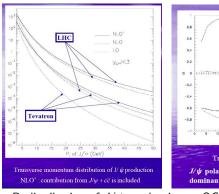
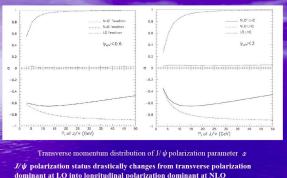
Polarization for Prompt J/ψ and $\psi(2s)$ production at the Tevatron and LHC

Jian-Xiong Wang Institute of High Energy, Chinese Academy of Science, Beijing

QWG2013, April 22-26, 2013, IHEP, Beijing


Based on our recent work: PRL110, 042002, 2013, ArXiv:1205.6682, and paper for $\Upsilon(1S,2S,3S)$ in preparation, by B. Gong, L. P. Wan, J. X. Wang and H. F. Zhang


Introduction

- Perturbative and non-perturbative QCD, hadronization, factorization
- Color-singlet and Color-octet mechanism was proposed based on NRQCD since b and c-quark is heavy.
- Clear signal to detect J/ψ .
- heavy quarkonium production is a good place to testify these theoretical framework.
- J/ψ photoproduction at HERA
- ullet J/ψ production at the B factories
- ullet J/ψ production and polarization at the Tevatron
- J/ψ production at the LHC
- LO theoretical predication were given before more than 15 years
- NLO theoretical predications were given within last 5 years.
- It seems that the QCD NLO calculations can adequately describe the experimental data.
- But there are still many difficulties.

QCD Correction to color-singlet J/ψ production

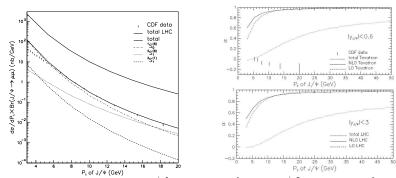
 P_t distribution of J/ψ production at QCD NLO was calculated in PRL98,252002 (2007), J. Campbell, F. Maltoni F. Tramontano

Some technique problems must be solved to calculate J/ψ polarization P_t distribution of J/ψ polarization at QCD NLO was calculated in PRL100,232001 (2008), B. Gong and J. X. Wang

NLO QCD corrections to J/ψ production via S-waye color octet states

3 tree processes at LO

At NLO


$$g(p_1) + g(p_2) \rightarrow J/\psi \left[{}^{1}S_0^{(8)}, {}^{3}S_1^{(8)} \right] (p_3) + g(p_4),$$
 (267, 413)

$$g(p_1) + q(p_2) \rightarrow J/\psi \left[{}^{1}S_0^{(8)}, {}^{3}S_1^{(8)} \right] (p_3) + q(p_4),$$
 (49, 111)

$$q(p_1) + \overline{q}(p_2) \rightarrow J/\psi \left[{}^{1}S_0^{(8)}, {}^{3}S_1^{(8)} \right](p_3) + g(p_4).$$
 (49, 111)

Real Correction (8 processes at NLO)

QCD Correction to $J/\psi(^3S_1^1,\ ^1S_0^8,\ ^3S_1^8)$ production and polarization without $^3P_J^8$ contribution

To fit the Tevatron P_t distribution give more $\langle \mathcal{O}_8^{\psi}(\mathbf{\hat{S}}_0) \rangle = 0.075~\mathrm{GeV^3}$ and less $\langle \mathcal{O}_8^{\psi}(\mathbf{\hat{S}}_1) \rangle = 0.0021~\mathrm{GeV^3}$ than they are at LO fitting The experimental data with $p_t < 6~\mathrm{GeV}$ have to abandon PLB673:197,2009, Erratum-ibid.693:612,2010 , B. Gong X. Q. Li and J. X. Wang

QCD Correction to $J/\psi(^1S_0^8, ^3S_1^8, ^3P_J^8)$ production

Refer to K. T. Chao's talk and B. Kniehl's talk for QCD Correction to prompt $J/\psi(^1S_0^8,\ ^3S_1^8,\ ^3P_J^8)$ production PRL 106, 042002,2011, Yan-Qing Ma, Kai Wang, Kuang-Ta Chao PRL 106, 022003,2011, Mathias Butenschoen, Bernd A. Kniehl QCD Correction to polarization of $J/\psi(^1S_0^8,\ ^3S_1^8,\ ^3P_J^8)$ direct production PRL 108, 248004,2012 Kuang-Ta Chao, Yan-Qing Ma, Hua-Sheng Shao, Kai Wang, Yu-Jie Zhang

PRL 108, 172002,2012, Mathias Butenschoen, Bernd A. Kniehl

Our work is on: QCD Correction to prompt $J/\psi(^3S_1^1,\ ^1S_0^8,\ ^3S_1^8,\ ^3P_J^8)$ production and polarization

QCD Correction to prompt $J/\psi(^3S_1^1, {}^1S_0^8, {}^3S_1^8, {}^3P_J^8)$ production

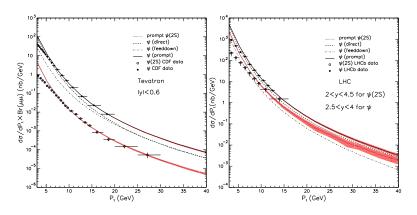


Figure: p_t distribution of prompt J/ψ and ψ' hadroproduction. The CDF and LHCb data are taken in the fitting.

PRL110, 042002, 2013, ArXiv:1205.6682, Bin Gong, Lu-Ping Wan, Jian-Xiong Wang and Hong-Fei Zhang

QCD Correction to $\psi'(^3S_1^1, \ ^1S_0^8, \ ^3S_1^8, \ ^3P_J^8)$ polarization

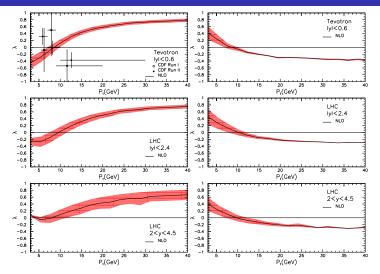


Figure: Polarization parameter λ of J/ψ' in helicity(left) and CS(right) frames.

QCD Correction to $\chi_{cJ}(^3P_J^1,\ ^3S_1^8) \to J/\psi$ polarization

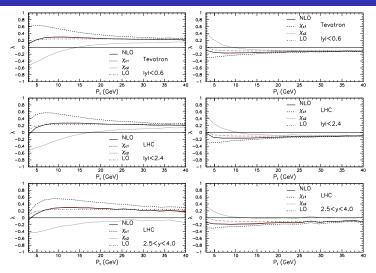


Figure: Polarization parameter λ of J/ψ in helicity(left) and CS(right) frames.

QCD Correction to prompt $J/\psi(^3S_1^1,\ ^1S_0^8,\ ^3S_1^8,\ ^3P_J^8)$ polarization

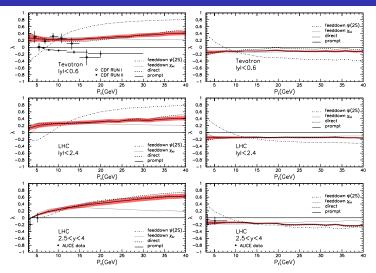
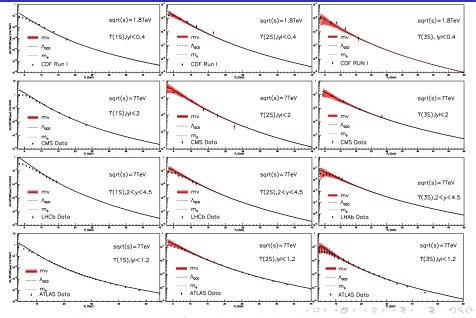
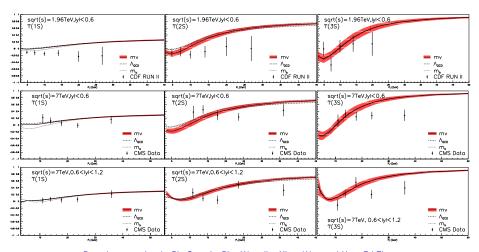



Figure: Polarization parameter λ of prompt J/ψ hadroproduction in helicity(left) and CS(right) frames.


QCD Correction to $\Upsilon(1S,2S,3S)$ production and polarization

- recent measurement by the CMS collaboration at the LHC
- $m_b \sim 3m_c$ measn that both of the perturbative QCD expansion and nonrelativistic expansion are better than charonium case.
- logarithm term $ln(m_Q/p_t)$ plays important role later, i.e. $p_t=20$ GeV for $J/\psi \sim p_t=3x20$ GeV for Υ .
- Can we expect better desciption of experimental measurement on $\Upsilon(1S,2S,3S)$ by NLO NRQCD calculation?
- It is very interesting to the comparision between theoretical calculation and the experimental measurement!

QCD Correction to $\Upsilon(1S, 2S, 3S)$ production

QCD Correction to $\Upsilon(1S, 2S, 3S)$ polarization

Paper in preparation, by Bin Gong, Lu-Ping Wan, Jian-Xiong Wang and Hong-Fei Zhang Figure: Polarization parameter λ of prompt $\Upsilon(1S,2S,3S)$ hadroproduction in helicity frame

Summary

- For B-factories: NRQCD at NLO of α_s and v can well described J/ψ production data.
- The prediction on the polarization of prompt J/ψ hadroproduction is archived at QCD NLO, but polarization puzzle is still unclear.
- The more precision experimental measurements at LHC are needed to clarify the situation.
- More theoretical Progresses are needed on relativistic coorection, to solve the polarization pzzle.
- For Υ , the transverse momentum distributions of $\Upsilon(1S,2S,3S)$ production represent the measurements very well, and the polarizations of $\Upsilon(1S,2S,3S)$ are in (good, not good, bad) agreement with recent CMS measurement, but in conflict with the CDF RUN II measurement.

Thank you!