Study of XYZ states in B decays and two-photon production at BABAR

Claudia Patrignani representing the BABAR Collaboration

Università di Genova and I.N.F.N. Claudia.Patrignani@ge.infn.it

9th International Workshop on Heavy Quarkonium – QWG2013 Beijing, April 22-26, 2013

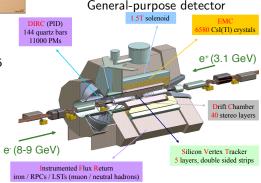
Outline

- Search for resonances decaying to $\eta_c \pi^+ \pi^-$ in $\gamma \gamma$ reactions
- Study of $X(3915) \rightarrow J/\psi\omega$ observed in $\gamma\gamma$ reactions
- Search for $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B^0 \to \chi_{c1} \pi^+ K^-$ and $B^+ \to \chi_{c1} \pi^+ K_S$

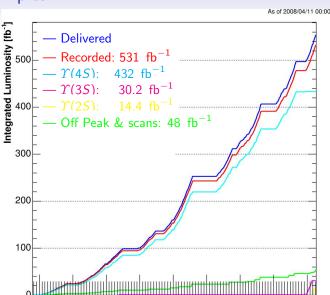
The BABAR experiment

PEP-II asymmetric e^+e^- collider operating at center of mass energies near the $\Upsilon(4S)$ (for most of the time)

$$\sqrt{s} = 10.58 \,\mathrm{GeV}/c^2$$

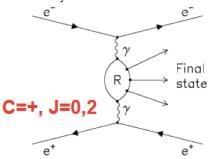

Asymmetric:

$$-0.9 < \cos \theta^* < 0.85$$


wrt electron beam

excellent performance:

- vertexing
- tracking
- PID
- calorimeter


Data samples

$\gamma\gamma$ reactions

Electron and positron beams emit (quasi-real) photons which interact and may form resonances

- Final state e^{\pm} emitted along beam direction undetected
- allowed $J^{PC}=0^{\pm +}, 2^{\pm +}$ (and $4^{\pm +}, 3^{++}, 5^{++}, ...$)
- low p_t with respect to beam axis

Search for resonances decaying to $\eta_c \pi^+ \pi^-$ in $\gamma \gamma$ reactions

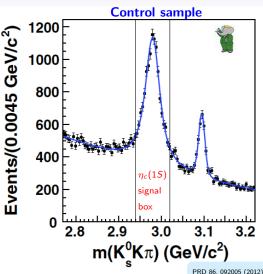
• $\mathcal{B}(\eta_c(2S) o \eta_c \pi^+ \pi^-)$ predicted to be large

$$\frac{\Gamma(\eta_c(2S) \to \eta_c \pi^+ \pi^-)}{\Gamma(\psi(2S) \to J/\psi \pi^+ \pi^-)} \approx 2.9$$

Voloshin, Mod.Phys.Lett. A17, 1533 (2002)

thus
$$\mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-) = (2.2^{+1.6}_{-0.6})\%$$

- Many new resonances observed in $J/\psi\pi^+\pi^-$
 - there could be others in $\eta_c \pi^+ \pi^-$ unexplored!
 - 0⁻⁺ instead of 1⁻⁻ allows access to "new states" with different quantum numbers


Search for $\gamma \gamma \to \eta_c \pi^+ \pi^-$

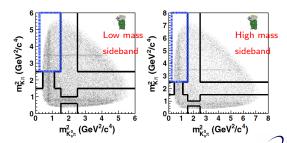
Select candidates

- control sample $\gamma\gamma \to \eta_c \to K_S^0 K^\pm \pi^\mp$ used to optimize the η_c selection (4 tracks)
- main sample of $\gamma\gamma \to X \to \eta_c \pi^+ \pi^- \to (K_S^0 K^\pm \pi^\mp) \pi^+ \pi^-$ (6 tracks)

"standard" cuts on PID, p_t , missing mass,...

C. Patrignani - Genova

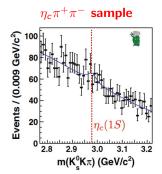
Dalitz plot cut


In the control sample, the Dalitz plot of events in the η_{c} mass window shows different substructures than events in the low-mass or high-mass sidebands

Enhance η_c in main sample by requiring intermediate $K^*(1430)$

Further reduce non- η_c component with a NN trained to reject events in blue regions of low and high sidebands

PRD 86, 092005 (2012)



Event yield for $\gamma \gamma \to \eta_c \pi^+ \pi^-$

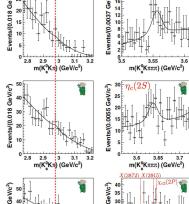
The total signal yield for $\gamma\gamma \to \eta_c\pi^+\pi^-$ (resonant or non-resonant) is determined from the 1-D fit to the $K^0_S K^\pm\pi^\mp$ invariant mass distribution integrated over $M\left((K^0_S K^\pm\pi^\mp)\pi^+\pi^-\right) > 3.5~{\rm GeV}/c^2$

Only 50 \pm 37 inclusive η_c in the sample

- No evidence for $\gamma\gamma\to\eta_c\pi^+\pi^-$ signal in the main sample i.e.
- No evidence for $\eta_c \pi^+ \pi^-$ decay of resonances with $M > 3.5~{\rm GeV}/c^2$

PRD 86, 092005 (2012)

Search for $\chi_{c2}(1P), \eta_c(2S) \rightarrow \eta_c \pi^+ \pi^-$


Perform a 2-D fit to the $M(K_0^S K^{\pm} \pi^{\mp})$ vs $M\left((K_0^S K^{\pm} \pi^{\mp}) \pi^+ \pi^-\right)$ distribution to determine the signal yield at each resonance

- No evidence for $\chi_{c2}(1P), \eta_c(2S) \rightarrow \eta_c \pi^+ \pi^-$ Peaking background from known $K_S^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$ (non resonant) decays not peaking at η_c mass
- No evidence for other resonances:

	Resonance	$\Gamma_{\gamma\gamma}\mathcal{B}(eV)$	
90%CL		Central value	UL
	$\chi_{c2}(1P)$	$7.2^{+5.5}_{-4.4} \pm 2.9$	15.7
	$\eta_c(2S)$	$65^{+47}_{-44} \pm 18$	133
	X(3872)	$-4.5^{+7.7}_{-6.7} \pm 2.9$	11.1
	X(3915)	$-13^{+12}_{-12} \pm 8$	16
	$\chi_{c2}(2P)$	$-16^{+15}_{-14} \pm 6$	19

derive using PRD 84, 012004 (2011) and PDG

$$\begin{split} &\frac{\mathcal{B}(\chi_{c2}(1P) \to \eta_c \pi^+ \pi^-)}{\mathcal{B}(\chi_{c2}(1P) \to \kappa_s^0 K^\pm \pi^\pm)} < 32.9 \quad \mathcal{B}(\chi_{c2}(1P) \to \eta_c \pi^+ \pi^-) < 2.2\% \\ &\frac{\mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-)}{\mathcal{B}(\eta_c(2S) \to \kappa_s^0 K^\pm \pi^\pm)} < 10.0 \quad \mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-) < 7.4\% \end{split}$$

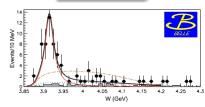
m(K⁰Kπ) (GeV/c²)

PRD 86, 092005 (2012)

3.85 3.9 3.95

m(K⁰Kπππ) (GeV/c²)

$$\gamma\gamma \to J/\psi\omega$$


X(3915) decaying to $J/\psi\omega$ observed by Belle in $\gamma\gamma$ PRL 104, 092001 (2010)

$$M = 3915 \pm 3 \pm 2 \text{ MeV}/c^2$$

$$\Gamma = 17 \pm 10 \pm 3 \text{ MeV}$$

$$\Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) = 61 \pm 17 \pm 8 \text{ eV} \quad (J=0)$$

$$\Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) = 18 \pm 5 \pm 2 \text{ eV} \quad (J=2)$$

but there are other resonances in the same final state or mass range

• Y(3940) decaying to $J/\psi\omega$ has been observed in B decays

PRL 94, 182002 (2005) PRL 101, 082001 (2008) PRD 82, 011101 (2010) • Z(3930) decaying to DD observed in $\gamma\gamma$

PRL 96, 082003 (2006) PRD 81, 092003 (2010)

angular distribution supports J=2, identified with $\chi_{c2}(2P)$

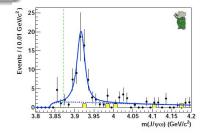
Are they all the same or not?

C. Patrignani - Genova

Also, until recently, the assignment 2^{-+} for the X(3872) was not ruled out arXiv:1302.6269

Study of $X(3915) o J/\psi\omega$ in $\gamma\gamma$ reactions at BABAR

X(3915) confirmed by BABAR


PRD 86, 072002 (2012)

Resonance parameters in agreement with Belle:

$$M = 3919.4 \pm 2.2 \pm 1.6 \ {\rm MeV}/c^2$$

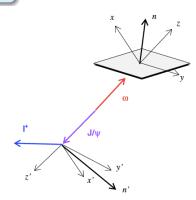
$$\Gamma = 13 \pm 6 \pm 3 \ {\rm MeV}$$

$$\Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) = 52 \pm 10 \pm 3 \text{ eV}$$
 $(J=0)$

$$\Gamma_{\gamma\gamma}\cdot \mathcal{B}(J\psi\omega) = 10.5 \pm 1.9 \pm 0.6 \text{ eV} \quad (J=2)$$

If
$$\Gamma_{\gamma\gamma}=\mathcal{O}(1~{\rm keV})$$
 (typical $car{c}$), then $\mathcal{B}(J/\psi\omega)>(1-6)\%$

(Limit for J=2 hypothesis of X(3872): $\Gamma_{\gamma\gamma}\cdot\mathcal{B}(J\psi\omega)<1.7~\mathrm{eV}$)


Angular distribution for $\gamma \gamma \to J/\psi \omega$

Angular analysis follows J. L. Rosner, PRD 70, 094023 (2004)

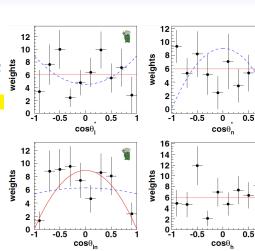
Since events have low p_t the $\gamma\gamma$ collision axis is approximately along the beam axis.

The angles are defined in three different center of mass frames: $J/\psi\omega$, J/ψ , and ω .

The normal to the ω decay plane defines the axis orientation

No background subtraction:

assume that all events in $3890 < M(J\psi\omega) < 3950~{
m MeV}/c^2$ are from X(3915) decay

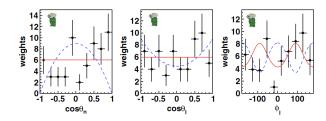


X(3915): J=0 or J=2?

The efficiency corrected distributions for events in the X(3915) signal region in each of the three discriminating angles favors J=0 over J=2

Angle	$J^P = 0^{\pm}$	$J^P = 2^+$	(NDOF=9)
$ heta_l^*$	1	$1 + \cos^2 \theta_l^*$	
χ^2	11.2	16.9	
$ heta_n^*$	1	$\sin^2 \theta_n^*$	
χ^2	6.9	65.9	
θ_{ln}	$\sin^2\theta_{ln}$	$7 - \cos^2 \theta_{ln}$	
χ^2	12.5	18.0	
θ_h	1		
χ^2	12.2		

Overall J=0 strongly preferred over J=2

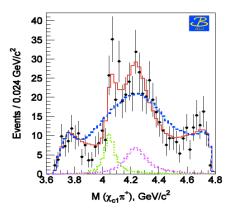

PRD 86, 072002 (2012)

$X(3915): 0^- \text{ or } 0^+$?

C. Patrignani - Genova

The efficiency corrected distributions for events in the X(3915) signal region in three discriminating angles favors 0⁺ over 0⁻

Angle	$J^P = 0^-$	$J^P = 0^+$	
θ_n	$\sin^2 \theta_n$	1	<u></u>
χ^2	77.6	16.3	
θ_l	$1 + \cos^2 \theta_l$	1	(NDOF=9)
χ^2	8.7	8.3	
ϕ_l	$2 - \cos(2\cos\phi_l)$	$2 + \cos(2\cos\phi)$	$b_l)$
χ^2	21.7	9.6	


PRD 86, 072002 (2012)

 $\chi_{c0}(2P)$ candidate?

$Z_1(4050)^+$ and $Z_2(4250)^+$

Fit to the Dalitz plot intensity of $\bar B^0 \to \chi_{c1} \pi^+ K^-$ including contributions from all know K*

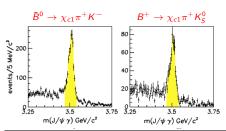
To obtain a good fit need to include two more intermediate states decaying to $\chi_{\rm c1}\pi^+$

PRD 78, 072004 (20008)

$$M_1 = (4051 \pm 14^{+20}_{-41}) \text{ MeV}/c^2,$$

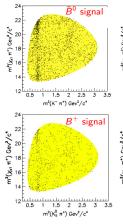
 $\Gamma_1 = (82^{+21+47}_{-17-22}) \text{ MeV},$
 $M_2 = (4248^{+44+180}_{-29-35}) \text{ MeV}/c^2,$
 $\Gamma_2 = (177^{+54+316}_{-30-61}) \text{ MeV},$

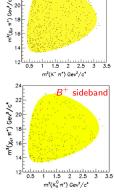
with the product branching fractions of


$$\mathcal{B}(\bar{B}^0 \to K^- Z_1^+) \times \mathcal{B}(Z_1^+ \to \pi^+ \chi_{c1}) = (3.0^{+1.5}_{-0.8}^{+3.7}) \times 10^{-5},$$

$$\mathcal{B}(\bar{B}^0 \to K^- Z_2^+) \times \mathcal{B}(Z_2^+ \to \pi^+ \chi_{c1}) = (4.0^{+2.3}_{-0.9}^{+3.19.7}) \times 10^{-5}.$$

BABAR search for $Z_1(4050)^+$ and $Z_2(4250)^+$ in $\bar{B}^0 \rightarrow \chi_{c1} \pi^+ K^-$ and $B^+ \rightarrow \chi_{c1} \pi^+ K_S$

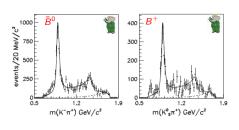

Select samples with relatively large purities



Channel	$\sigma_{\Delta E}({ m MeV})$	$\sigma_{m_{\rm ES}}({\rm MeV}/c^2)$	Events	Purity %
$\bar{B}^0 \rightarrow \chi_{c1} K^- \pi^+ (\mu^+ \mu^-)$	6.96 ± 0.34	2.60 ± 0.10	980	79.3 ± 1.3
$\bar{B}^0 \to \chi_{c1} K^- \pi^+ (e^+ e^-)$	7.81 ± 0.43	2.77 ± 0.12	883	77.1 ± 1.4
$B^+ \to \chi_{c1} K_S^0 \pi^+ (\mu^+ \mu^-)$	6.65 ± 0.55	2.65 ± 0.27	299	81.7 ± 2.2
$B^+ \to \chi_{c1} K_S^0 \pi^+ (e^+ e^-)$	7.52 ± 0.70	2.65 ± 0.18	329	77.5 ± 2.3

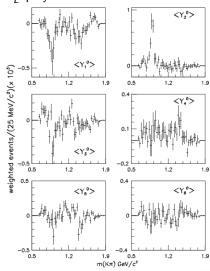
PRD 85, 052003 (2012)

and study DP for signal region and background sidebands



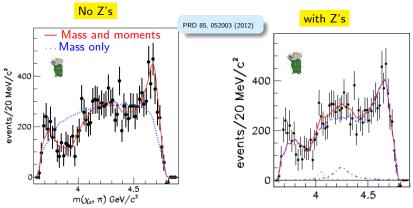
 \bar{B}^0 sideband

$K\pi$ description in $\bar{B}^0 \to \chi_{c1}\pi^+K^-$ and $B^+ \to \chi_{c1}\pi^+K^0_S$


Fit the $K\pi$ invariant mass distribution to a sum of S-P-D wave

Channel	S wave	P wave	D wave	χ^2/NDF
$\bar{B}^0 \rightarrow \chi_{c1} K^- \pi^+$	40.4 ± 2.2	37.9 ± 1.3	11.4 ± 2.0	58/54
		10.3 ± 1.5		
$B^+ \rightarrow \chi_{c1} K_S^0 \pi^+$	42.4 ± 3.5	37.1 ± 3.2	10.1 ± 3.1	55/54
		10.4 ± 2.5		

PRD 85, 052003 (2012)


and weight each event by Legendre Y_I^0 polynomials

No evidence from BABAR for $Z_1(4050)^+$ and $Z_2(4250)^+$

Use MC to predict reflections of $K\pi$ mass and angular structures in $\chi_{c1}\pi^+$

Reflections in MC using only $K\pi$ mass structures look different

$$\mathcal{B}(\bar{B}^0 o Z_1^+ K^-) imes \mathcal{B}(Z_1^+ o \chi_{c1} \pi^+) < 1.8 imes 10^{-5}$$

 $\mathcal{B}(\bar{B}^0 \to Z_2^+ K^-) \times \mathcal{B}(Z_2^+ \to \chi_{c1} \pi^+) < 4.0 \times 10^{-5}$

Not incompatible with Belle

Conclusions

- Search for resonances decaying to $\eta_c \pi^+ \pi^-$ in $\gamma \gamma$ reactions
 - First search in this mode
 - No signal found
 - $\mathcal{B}(\eta_c(2S) o \eta_c \pi^+ \pi^-) < 7.4\%$ and $\mathcal{B}(\chi_{c2}(1P) o \eta_c \pi^+ \pi^-) < 2.2\%$
- Study of $X(3915) \rightarrow J/\psi\omega$ observed in $\gamma\gamma$ reactions
 - Confirm the state observed by Belle
 - Study of angular distribution suggests 0^{++} $\chi_{c0}(2P)$??
- Search for $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B^0 \to \chi_{c1} \pi^+ K^-$ and $B^+ \to \chi_{c1} \pi^+ K_S$
 - we do NOT confirm the state observed by Belle
 - nor we are able to exclude it
- Analysis still ongoing, more than 5 years after the end of the data taking, new results to come

C. Patrignani - Genova