to a symmetric final state:

== v = + e+ —emmeE—

: =n§::0(><—-=) F ey 1 — (== ) ;

(2) a resummed octet propagator, G, that describes the propagation from an antisym-

metric initial state to an antisymmetric final state:

(3) a resummed octet propagator, G%g, that describes the propagation from a symmetric

initial state to an antisymmetric final state or vice versa:
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Calculation of the ultrasoft contribution up to Qa

0t = m | &— no decuplet

contribution
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Calculation of the ultrasoft contribution up to
S

0t = —5?% | & no decuplet

contribution




QQQ singlet static potential at order O(a In )

Es(rh I'o, I'g) o Vs(rla I2, I'3; :u) I 5%S(r17 I, I'3; :u)v

The divergence and the Oz;l In 4 in 9yg

must cancel against a divergence and a term O/SL In

in the singlet static potential




QQQ singlet static potential at order O(a In )
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the new term proportional to ¢/ In p
that we have added 1s a genuine three body potential




QQQ singlet static energy at order O(a? In ;)

summing the potential and the US contribution
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The logarithm of oy signals that an ultraviolet divergence from the US scale has canceled

against an infrared divergence from the soft scale.




Renormalization Group improvement of the
singlet static potential in an equilateral geometry

The US logs that start appearing in the potential at NA31LO may be
resummed using RG equation. These are a set of eqgs. that describe
the scale dependence of the static potentials in different color
representations: they follow by requiring that the static energies are
independent of the renormalization scheme

['he potentials in different color
representations mix under
renormalization
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Renormalization Group improvement of the
singlet static potential in an equilateral geometry

The US logs that start appearing in the potential at NA31LO may be
resummed using RG equation. These are a set of eqgs. that describe
the scale dependence of the static potentials in different color
representations: they follow by requiring that the static energies are
independent of the renormalization scheme

I'he potentials in different color

representations mix under I3 Glivas / d,u =i doy US / d,u <

renormalization
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Renormalization Group improvement of the
singlet static potential in an equilateral geometry

We can solve singlet, octet, decuplet potential RG coupled
equations. There 1s however a difference with respect to the QQbar
case. In the QQbar case there 1s only one length r, in the QQQ case

we have more than one length. For a general three-body geometry
logs corrections 1n the US scale can be as important as finite logs
involving ratios among the different lengths. The calculation of this
finite terms requires the calculation of the QOQQ Wilson loop.
however these logs are not important if the length scales are similar.
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Renormalization Group improvement of the
singlet static potential in an equilateral geometry

We can solve singlet, octet, decuplet potential RG coupled
equations. There 1s however a difference with respect to the QQbar
case. In the QQbar case there 1s only one length r, in the QQQ case

we have more than one length. For a general three-body geometry
logs corrections 1n the US scale can be as important as finite logs
involving ratios among the different lengths. The calculation of this
finite terms requires the calculation of the QOQQ Wilson loop.
however these logs are not important if the length scales are similar.

We work 1n the equilateral geometry |I'1| - ‘I'Q‘ — ‘I.S‘ — 7.

| VS? S VX == VO'. octets do not mix

We calculate US contribution for the decuplet and the octet
and obtain the corresponding RG equations




Renormalization Group improvement of the
singlet static potential in an equilateral geometry

s B

AR AR




Renormalization Group improvement of the
singlet static potential in an equilateral geometry

S
5US

RG coupled




Renormalization Group improvement of the
singlet static potential in an equilateral geometry

solutions of
the

equations

eqs




Renormalization Group improvement of the
singlet static potential in an equilateral geometry

solutions of
the

equations

Ve(r;m) = Vinpo(r) —

s RS - 9042(1/7”) n@s(l/r)
|4 (T,,LL) 5o VNNLO( )_I_ 9 BOT l C‘fs(,u) '

provides the singlet static potentials at

NNLL accuracy in the equilateral

geometry

BV O o0

RG coupled
eqs




Conclusions

We have computed the QQQ singlet static potential at order

and the singlet static energy at order

These are the most accurate determinations of the
QQQ singlet static and energy in perturbative QCD

The new conftribution to the potential is a three body

interaction and together with the three body

Inferaction at two loop order may provide new insight

on the emergence of a long range three body

iInferaction governed by only one fundamental length

IN t
a
SO

ne special situation where the quarks are located

t the corners of an equilateral triangle we have

ved the RG eqgs at NNLL accuracy obtaining the

expression for the QQQ singlet static potential at

NNLL accuracy
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Let us consider some simple geometries
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Let us consider some simple geometries

[sosceles geometry in a plane Iro| = |r3| =7 and ©5 - T3 = cos 6.

cy(0)

G0 - o

Ikl |-

10

0.8

attractive conftribution to the poTénTioI
0.6 -

wedk dependence on theta
3body potential

may indicate the onset of a smooth fransition towards the
long distance Y shaped three body potential seen in the
lattice datae




Let us consider some simple geometries

0 = 7/3: planar equilateral geometry

In the equilateral case, we have cy(7w/3) ~ 1.377.
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Let us consider some simple geometries

0 = 7/3: planar equilateral geometry

In the equilateral case, we have cy(m/3) ~ 1.377.

We can compare the relative magnitude of the
three-body contribution to the tree level potential.
For the singlet

v?&O,;C(T) b CH(W/S) CM2(1/7“) ~ O‘?(l/r)‘

POy 2.90

using as at one loop, VJ°(r) may become as large as one sixth of the tree-level Coulomb

potential in the region around 0.3 fm, where, at least in the QQ case, perturbation theory

still hoIds
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Generic geometry
In the most general geometry the three body potential
depends on two coordinates, we may choose one of them
to be L_min, leaving the other not specified
(B.1) Planar lattice geometry with two fixed quarks

In Fig 10, we plot the three-body potential obtained by placing the three quarks in a plane
(x,y), fixing the position of the first quark in (0, 0), the second one in (1,0) and moving the
third one in the lattice (0.54+0.125n,,0.125n,) with n, € {0,1,...,20} and n,, € {0, 1, ..., 24}.

The plot clearly shows the dependence on the geometry at fixed L, however, the dependence

1 s S S S \\\\\\\\\\\\\\\\\\\\\\\L
is weaker than in the two-body case. 15 . : : : Ayt i
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FIG. 10: The normalized three-body potential, Vi4(L, ...)/(—fx(C)as), plotted as function of L
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Generic geometry

In the most general geometry the three body potential
depends on two coordinates, we may choose one of them
to be L_min, leaving the other not specified

Three-dimensional lattice geometry with the three quarks moving along the axes
28] T. T. Takahashi and H. Suganuma, Phys. Rev. D70, 074506 (2004), hep-lat/0409105.

In the lattice calculation of Ref. [28], the three quarks were located along the axes of a
three-dimensional lattice, namely at (n,,0,0), (0,n,,0) and (0,0,n,), with n, € {0,1, ...,6}
and n,,n, € {1,...,6}. For the sake of comparison, we consider the same geometry and plot
the corresponding three-body potential in Fig. 11. The plot shows a weak dependence on

the geometry: much weaker than in the two-body case, but also somewhat weaker than in

the geometry considered in (B.1). o 4 p 2 10 12 14
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FIG. 11: The normalized three-body potential, V% (L, ...)/(— fu(C)a2), plotted as function of L




The precise behaviour of the QQQ potential is
still object of investigation on the lattice
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