J/ψ and h_c radiative decays to η_c on the lattice

F.Sanfilippo

In collaboration with D. Becirevic

Based on "Lattice QCD study of the radiative decays $J/\psi \to \eta_c \gamma$ and $h_c \to \eta_c \gamma$ " D.Becirevic and F.Sanfilippo, arXiv:1206.1445, JHEP 1301 (2013) 028

Summary

$J/\psi ightarrow \eta_c \gamma$ radiative decay

- **1** $\Gamma(J/\psi \to \eta_c \gamma)$ experimental situation
- Theoretical puzzle
- Lattice computation

$h_c \rightarrow \eta_c \gamma$ radiative decay

- **1** $\Gamma(h_c \to \eta_c \gamma)$ lattice determination
- 2 Prediction for Γ_{h_c}

New: decays of radially excited states

Preliminary study of $\psi' \rightarrow \eta_c \gamma$ and $\eta_c (2S) \rightarrow J/\psi \gamma$

$J/\psi ightarrow \eta_c \gamma$ radiative decay

Current experimental situation is unclear

 $\Gamma(J/\psi o \eta_c \gamma)_{\mathrm{PDG}} = (1.58 \pm 0.37) \, \mathrm{keV}$:

- Crystal Ball ('86): (1.18 ± 0.33) keV
- \bullet CLEO ('09): $(1.91 \pm 0.28 \pm 0.03)$ keV

- KEDR (arXiv:1002.2071): $(2.17 \pm 0.14 \pm 0.37)$ keV (preliminary) final result expected this year
- BESIII will hopefully clarify the situation

$J/\psi \to \eta_c \gamma$ radiative decay

Theoretical predictions are inconclusive

- Dispersive bound from $\Gamma(\eta_c \to 2\gamma)$: $\Gamma(J/\psi \to \eta_c \gamma) < 3.2 \text{ keV} \text{ [M.A. Shifman, Z. Phys. C 6 ('80)]}$
- Two QCD sum rule calculations gave two different results:
 - \sim (1.7 \pm 0.4) keV [A.Y. Khodjamirian, Sov. J. Nucl. Phys. 39 ('84)] \sim (2.6 \pm 0.5) keV [Beilin and Radyushkin, Nucl. Phys. B 260 ('85)]
- QCD eff. theory
 - \bullet (1.5 \pm 1.0) keV [N.Brambilla et al, PRD73 ('06)]
 - (2.14 \pm 0.40) keV [A.Pineda, J.Segovia, arXiv:1302.3528]
- Potential Quark Models:
 - ullet ~ 3.3 keV [M.B Voloshin, Prog.Part.Nucl.Phys. 61 ('07)]
 - ullet \sim **2.85** keV [E. Eichten et al., RMP80 ('08)]

Lattice QCD computations

- Quenched and single lattice spacing: 2.51(8) keV[J.J Dudek et al., PRD 79 ('09)]
- Unquenched but still single lattice spacing: 2.77 (5) keV[Chen et. al, PRD 84 ('11)]

Both results obtained at large negative q^2 's, then extrapolated to $q^2 = 0$

Lattice QCD

Desired features

Continuum: Several lattice spacings to take continuum limit

Renormalization: Non perturbative

Momentum: Work directly at $q^2 = 0$ to avoid the q^2 extrapolation

Unquenching: Include 2 physical light, strange and charm dynamical quarks

What we currently have...

Continuum: 4 different lattice spacings ($a \in [0.054; 0.100] \text{ fm}$)

Renormalization: Non perturbative (RI-MOM)

Momentum: Work at $q^2 = 0$ using twisted boundary conditions

Unquenching: Only 2 dynamical light quarks ($M_{\pi} \in [280; 500] \text{ MeV}$)

- Wilson regularization of QCD with twisted mass term (tmQCD)
- QCD gauge field configurations produced by ETM collaboration

Form factor computation

$$\Gamma(J/\psi \to \eta_c \gamma) \propto |\langle \eta_c | J^{em} | J/\psi \rangle|_{q^2=0}^2$$

Three points functions

$$C_{ij}^{(3)}(t) = \langle \text{Tr} \left[S_c(y;0) \gamma_i S_c(0,x) \gamma_j S_c^{\vec{p}}(x,y) \gamma_5 \right] \rangle$$
 at intermediate times:

at intermediate times.
$$C_{ij}^{(3)}(t) \underset{0 \ll t \ll T}{\simeq} \frac{Z_{J\psi} Z_{\eta c} \exp[(E_{\eta c} - M_{J/\psi})t] \langle \eta_c | J_j^{em} | (J/\psi)_i \rangle$$

Two points functions

$$C^{(2)}(t) = \langle \text{Tr} [S_c(0,0;\vec{x},t)\gamma_5 S_c(\vec{x},t;\vec{0},0)\gamma_5] \rangle =$$
at large times:

$$\underset{t \to \infty}{\simeq} \frac{Z_{\eta_c}^2 \exp(-M_{\eta_c} t)}{\text{and similarly for } Z_{J/\psi}, M_{J/\psi}}.$$

Matrix element $\langle \eta_c | J_i^{em} | (J/\psi)_i \rangle$ (example)

Determine Z and M from 2 points functions and combine with $C^{(3)}$:

$$R(t) \equiv \frac{C_{ij}^{(3)}(t)}{Z_{J\psi}Z_{\eta_c} \exp\left[\left(E_{\eta_c} - M_{J/\psi}\right)t\right]} \underset{0 \ll t \ll T}{\sim} \left\langle \eta_c \left|J_j^{em}\right| (J/\psi)_i \right\rangle$$

$$0.25$$

$$0.20$$

$$0 \ll t \ll T$$

$$0.15$$

$$0 \ll t \ll T$$

$$0 \ll T$$

$$0 \ll t \ll T$$

$$0$$

Continuum extrapolation of $\langle \eta_c | J_j^{em} | (J/\psi)_i \rangle$

Numerical result

Our final result

- Putting everything together we get: $\Gamma(J/\psi \to \eta_c \gamma) = 2.58 \, (13) \, \text{keV}$
- Our value is clearly:
 - larger than Crystal Ball('86) 1.18(33) keV
 - \bullet compatible with CLEO('09) 1.91(30) keV, and KEDR('10) 2.17(40) keV

Recent development

- Recently HPQCD collab. (PRD86 (2012) 094501) reported result:
 - using Staggered quarks (HISQ regularization)
 - including also dynamical strange quark
- They show that $\langle \eta_e | J_i^{em} | (J/\psi)_i \rangle$ does not depend on M_s^{sea}
- Excellent agreement with our result in the continuum limit:

$$\Gamma_{J/\psi \to n_e \gamma} = 2.49 \, (19) \, \text{keV}$$

Is the $J/\psi \to \eta_c \gamma$ puzzle solved?

- Two different lattice approaches give the same result in the continuum
- On the theory side the problem is (almost) fully solved
- This becomes a precision test of QCD
- The experimental situation needs to be clarified

$h_c o \eta_c \gamma$ radiative decay

h_c : charmonium $J^{PC} = 1^{+-}$ state

- h_c only recently observed at CLEO (2005)
- Br $(h_c \to \eta_c \gamma) = 53 (7) \%$ at BESIII 2010

Open questions on the initial state

- Lifetime of h_c not measured yet
- No QCD based estimate: no QCDSR, no effective theory

As before, we can provide the first unquenched LQCD result in the continuum: $\Gamma(h_c \to \eta_c \gamma)$ is a prediction!

$h_c \to \eta_c \gamma$ radiative decay

$$\Gamma(h_c \to \eta_c \gamma) = 0.72(5) \,\mathrm{MeV}$$

BESIII measured:

$$Br(h_c \to \eta_c \gamma) = (53 \pm 7) \%$$

We can predict h_c lifetime:

$$\Gamma_{h_{e}} = \frac{\Gamma(h_{e} \to \eta_{e} \gamma)}{\operatorname{Br}(h_{e} \to \eta_{e} \gamma)}$$

$$1.37(23) \, \text{MeV}$$

Very recently (Confinement '12) BESIII presented preliminary results for Γ_{h_c} :

$$\Gamma^{incl}_{h_c} = 0.73(45)(28)\,\mathrm{MeV}, \qquad \Gamma^{excl}_{h_c} = 0.70(28)(22)\,\mathrm{MeV}$$

Decays of radially excited charmomium (preliminary)

Radiative decays of an excited states to the ground state

- Easier to measure for experimentalists
 - more energetic photons easier to recognize
 - more phase space w.r.t ground state decays
- Harder for theorists:
 - models and effective theories predictions are unreliable (very sensitive to high order relativistic correction)
 - lattice: reliable separation of excitation and ground state is difficult

Spectral decomposition of two points correlation function

$$C_{2nt}(t) = a_1 e^{-M_1 t} + a_2 e^{-M_2 t} + a_3 e^{-M_3 t} + \dots$$

- How to separate different states?
 - \rightarrow we use several operators with the same quantum numbers
- Smeared operators: operators with different spatial distribution
 - → different couplings to states

Spectral decomposition of 2pts pseudoscalar corr. function

$$\psi' \to \eta_c (1S) \gamma$$

Form factor for $\psi' o \eta_c \gamma$ very small: negligible decay width

- Compatible with findings of J.J Dudek et al, PRD 79 ('09)
- In line with experiments, that finds very small $\Gamma(\psi' \to \eta_c \gamma)$

$\eta_c(2S) \to J/\psi \gamma$

Form factor for $\eta_c(2S) \to J/\psi \gamma$ sizable: non negligible decay width

- Never explored in lattice before, never measured in experiments
- Caveat: no continuum limit

Conclusions

Results

First full determination of $J/\psi \to \eta_c \gamma$, $h_c \to \eta_c \gamma$ form factors:

- high statistics unquenched simulations
- continuum extrapolation under control
- non-perturbatively renormalized

Preliminary study of excited-to-ground state decays

Main message from Lattice QCD side

- Assessed theoretical estimate of $\Gamma(J/\psi \to \eta_c \gamma)$
- Provided a prediction for h_c lifetime
- Indication of sizable $\Gamma(\eta_c(2S) \to J/\psi\gamma)$

Main message for experimentalists

Radiative decays of charmonium could become a precision test of QCD but

- Indispensable to clarify $\Gamma\left(J/\psi \to \eta_c \gamma\right)$
- Improve the measurement of Γ_{h_c}
- Measure $\Gamma(\eta_c(2S) \to J/\psi\gamma)$

Backup slides

Dependence on light quark mass

Insensitive to variation of the light sea quark mass $m_\ell^{\rm sea}$ (expected because $m_c^{\rm val}\gg m_\ell^{\rm sea}$)

Expected insensitivity to the dynamical strange quark $(m_c\gg m_s\gg m_\ell^{sea})$

Can we do charm physics on current lattices?

Some back of the envelop calculation

- Lattice spacings: $a \sim 0.050 \div 0.100$ fm, $1/a \sim 2 \div 4$ GeV
- ullet Charmed meson mass: $M_{D^\pm}=1.87$ GeV, $M_{J/\Psi}=3.1$ GeV

To study charm physics on such lattices seem questionable but...

Some deeper calculation

- In the free theory the cut off is given by $p_{max} = \pi/a \sim 6 \div 12$ GeV!
- Seems to be almost good also to study b quark...

Cutoff of interacting theory is unknown: only actual computations can teach us

How to keep the situation under control?

Having 4 different lattice spacing, and $\mathcal{O}(a)$ improved theory allows:

- ullet to drop coarsest lattice spacing and check for stability of a o 0 limit
- ullet to assess the convergence $\propto a^2$ to the continuum limit: $\Phi^{latt} = \Phi^{cont.} + \Phi' a^2$

Determination of the charm quark mass

Wick contraction

$$C(\tau) = \sum_{\vec{x}} \left\langle O^{\dagger}(\vec{x}, \tau) O(\vec{0}, 0) \right\rangle \underset{Wick}{=} \operatorname{Tr} \left[\Gamma S_{I}(\vec{x}, \tau; \vec{0}, 0) \Gamma S_{c}(\vec{0}, 0; \vec{x}, \tau) \right]$$

Quark propagator calculation

Solving Dirac equation on gauge background provides full quark propagator $D_q(y,x) \cdot S_q(x,0) = \delta_{y,0}$ $D_q = (\frac{1}{2\kappa} + K[U]) \mathbf{1} + i m_q \gamma_5 \tau_3$

$$\frac{1}{x} + \frac{1}{x} + \frac{1}$$

In practice

- ullet D operator and the propagator S are large matrices ($\mathcal{O}\left(10^9\right)$ lines)
- Solving Dirac equation requires large amount of CPU resources

Other two precise tests of SM

Two points correlation function computation

Combine 2 propagators with suitable Dirac structures

Effective mass

Where ground state dominate, correlation decays exponentially:

$$C(\tau) \xrightarrow[\tau \to \infty]{} Z_D^2 e^{-M_D \tau}$$

The derivative of its logarithm (effective mass) is a constant:

$$M_{eff}(\tau) \equiv -\partial_{\tau} \log C(\tau) \xrightarrow[\tau \to \infty]{} M_{D}$$

- Deviation from constant behavior of $M_D\left(\tau\right)$ reveals excited states
- Derivative to be computed numerically: $\partial_{\tau} = f(\tau + 1) f(\tau)$